

Fundamentals of Digital Audio

For Mac and iPhone

James McCartney Core Audio Engineer

Eric Allamanche Core Audio Engineer

Agenda

Audio Processing Basics

Voice Processing Audio Unit and Audio Codecs

Audio Processing Basics

James McCartney Core Audio Engineer

Audio Processing Topics

- About audio representation formats
- Converting audio
- Processing audio

Representing Audio Digitally

- An analog waveform is sampled at the sampling rate
- Each sample is a number
- Two numbers per cycle of a sine wave required to reconstruct
- Highest reproducible frequency is half of the sampling rate

Audio Formats

- Linear PCM
- Nonlinear PCM
- Packetized compressed formats

LPCM

- The most direct way to represent the sampled audio
 - Linear Pulse Code Modulation or LPCM
 - Just store the sampled numbers in binary form

Attributes of LPCM

- Are the numbers integer or floating point?
- Are integers signed or unsigned?
- How many bits are in each number?
 - Bit depth
- What order are the bytes of the number stored in?
 - Big endian or little endian
- How many channels?
- Are channels stored together or separately?
 - Interleaved or non-interleaved
- Are the bytes packed or is there padding?

Samples, Frames, Packets

- Sample
 - One sample of a waveform
- Frame
 - A collection of samples for each channel
- Packet
 - The smallest cohesive unit of data for a format
 - For LPCM, one packet equals one frame
 - For compressed formats, one packet is a group of bytes that decompress to some number of frames of LPCM

Interleaving

Non-interleaved stereo LPCM

Frames of LPCM

One frame of interleaved stereo LPCM

One frame of non-interleaved stereo LPCM

Quality—Sample Rate Common sample rates

Sample Rate	Quality
8 kHz	Narrow-band speech
16 kHz	Wide-band speech
44.1 kHz	CD quality
48 kHz	Digital audio tape, etc.
96 kHz	Pro quality
192 kHz	Ultimate marketing quality

Quality—Sample Rate

• Human hearing extends to ~20 kHz

- Sampling rates above 48 kHz are not needed to improve audible quality
- Reasons for rates above 48 kHz
 - Eliminating phase effects caused by steep filters
 - Eliminating the need for steep filters
 - Allowing frequencies that would otherwise alias to fall in upper octaves where they can be filtered out

Quality—Bit Depth

- Bit depth determines signal to noise ratio
- What is Signal to Noise Ratio (SNR)?
 - Amplitude of signal divided by amplitude of noise
 - The noise is quantization error
 - Every 6 decibels (dB) is roughly a factor of two
 - Every bit adds 6 dB to the SNR
 - In integer formats, SNR is amplitude dependent
 - Quieter signals have worse SNR
 - In floating point, SNR is independent of amplitude

Quality—Bit Depth Bit depth and Signal to Noise Ratio

Format	Common Use	Signal to Noise Ratio
8 bit integer	Old games, 1980s gear	48 dB SNR *
16 bit integer	CD quality	96 dB SNR *
24 bit integer	Newer consumer format	144 dB SNR *
32 bit integer as 8.24 fixed point	AudioUnitSampleType iPhone OS	144 dB SNR * 42 dB headroom
32 bit floating point	AudioUnitSampleType Mac OS X	144 dB SNR for any amplitude unlimited dynamic range

* for full-scale signal

Quality

- Quality, once lost, cannot be added back
- None of the following will increase quality:
 - Converting to a higher sample rate
 - Converting to a higher bit depth
 - Re-encoding compressed data to a higher bit rate
 - Re-encoding compressed data to a better codec
 - If you have the original uncompressed source then re-encoding is an option

Nonlinear PCM

- Instead of storing the number, the logarithm of the number is stored
- Increases the SNR of quiet signals at the expense of the SNR of loud signals
- Two common algorithms:
 - µ-law
 - A-law
 - Both encode audio in 8 bits per sample

Packetized Compressed Formats

- A group of frames is compressed into a packet
- Packets often have dependencies on preceding packets
 - Butt-splicing compressed packets will often cause a glitch
- More on compressed formats in next section

AudioStreamBasicDescription

- Struct used to describe audio formats throughout CoreAudio
- Has been covered extensively in previous WWDCs
 - How to fill one out
 - How to get one from other APIs
 - AudioFormat
 - AudioFile
 - AudioConverter
- If you use the AVFoundation classes you can avoid them

Converting Audio

Converting Between Formats

• AudioConverter API is used to convert between formats

- LPCM LPCM
 - Sample rate conversion
 - Bit depth change
 - Integer floating point

 - etc.

Converting Between Formats Some APIs have AudioConverters within them

API	Function	Converts Between		
AudioQueue	Play/record buffers of audio to/from hardware	Client and hardware format		
ExtendedAudioFile	Write/read audio to/from files	Client and file format		
AVAudioPlayer	Play a file to hardware	File and hardware format		
AVAudioRecorder	Record a file from hardware	Hardware and file format		

Sample Rate Conversion Quality

• CoreAudio provides quality levels for sample rate conversion

kAudioConverterSampleRateConverterComplexity

Linear

- Normal
- Mastering (desktop)

kAudioConverterSampleRateConverterQuality

- Minimum, low, medium, high, maximum
- Higher quality costs more CPU
- Linear is fast, but very low quality

Processing Audio

Signal Processing with AudioUnits

• AudioUnits

- Components that process audio
- Attributes
 - Inputs, outputs
 - Parameters that can be varied in real time

Signal Processing with AudioUnits

- I/O
- Effects
 - Filters
 - Compressors
 - Delays, reverbs
 - Time/pitch alterations
- Panners
- Mixing
 - 3D Mixer

I/O AudioUnits

- Remote I/O—iPhone OS
- AUHAL—Mac OS X

Filters (Desktop)

Compressors (Desktop)

Delay, Reverb (Desktop)

Audio Unit: AUMatrixReverb				Manufact	Manufacturer: Apple 🧃			
Audio	Channel	Layout:	Stereo (L R)					
	Render	Quality:	Maximum 🛟					
Parameters								
▼ Global								
dry/wet mix	0.0			100.0	100.0	%		
small/large mix	0.0		0	100.0	35.0	%		
pre-delay	0.001		0	0.03	0.0149	Secs		
modulation rate	0.001			O 2.0	1.23	Hz		
modulation depth	0.0		0	1.0	0.4			
▼ Small Room								
small size	0.0001		0	0.05	0.0147	Secs		
small density	0.0		0	1.0	0.655			
small hifreq absorption	0.1		0	1.0	0.75			
small delay range	0.0		0	1.0	0.396			
▼ Large Room								
large size	0.005		0	0.15	0.061	Secs		
large delay	0.001	0		0.1	0.001	Secs		
large density	0.0			1.0	0.68			
large delay range	0.0		0	1.0	0.585			
large hifreq absorption	0.1		0	1.0	0.641			
▼ EQ								
filter frequency	10.0		0	22,050	800.0	Hz		
filter bandwidth	0.05		0	4.0	3.0	8ve		
filter gain	-18.0		0	18.0	0.0	dB		

Panners (Desktop)

- AUSoundFieldPanner
- AUSphericalHeadPanner
- AUVectorPanner
- HRTFPanner

Mixers

- iPhone
 - "Multichannel" Mixer
 - Embedded 3D Mixer
- Desktop
 - Multichannel Mixer
 - 3D Mixer
 - Stereo Mixer
 - Matrix Mixer

Embedded 3D Mixer Spatialization modes

- -
- Equal power
- Spherical head
 - Interaural time delay cue
 - Interaural intensity difference
 - Filtering due to head
 - Distance filtering

3D Mixer Parameters Azimuth

3D Mixer Parameters Distance

3D Mixer Parameters Elevation

3D Mixer Property Distance attenuation

OpenAL

- OpenGL—like library for 3D audio
- Cross-platform
- 3D spatialized source positioning
- Built on top of 3D Mixer
- Uses world coordinates (x, y, z)

Voice Processing Audio Unit and Audio Codecs

Eric Allamanche Core Audio Engineer

Voice Processing Audio Unit

Voice Processing Audio Unit

- Dedicated AURemotelO with built-in Acoustic Echo Canceler
- Instantiated and accessed the same way as the Output Audio Unit
- Significantly better quality, specially designed for high-quality chat
- Two algorithms available allowing quality versus complexity tradeoff

Functionality of an Acoustic Echo Canceler

Opening the Voice Processing Audio Unit

#include <AudioUnit/AudioUnit.h>

AudioUnit myIOUnit = NULL; AudioComponentDescription desc;

```
desc.componentType = kAudioUnitType_Output;
desc.componentSubType = kAudioUnitSubType_VoiceProcessingIO;
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
```

AudioComponent comp = AudioComponentFindNext(NULL, &desc);

AudioComponentInstanceNew(comp, &myIOUnit);

Voice Processing Audio Unit Properties

• Defined in the <AudioUnit/AudioUnitProperties.h> header file

kAUVoiceIOProperty_BypassVoiceProcessing kAUVoiceIOProperty_VoiceProcessingEnableAGC kAUVoiceIOProperty_DuckNonVoiceAudio

Voice Processing Audio Unit Properties New in iOS 4

• Defined in the <AudioUnit/AudioUnitProperties.h> header file

kAUVoiceIOProperty_BypassVoiceProcessing kAUVoiceIOProperty_VoiceProcessingEnableAGC kAUVoiceIOProperty_DuckNonVoiceAudio kAUVoiceIOProperty_VoiceProcessingQuality kAUVoiceIOProperty_MuteOutput

Audio Codecs

Audio Codecs

- CODEC = enCOder + DECoder
- Compresses and decompresses PCM audio signals
- Lossy and lossless codecs
- Core technology in digital audio nowadays

Lossy Versus Lossless Audio Codecs

• Lossless

- No loss of information
- After encoding and decoding resulting signal is bit identical to the original regardless of the bit depth
- Typical compression factor: 1.5–2.0

• Lossy

- Relies on a perceptual model of the human auditory system
- Removes redundant and irrelevant (not perceived) information
- Quality controlled by bit rate
- Typical compression factor: 6–24

Available Audio Decoders

- ADPCM: IMA, IMA4, DVI, MS-ADPCM
- QDesign (version 1 and 2)
- GSM
- iLBC (Internet Low Bit rate Codec)
- MPEG-1/2 Layer 3 (MP3)
- Apple Lossless (ALAC)
- MPEG-4 AAC family

Available Audio Encoders

- ADPCM: IMA4
- iLBC (Internet Low Bit rate Codec)
- Apple Lossless (ALAC)
- MPEG-4 AAC
 - Low Complexity
 - Low Delay
 - Enhanced Low Delay
- Note: no MP3 encoder, provided through iTunes only

Specifications

Codec	Sample Rates	Bit Rates	Channels	Optimized For
iLBC	8 kHz	13.3, 15.2 kbps	1	Speech
MP3	16-48 kHz	8-320 kbps	1-2	General audio
ALAC	Any	not settable	1-2	General audio
AAC Low Complexity	8-48 kHz	8-768 kbps	1-2, 5.1*, 7.1*	General audio
High Efficiency AAC	16-48kHz	12-96 kbps	1-2	Streaming audio
AAC (Enhanced) Low Delay	16-48 kHz	16-256 kbps	1-2	AV chat

* Down mixed to stereo

AAC Codecs

Why Advanced Audio Codec (AAC)?

• About MP3

- Is almost 20 years old! (standardized in 1991)
- Has limited bit rates, sample rates, channel configurations
- Can't ensure transparent coding for certain signal classes
- AAC was designed to address these issues and allow transparent coding (standardized in MPEG-2 in 1997)
- Many enhancements and variations added since its first standardization (MPEG-4)

AAC Codecs

High Efficiency (v2)

Low Complexity

AAC Codecs

High Efficiency (v2)

Low Complexity

AAC

Enhanced Low Delay

Low Complexity and High Efficiency

- Low Complexity ('kAudioFormatMPEG4AAC')
 - Highest audio quality, multichannel support
- High Efficiency ('kAudioFormatMPEG4AAC_HE')
 - Synthesizes upper frequency bands rather than encoding them
- High Efficiency v2 ('kAudioFormatMPEG4AAC_HE_v2')
 - Expands mono signal to stereo using time-frequency parameters (Parametric Stereo)
 - Very low bit rate down to 20 kbps

• Low Complexity @ 128 kbps

- Low Complexity @ 128 kbps
- High Efficiency @ 64 kbps

- Low Complexity @ 128 kbps
- High Efficiency @ 64 kbps
- High Efficiency v2 @ 32 kbps

- Low Complexity @ 128 kbps
- High Efficiency @ 64 kbps
- High Efficiency v2 @ 32 kbps
- Low Complexity @ 32 kbps

Low Complexity and High Efficiency Adding layers

High Efficiency (mono or stereo)

AAC Low Complexity (mono or stereo)

kAudioFormatMPEG4AAC_HE (44.1 kHz, mono or stereo)

kAudioFormatMPEG4AAC: most compatible format (22.05 kHz, mono or stereo)

Low Complexity and High Efficiency Adding layers

kAudioFormatMPEG4AAC_HE_V2: richest format (44.1 kHz, stereo)

kAudioFormatMPEG4AAC_HE (44.1 kHz, mono)

kAudioFormatMPEG4AAC: most compatible format (22.05 kHz, mono)

AAC Low Delay Codecs Low Complexity

AAC Low Delay Codecs Low Delay

AAC Low Delay Codecs Enhanced Low Delay

AAC Low Delay Codecs

AAC Low Delay Codecs

- Use the same foundations as AAC but with much smaller delay (typically 15-40ms), designed for high-quality full duplex communication
- Low Delay ('kAudioFormatMPEG4AAC_LD')
 - Minimum delay of 20ms
- Enhanced Low Delay ('kAudioFormatMPEG4AAC_ELD')
 - Minimum delay of 15ms
 - Optional high-efficiency extension for increased bandwidth
- Large bit rate range allows for transparent quality
- Delay is proportional to sample rate

TN2258

Hardware/Software Decoder Availability

Codec	Software	Hardware
MP3	\checkmark	\checkmark
ALAC	\checkmark	\checkmark
AAC Low Complexity	\checkmark	\checkmark
AAC High Efficiency	X	\checkmark
AAC High Efficiency v2	X	\checkmark
AAC (Enhanced) Low Delay	\checkmark	X

Key Parameters

- Sampling rate
- Number of channels
- Bit rate
- Bit rate mode
- Subjective quality

Bit Rate

- Determines the compression ratio
- Typically accounts for all channels
- Grows with the number of channels and sample rate
- AAC encoder will lower the output sample rate if the provided bit rate is deemed insufficient for the sample rate/number of channels combination

Bit Rate Modes

- Constant Bit Rate (CBR)
 - Simplest mode where a fixed number of bytes is allocated for each packet
 - Does not accommodate to the content, like silence or transients
- Average Bit Rate (ABR)
 - Allocates bit resources dynamically according to the content while maintaining an average target bit rate
- Variable Bit Rate (VBR)
 - Most flexible mode where the goal is to maintain a constant quality
 - Uses a quality value [0,127] instead of bit rate
Recommendations

• Choose the codec according to the use case and its limitations

- High-quality audio: Low Complexity
- Streaming on constrained channels: High Efficiency
- High-quality voice chats: Enhanced Low Delay
- When possible, favor the highest possible quality
 - Best codec
 - Best encoding mode
 - Highest bit rate

Recommendations

- Avoid transcoding; e.g., converting MP3 to AAC, even if the bit rate is higher
 - Lost information can't be recovered!

Container and Streaming Formats for AAC

- •.mp4: MPEG-4 native file format
- .m4a: MPEG-4 compatible, adds iTunes-specific data chunks, also used for ALAC
- .caf: preferred format
- .adts/.aac: self-framing format, used in SHOUTcast and HTTP live streaming

Related Sessions

Audio Development for iPhone OS, part 1	Mission Wednesday 9:00AM
Audio Development for iPhone OS, part 2	Mission Wednesday 11:30AM

Labs

Audio Lab	Graphics Lab C Wednesday 2:00PM
Audio Lab	Graphics Lab B Thursday 9:00AM

