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Bullet

* An open source physics SDK

- Third most used physics SDK
- Zlib license for copy-and-use openness
* Primary development by Erwin Coumans of Sony

* AMD collaborating on GPU acceleration

- Cloth/soft body and fluids in OpenCL
» Fully open-source contributions




Bullet OpenCL Is...
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An Introduction to Cloth Simulation AMDZ
Masses and springs

* A subset of the possible set of soft bodies
* Mass/spring system
- Large collection of masses (particles)
- Connect using spring constraints
- Layout and properties change properties of cloth




An Introduction to Cloth Simulation AMD
Springs with purpose

* Three main types of springs
= Structural
- Shearing
- Bending




An Introduction to Cloth Simulation AMDZ
Parallelism

* Large number of particles

- Appropriate for parallel processing
- Force from each spring constraint applied to both connected particles
Current layout:

Original layout Compute forces as
stretch from rest length

Apply impulses Compute
to masses new positions




An Introduction to Cloth Simulation AMDZ
Wind

* Wind interaction
- Computed per-vertex

- Uses force and density of air medium

- Computes against normal and mass of vertex

Wind velocity

Vertex velocity Relative velocity Scale by medium density
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Moving to GPU Acceleration
The CPU approach

* [terative verlet integration over vertex positions

- For each spring computes a force
- Updates both vertices with a new position
- Repeat n times where n is configurable

* Note that the computation is serial
- Propagation of values through the solver is immediate




The CPU Approach

for each iteration

{

for(int linkIndex = 0; linkIndex < numLinks; ++linkIndex)

{
float massLSC =
(inverseMass@® + inverseMassl)/linearStiffnessCoefficient;
float k = ((restLengthSquared - lengthSquared) /
(massLSC *x (restLengthSquared + lengthSquared) ) );

vertexPosition® —-= lengthx(kkxinverseMassO);
vertexPositionl += length x(kxinverseMassl);




Moving to the GPU

Parallel execution

* The CPU implementation was serial

- No atomicity issues
- Value propagation immediate from a given update

* The GPU implementation is parallel within a cloth

- Multiple updates to the same node create races




Moving to the GPU

Batching the simulation

* Create independent subsets of links through graph coloring
* Synchronize between batches




Driving Batches

for each iteration
{
for( int i = 0; 1 < m_batchStartLengths.size(); ++i )
{
int start = m_linkData.m_batchStartLengths[i].first;
int num = m_linkData.m_batchStartLengths[i].second;
for(int linkIndex = start;
linkIndex < start + num;
++1linkIndex)
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Dispatching a Batch AMDZ

cl::Kernel kernel =

static_cast<const OpenCLDevice &>(m_device).getSolvePosFromLinksKernel();
cl::CommandQueue queue =

static_cast<const OpenCLDevice &> (m_device).getCLCommandQueue();
// Set resources and dispatch
kernel.setArg(@, startLink);
kernel. numLinks);
kernel. vertexIndicesForLinksSRV);
kernel. massSumLinearStiffnessCoefficientSRV);
kernel. restLengthSquaredSRV);
kernel. inverseMassSRV);
kernel. vertexPositions);
// Execute the kernel
queue—>enqueueNDRangeKernel(

kernel, cl::NullRange, cl::NDRange(numLinks), cl::NDRange(128) );




Executing a Batch

__kernel void solvePositionsFromLinksKernel(

const int startLink,

const int numLinks,

__global int2 g_LlinksVertexIndices,
__global float g_linksMassLSC,

__global
__global

float g_verticesInverseMass,
float4 g_verticesPositions)

>k
*

__global x float g_linksRestLengthSquared,
*
>k

int 1inkID = get_global_id(@) + startLink;
if( get_global_id(@) < numLinks ) {
float massLSC = g_linksMassLSC[1inkID];
float restLenSq = g_linksRestLengthSquared[linkID];




Executing a Batch

if( massLSC > 0.0f ) {
int2 nodeIndices = g_linksVertexIndices[linkID];
int node® = nodelndices.x; int nodel = nodelndices.y;
float3 position® = g_vertexPositions[node@].xyz;
float3 positionl = g_vertexPositions[nodel].xyz;
float inverseMass@ = g_verticesInverseMass[node0];
float inverseMassl = g_verticesInverseMass[nodel];
float3 del = positionl - position®;
float len = dot3(del, del);
float k = ((restLenSq - len)/(massLSCx(restLenSqg+len)));
position® = position® - delx(kxinverseMass);
positionl = positionl + delx(kxinverseMassl);
g_vertexPositions[node@] = (float4)(position@, 0.f);
g_vertexPositions[nodel] = (float4)(positionl, 0.f);




Improving the Constraint Solver
Higher efficiency

* We saw the batched links earlier
- Large number of batches needed
- Low work density per-thread
* Can create larger batches
- The cloth is fixed-structure
- Can be preprocessed

* Fewer dispatches
- Bottleneck in early version

batches




Improving the Constraint Solver
Larger batches still

* We can move to much larger batches

- Number of parallel instances reduced

- On arbitrary meshes batches hard
to create

batches




Improving the Constraint Solver
Remove determinism

* Large batches change behavior of solver

- A lot of computation fed from previous iteration
- In a serial implementation there is none
- Propagation of updates is slower

* Relax a step further

- Allow non-deterministic updates
- Execute per-vertex and pull data, new or old, from neighbors link-by-link
- No write-after-write hazard




Improving the Constraint Solver
Remove determinism

* Single batch
- Highly efficient per solver iteration
- Can re-use position data for central node
- Slower convergence
- Need to cleverly arrange data to allow efficient loop unrolling

* Scope for more iterations of solver to reduce effects




Improving the Constraint Solver
A branch divergence warning

*The GPU is a collection of wide SIMD engines

- Divergent branches hurt performance
- Nodes have different degrees
- Reqular mesh

- Low overhead
- Similar degree throughout

- Complicated mesh
- Arbitrary numerous peaks
- Pack vertices by degree
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Goals of This Presentation

* Develop efficient OpenCL kernels for
Intel CPUs

* Demonstrate CPU is excellent for complex,
memory intensive algorithms

» Utilize multiple cores, vector data types, and
large caches to hide data dependencies

* Case study
e Conclusions




Case Study

Longest common subsequence

* |t is used to find the longest subsequence common to
all sequences in a set of sequences

- Commonly used to analyze DNA and protein sequence
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If Datal[i-1,j] == Datali, j-1] (diag - Match)
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Case Study intel)
Wind

* Why is it interesting?
 Dynamic programming is used extensively to solve hard problems

- Method of solving complex combinational optimizations by
decomposition and tabulation of intermediate results

- Optimizations applied
- Use of vector data types to take advantage of instruction level parallelism
- Memory/cache optimizations
- Multi-threading using OpenCL




Vector Data Type Optimizations




Vector Data Type Optimizations

Cli-1, j-11 Cli-1, jl
N

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])




Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1
else
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Vector Data Type Optimizations
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Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cli,jl=MAX(C[i-1, j1, CI[i, j-11)




Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])




OpenCL Multithread Execution
-----<—Pre Condition

Exit Data—».

Number of Threads Executing in Parallel per Box




(Cache Oblivious Algorithms) Execution Is Aware of Cache Hierarchy




Performance Results

Scalar B OpenCL SSE+GCD




Lessons Learned

*|ssue large work-items

- Approximately 10,000-100,000 instructions
* Utilize map/unmap buffers

- Only locks/unlocks the memory (light weight)
* Use CL_ALLOC_HOST_PTR for CPU memory

* Use command synchronizations such as clEnqueueWaitForEvents
and barriers judiciously




Lessons Learned, continued (inter)

* Image read/write, channel/format support, sampler, etc.... Do not use
any specialized logic/hw on CPUs

* Avoid handling special cases/edge conditions/boundary conditions in
kernels (use padding)

* Use 1D Range if possible to take advantage of cache localities and avoid
2D-index calculations




__kernel void wunrolled(const _ _global intx data, const wuint
dataSize)
{

size_ t tid = get_global _id(0);

size_t gridSize = get_global_size(0);

size_t workPerItem = dataSize / gridSize;

size_t myStart = tid % workPerItem;

for (size t i = rt; i < myStart + workPerItem; ++i)

{
}

//actual work

__kernel void Pythagorean(const _ global
const __global floatx b
__global floatx «c)

size t tid = get _global id(0);
cltidl = sqrt(altid] *x altid]l + bltid] = b[tid]);




__kernel void exponentor(__global intx data, const wuint (lr]te!l

exponent)

{
size_ t tid = get_global_id(0);
int base = dataltid]l;
for (int i = 1;; i < onent;; ++1i)

{
}

datal[tid] *= base;

__kernel void exponentor(__global intx data)

{

size_t tid = get_global_id(0);

int base = dataltid];

for (int i = 1; i < | EXPONENT; ++1i)
{

by

data[tid] = Dbase;




__kernel __attribute__((vec_type_hint(float2)))
void shift_by(__global | float2x coords, __global | float2x deltas)
{

uint | tid = get_global_id(0);

coordsftid] += deltas[tid]l;

__kernel __attribute__ ((vec_type_hint(float4)))
void shift_by(__global float2x coords, __global float2x deltas)
{
size_t tid = get_global_id(0);
float4 my_coords = (float4)(coords[tid], coords[tid + 1]);
float4 my_deltas = (float4)(deltas[tid], deltas[tid + 11);
my_coords += my_deltas;
vstored(my_coords, tid, (__global floatx)coords);







Conclusions intel)

* OpenCL Framework allows you to harness the power of Intel CPUs
- Intuitive, easy and maintainable
* OpenCL can help you create optimized code for the CPU

- Almost on par with MT + SSE hand tuned code if coded optimally
(SOA, larger work loads, use built-in functions)

- Scales well across cores
- Effectively utilizes SSE ISA
- Well suited to serial parts using task parallelism

* Portable code

- Across devices
- Across device generations




Optimizing for @

GPUs with OpenCL NVIDIA.

James Fung




Outline

* Work group size heuristics: maximizing occupancy
* Instruction optimization: avoiding divergence
* Memory optimizations

» Global memory coalescing Terminology Used

<3

NVIDIA

- Local memory bank conflicts

: OpenCL
* Using GPU texture hardware '

: Work Ite
- Example: optical flow oreTiem

Work Group

CUDA
Thread
Block




GPU Architecture (GTX285) <X

NVIDIA

* 240 thread processors grouped into 30 streaming multiprocessors (SMs)
@ 1.45 GHz with 4.0 GB of RAM

* 1 TFLOPS single precision (IEEE 754 precision)
* 87 GFLOPS double precision
* Each SM:

- Eight thread processors

- One double precision unit

- 16 KB local memory, —— e ————
16384 registers AR R R RCE EOE RCE ROE R

© 2008 NVIDIA Corporation.

ROP | L2




Occupancy <X

NVIDIA

* With so many processors, its key to keep them all busy

* Work items (threads) are executed concurrently in “Warps” of 32 threads

* Thread instructions are executed sequentially, so executing other warps
is the only way to hide latencies and keep the hardware busy

# of resident warps

Occupancy =
Max possible # of resident warps
* Limited by resource usage:

- Registers
- Local memory




Measuring Occupancy <X

NVIDIA

* Example: HW shader unit:
- 8 work groups max
- 32KB total local memory
- 1024 work items max

* A work group size of 128 work items requiring 24KB of local memory

= = only run one work group per shader unit (128 threads) BAD

* Check GPU documentation for details on HW




Global Workgroup Size Heuristics <X

NVIDIA

* # of workgroups > # of multiprocessors

- So all multiprocessors have at least one workgroup to execute

* # of workgroups / # of multiprocessors > 2

- Multiple workgroups can run concurrently in a multiprocessor
- workgroups that aren't waiting at a barrier keep the hardware busy

- Subject to resource availability—registers, local memory




Global Workgroup Size Heuristics, Cont. <X

NVIDIA

* # of workgroups > 100 to scale to larger devices

- Workgroups executed in pipeline fashion

- 1000 workgroups per kernel launch will scale across multiple
generations

* # of work items/workgroup a multiple of warp size

- So all threads in a warp are active




Control Flow: Divergence <X

NVIDIA

* Main performance concern with branching is divergence

* Work items within a single warp take different paths

* Different execution paths must be serialized
* Avoid divergence when branch condition is a function of work item ID

- Example with divergence:
- If (threadldx.x > 2) {}
- Branch granularity < warp size
- Example without divergence:
« If (threadldx.x / WARP_SIZE > 2) { }
- Branch granularity is a whole multiple of warp size




Parallel Reduction: Interleaved <X
Addressing with Divergence (Poor Perf.) nvibiA

Values (local memory) 5 = 5| - -3 7/

pi 0 0
v v v
Step 1 Stride 1 Thread IDs 4/ @/ 4/
v
1

v v
9 2

11 2

Values 7 11

v /
Step 2 Stride 2 Thread IDs @

Values
Step 3 Stride 4 Thread IDs
Values

Step 4 Stride 8 Thread IDs

Values




Parallel Reduction: Sequential <X
Addressing (Better Perf.) NVIDIA

Values (local memory) | 10 @ 1 8 -] 0o -2 3 5 0O 11 0 2
e g -
Step 1 Stride 8 Thread IDs @ o e 9 o é @ 7 4/

Values

2 1 1

0 6 0 <) 3 7,
Step 2 Stride 4 Thread IDs éWO
3 13 0 ) 3 7

8
Values 8 7

Step 3 Stride 2 Thread IDs é@jj

-2

VEIES 13 13 0 9

21 20

v J
Step 4 Stride 1 Thread IDs @

41 20

Values 131 131 o0




Fast Memory Access: Coalescing <X

NVIDIA

* Compute 1.1

- Applies to GeForce 8600/8800 GT, 9400M, 9600 GT
- A coordinated read by a half-warp (16 threads)

- A contiguous region of global memory:

- 64 bytes — each thread reads a word:int, float, ...
- 128 bytes — each thread reads a double-word: int2, float2, ...
- 256 bytes — each thread reads a quad-word: int4, float4, ...




Fast Memory Access: Coalescing, Cont. <X

NVIDIA

* Compute 1.1

- Additional restrictions:
- Starting address for a region must be a multiple of region size

- The k" thread in a half-warp must access the k" element in a workgroup
being read

- Exception: not all threads must be participating
- Predicated access, divergence within a halfwarp




Coalesced Access: Reading Floats

t14 t15

| |

<3

NVIDIA

All Threads Participate

t2 t3 t14 ti15

X x| | |

140 144

Some Threads Do Not Participate




Uncoalesced Access: Reading Floats <X

NVIDIA

t14 ti15

| |

140 144

Permuted Access by Threads

t14 ti15

SO N

132 136 140 144 184 188 192

Misaligned Starting Address (not a multiple of 64)




Coalescing Compute >= 1.2 <X

NVIDIA

* Much improved coalescing capabilities in 10-series architecture
- GeForce GTX285
- GeForce 330M

» Hardware combines addresses within a half-warp into one or more
aligned segments

- 32,64, or 128 bytes

* All threads with addresses within a segment are serviced with a
single memory transaction

- Regardless of ordering or alignment within the segment
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Coalescing: Timing Results (8800 GTX) <X

NVIDIA

* Experiment:

- Kernel: read a float, increment, write back
= 3M floats (12MB)
- Times averaged over 10K runs

* 12K blocks x 256 threads reading floats:
356us—-coalesced

357us—-coalesced, some threads don't participate
» 3,494us—permuted/misaligned thread access
* 4K blocks x 256 threads reading float[3] (e.g. RGB):
- 3,302us—float[3] uncoalesced
359us—float[3] coalesced through local memory




Use Local Memory <X

NVIDIA

* Local memory

- High speed, low latency on-chip memory
- Load an image tile into local memory and share pixels between threads

~Instruction |
SP | SP |
SP |3 5| SP |
SP lo|%| SP |
SP | Sp




Local Memory Architecture

* Many threads accessing memory
- Therefore, memory is divided into banks
- Essential to achieve high bandwidth
* Each bank can service one address per cycle

- A memory can service as many simultaneous
accesses as it has banks

* Multiple simultaneous accesses to a bank
result in a bank conflict

- Conflicting accesses are serialized

<3

NVIDIA




Bank Addressing Examples <X

NVIDIA

No Bank Conflicts No Bank Conflicts
Linear addressing stride == Random 1:1 Permutation

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

\ 4 \ 4 A\ 4 A\ 4 v \ 4 v A\ 4

Thread 15 2 Bank 15 Thread 15 Bank 15




Bank Addressing Examples <X

NVIDIA

2-way Bank Conflicts
Linear addressing stride ==

8-way Bank Conflicts
Linear addressing stride ==

X8

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 8
Thread 9

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

}/

=

<

Thread 10

Thread 11 Bank 15 Thread 15 Bank 15




Applying Textures Optical Flow Example <X

NVIDIA

* Optical Flow calculation motion of points
In image pairs

* Embarrassingly parallel, compute intensive

* Applications:

- Image stabilization, feature tracking,
video encoding

* Optical flow makes use of:
- Texture cache
- Texture hardware bilinear interpolation

Image Sequence: Middlebury “Minicooper” sequence, frames 10-11




Architecture <X

Algorithm: Pyramidal Lucas Kanade Optical Flow NVIDIA.

Downsample @ ——  Scharr Edge filter »  Solve for flow v=G'b

. . - G
Source image pair Precompute G lteratev= G'b

l Images (1,J) Gax2 Flow (v

Flow
¥ / Result

X,




Texture Cache

* Solving for flow v = G'b is an iterative algorithm

Estimate motion v= G'b(x)y)
Update position  (x;y’) = (x'+v,, y+v, )
Repeat N iterations or until convergence

* Different areas have different amount of motion,
but spatially coherent

- Lookup window offset varies inside the image
- Texturing hardware manages caches for you!

<3

NVIDIA

Small Motion
(< 3 pixels)

Large Motion
(3-7 pixels)




Hardware Interpolation <X

NVIDIA

* Sub-pixel accuracy and sampling is crucial
- Between iterations, x,y is non-integer

o, (x,p)=T"(x,p)=J " (x+g, +v ,y+g, +v))

. image level L
pE [alk(an/)lx(X,y) pixel centre p

o, (x,y)I (x,y) window w,
. guess g from previous level L+1

X=p W, y=p,-W,




Hardware Interpolation <X
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* Use Texture Hardware Linear Interpolation

Exact Sampling

sampler_t bilinSample = cordinates ; s
| CLK_FILTER_LINEAR;

float Jsample = read_imagef( J_float,
bilinSampler, Jidx+(float2)(i,j) ).x;




Optical Flow Demo <X
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* Pyramidal Lucas Kanade Optical Flow

MO GPU LK Optical Flow

° Vl Sua | |Zat 10N d one on G P U by S h arin g . Liicas'Kahadé Pyratidal Optical Flow, Dense (6/40::430 polrﬁp]

Hardware: GeForce GTX 285

data between OpenGL and OpenCL ’ProcessmgTJme*fram‘e 5_?62995,1‘“&__.___




Optical Flow Performance <X
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LK Pyramidal Optical Flow 8800 GT vs. GTX285

B GTX 285
B 8800 GT
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More Information

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Apple Developer Forums
http://devforums.apple.com




Labs

Location Graphics & Media Lab C
OpenCL Lab Thursday 9:00AM
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