¢

Maximizing OpenCL Performance

OpenCL AMDY

Accelerated Physics

Benedict Gaster
AMD OpenCL Architect

Bullet

* An open source physics SDK

- Third most used physics SDK
- Zlib license for copy-and-use openness
* Primary development by Erwin Coumans of Sony

* AMD collaborating on GPU acceleration

- Cloth/soft body and fluids in OpenCL
» Fully open-source contributions

Bullet OpenCL Is...

LI
IXYIYrrere

Fluids

it
; //"/f;(///l//l///

Rigid bodies

An Introduction to Cloth Simulation AMDZ
Masses and springs

* A subset of the possible set of soft bodies
* Mass/spring system
- Large collection of masses (particles)
- Connect using spring constraints
- Layout and properties change properties of cloth

An Introduction to Cloth Simulation AMD
Springs with purpose

* Three main types of springs
= Structural
- Shearing
- Bending

An Introduction to Cloth Simulation AMDZ
Parallelism

* Large number of particles

- Appropriate for parallel processing
- Force from each spring constraint applied to both connected particles
Current layout:

Original layout Compute forces as
stretch from rest length

Apply impulses Compute
to masses new positions

An Introduction to Cloth Simulation AMDZ
Wind

* Wind interaction
- Computed per-vertex

- Uses force and density of air medium

- Computes against normal and mass of vertex

Wind velocity

Vertex velocity Relative velocity Scale by medium density

€ =S -

Moving to GPU Acceleration
The CPU approach

* [terative verlet integration over vertex positions

- For each spring computes a force
- Updates both vertices with a new position
- Repeat n times where n is configurable

* Note that the computation is serial
- Propagation of values through the solver is immediate

The CPU Approach

for each iteration

{

for(int linkIndex = 0; linkIndex < numLinks; ++linkIndex)

{
float massLSC =
(inverseMass@® + inverseMassl)/linearStiffnessCoefficient;
float k = ((restLengthSquared - lengthSquared) /
(massLSC *x (restLengthSquared + lengthSquared)));

vertexPosition® —-= lengthx(kkxinverseMassO);
vertexPositionl += length x(kxinverseMassl);

Moving to the GPU

Parallel execution

* The CPU implementation was serial

- No atomicity issues
- Value propagation immediate from a given update

* The GPU implementation is parallel within a cloth

- Multiple updates to the same node create races

Moving to the GPU

Batching the simulation

* Create independent subsets of links through graph coloring
* Synchronize between batches

Driving Batches

for each iteration
{
for(int i = 0; 1 < m_batchStartLengths.size(); ++i)
{
int start = m_linkData.m_batchStartLengths[i].first;
int num = m_linkData.m_batchStartLengths[i].second;
for(int linkIndex = start;
linkIndex < start + num;
++1linkIndex)

. ¥

Dispatching a Batch AMDZ

cl::Kernel kernel =

static_cast<const OpenCLDevice &>(m_device).getSolvePosFromLinksKernel();
cl::CommandQueue queue =

static_cast<const OpenCLDevice &> (m_device).getCLCommandQueue();
// Set resources and dispatch
kernel.setArg(@, startLink);
kernel. numLinks);
kernel. vertexIndicesForLinksSRV);
kernel. massSumLinearStiffnessCoefficientSRV);
kernel. restLengthSquaredSRV);
kernel. inverseMassSRV);
kernel. vertexPositions);
// Execute the kernel
queue—>enqueueNDRangeKernel(

kernel, cl::NullRange, cl::NDRange(numLinks), cl::NDRange(128));

Executing a Batch

__kernel void solvePositionsFromLinksKernel(

const int startLink,

const int numLinks,

__global int2 g_LlinksVertexIndices,
__global float g_linksMassLSC,

__global
__global

float g_verticesInverseMass,
float4 g_verticesPositions)

>k
*

__global x float g_linksRestLengthSquared,
*
>k

int 1inkID = get_global_id(@) + startLink;
if(get_global_id(@) < numLinks) {
float massLSC = g_linksMassLSC[1inkID];
float restLenSq = g_linksRestLengthSquared[linkID];

Executing a Batch

if(massLSC > 0.0f) {
int2 nodeIndices = g_linksVertexIndices[linkID];
int node® = nodelndices.x; int nodel = nodelndices.y;
float3 position® = g_vertexPositions[node@].xyz;
float3 positionl = g_vertexPositions[nodel].xyz;
float inverseMass@ = g_verticesInverseMass[node0];
float inverseMassl = g_verticesInverseMass[nodel];
float3 del = positionl - position®;
float len = dot3(del, del);
float k = ((restLenSq - len)/(massLSCx(restLenSqg+len)));
position® = position® - delx(kxinverseMass);
positionl = positionl + delx(kxinverseMassl);
g_vertexPositions[node@] = (float4)(position@, 0.f);
g_vertexPositions[nodel] = (float4)(positionl, 0.f);

Improving the Constraint Solver
Higher efficiency

* We saw the batched links earlier
- Large number of batches needed
- Low work density per-thread
* Can create larger batches
- The cloth is fixed-structure
- Can be preprocessed

* Fewer dispatches
- Bottleneck in early version

batches

Improving the Constraint Solver
Larger batches still

* We can move to much larger batches

- Number of parallel instances reduced

- On arbitrary meshes batches hard
to create

batches

Improving the Constraint Solver
Remove determinism

* Large batches change behavior of solver

- A lot of computation fed from previous iteration
- In a serial implementation there is none
- Propagation of updates is slower

* Relax a step further

- Allow non-deterministic updates
- Execute per-vertex and pull data, new or old, from neighbors link-by-link
- No write-after-write hazard

Improving the Constraint Solver
Remove determinism

* Single batch
- Highly efficient per solver iteration
- Can re-use position data for central node
- Slower convergence
- Need to cleverly arrange data to allow efficient loop unrolling

* Scope for more iterations of solver to reduce effects

Improving the Constraint Solver
A branch divergence warning

*The GPU is a collection of wide SIMD engines

- Divergent branches hurt performance
- Nodes have different degrees
- Reqular mesh

- Low overhead
- Similar degree throughout

- Complicated mesh
- Arbitrary numerous peaks
- Pack vertices by degree

Writing OpenCL : @
for Intel CPUs @Lel

Vinay Awasthi

Senior Software Engineer

Goals of This Presentation

* Develop efficient OpenCL kernels for
Intel CPUs

* Demonstrate CPU is excellent for complex,
memory intensive algorithms

» Utilize multiple cores, vector data types, and
large caches to hide data dependencies

* Case study
e Conclusions

Case Study

Longest common subsequence

* |t is used to find the longest subsequence common to
all sequences in a set of sequences

- Commonly used to analyze DNA and protein sequence

(€ (€ @ T A A

If Datal[i-1,j] == Datali, j-1] (diag - Match)
S 0N NN O N B Cli,j] = Cli-1, j-1] + 1
else
Cli,jl=MAX(C[i-1, jl1, CIi, j-11)
_ET 0 Cli,j] = Cl[i-1,j] (up - Insertion)
0
RS

0 Cl[i,j] Cl[i, j-11 (left - Deletion)

1 1T

LCS = GCTA

oO||lo||lo||lo||o|lo|lo| o

Case Study intel)
Wind

* Why is it interesting?
 Dynamic programming is used extensively to solve hard problems

- Method of solving complex combinational optimizations by
decomposition and tabulation of intermediate results

- Optimizations applied
- Use of vector data types to take advantage of instruction level parallelism
- Memory/cache optimizations
- Multi-threading using OpenCL

Vector Data Type Optimizations

Vector Data Type Optimizations

Cli-1, j-11 Cli-1, jl
N

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1
else

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
cli,j] = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

Vector Data Type Optimizations

ENEEEENN NN
HEEEEEEEE =
1
EEEEEEEEN .

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cli,jl=MAX(C[i-1, j1, CI[i, j-11)

Vector Data Type Optimizations

Initialize with a Zero filled Band Cli-1, j-1]1 cCli-1, j]

cli, j-1] —

If Datali-1,j] == Datali, j-1]
Cli,jl = C[i-1, j-1] + 1

else
Cl[i,jl=MAX(C[i-1, j], CI[i, j-11])

OpenCL Multithread Execution
-----<—Pre Condition

Exit Data—».

Number of Threads Executing in Parallel per Box

(Cache Oblivious Algorithms) Execution Is Aware of Cache Hierarchy

Performance Results

Scalar B OpenCL SSE+GCD

Lessons Learned

*|ssue large work-items

- Approximately 10,000-100,000 instructions
* Utilize map/unmap buffers

- Only locks/unlocks the memory (light weight)
* Use CL_ALLOC_HOST_PTR for CPU memory

* Use command synchronizations such as clEnqueueWaitForEvents
and barriers judiciously

Lessons Learned, continued (inter)

* Image read/write, channel/format support, sampler, etc.... Do not use
any specialized logic/hw on CPUs

* Avoid handling special cases/edge conditions/boundary conditions in
kernels (use padding)

* Use 1D Range if possible to take advantage of cache localities and avoid
2D-index calculations

__kernel void wunrolled(const _ _global intx data, const wuint
dataSize)
{

size_ t tid = get_global _id(0);

size_t gridSize = get_global_size(0);

size_t workPerItem = dataSize / gridSize;

size_t myStart = tid % workPerItem;

for (size t i = rt; i < myStart + workPerItem; ++i)

{
}

//actual work

__kernel void Pythagorean(const _ global
const __global floatx b
__global floatx «c)

size t tid = get _global id(0);
cltidl = sqrt(altid] *x altid]l + bltid] = b[tid]);

__kernel void exponentor(__global intx data, const wuint (lr]te!l

exponent)

{
size_ t tid = get_global_id(0);
int base = dataltid]l;
for (int i = 1;; i < onent;; ++1i)

{
}

datal[tid] *= base;

__kernel void exponentor(__global intx data)

{

size_t tid = get_global_id(0);

int base = dataltid];

for (int i = 1; i < | EXPONENT; ++1i)
{

by

data[tid] = Dbase;

__kernel __attribute__((vec_type_hint(float2)))
void shift_by(__global | float2x coords, __global | float2x deltas)
{

uint | tid = get_global_id(0);

coordsftid] += deltas[tid]l;

__kernel __attribute__ ((vec_type_hint(float4)))
void shift_by(__global float2x coords, __global float2x deltas)
{
size_t tid = get_global_id(0);
float4 my_coords = (float4)(coords[tid], coords[tid + 1]);
float4 my_deltas = (float4)(deltas[tid], deltas[tid + 11);
my_coords += my_deltas;
vstored(my_coords, tid, (__global floatx)coords);

Conclusions intel)

* OpenCL Framework allows you to harness the power of Intel CPUs
- Intuitive, easy and maintainable
* OpenCL can help you create optimized code for the CPU

- Almost on par with MT + SSE hand tuned code if coded optimally
(SOA, larger work loads, use built-in functions)

- Scales well across cores
- Effectively utilizes SSE ISA
- Well suited to serial parts using task parallelism

* Portable code

- Across devices
- Across device generations

Optimizing for @

GPUs with OpenCL NVIDIA.

James Fung

Outline

* Work group size heuristics: maximizing occupancy
* Instruction optimization: avoiding divergence
* Memory optimizations

» Global memory coalescing Terminology Used

<3

NVIDIA

- Local memory bank conflicts

: OpenCL
* Using GPU texture hardware '

: Work Ite
- Example: optical flow oreTiem

Work Group

CUDA
Thread
Block

GPU Architecture (GTX285) <X

NVIDIA

* 240 thread processors grouped into 30 streaming multiprocessors (SMs)
@ 1.45 GHz with 4.0 GB of RAM

* 1 TFLOPS single precision (IEEE 754 precision)
* 87 GFLOPS double precision
* Each SM:

- Eight thread processors

- One double precision unit

- 16 KB local memory, —— e ————
16384 registers AR R R RCE EOE RCE ROE R

© 2008 NVIDIA Corporation.

ROP | L2

Occupancy <X

NVIDIA

* With so many processors, its key to keep them all busy

* Work items (threads) are executed concurrently in “Warps” of 32 threads

* Thread instructions are executed sequentially, so executing other warps
is the only way to hide latencies and keep the hardware busy

of resident warps

Occupancy =
Max possible # of resident warps
* Limited by resource usage:

- Registers
- Local memory

Measuring Occupancy <X

NVIDIA

* Example: HW shader unit:
- 8 work groups max
- 32KB total local memory
- 1024 work items max

* A work group size of 128 work items requiring 24KB of local memory

= = only run one work group per shader unit (128 threads) BAD

* Check GPU documentation for details on HW

Global Workgroup Size Heuristics <X

NVIDIA

* # of workgroups > # of multiprocessors

- So all multiprocessors have at least one workgroup to execute

* # of workgroups / # of multiprocessors > 2

- Multiple workgroups can run concurrently in a multiprocessor
- workgroups that aren't waiting at a barrier keep the hardware busy

- Subject to resource availability—registers, local memory

Global Workgroup Size Heuristics, Cont. <X

NVIDIA

* # of workgroups > 100 to scale to larger devices

- Workgroups executed in pipeline fashion

- 1000 workgroups per kernel launch will scale across multiple
generations

* # of work items/workgroup a multiple of warp size

- So all threads in a warp are active

Control Flow: Divergence <X

NVIDIA

* Main performance concern with branching is divergence

* Work items within a single warp take different paths

* Different execution paths must be serialized
* Avoid divergence when branch condition is a function of work item ID

- Example with divergence:
- If (threadldx.x > 2) {}
- Branch granularity < warp size
- Example without divergence:
« If (threadldx.x / WARP_SIZE > 2) { }
- Branch granularity is a whole multiple of warp size

Parallel Reduction: Interleaved <X
Addressing with Divergence (Poor Perf.) nvibiA

Values (local memory) 5 = 5| - -3 7/

pi 0 0
v v v
Step 1 Stride 1 Thread IDs 4/ @/ 4/
v
1

v v
9 2

11 2

Values 7 11

v /
Step 2 Stride 2 Thread IDs @

Values
Step 3 Stride 4 Thread IDs
Values

Step 4 Stride 8 Thread IDs

Values

Parallel Reduction: Sequential <X
Addressing (Better Perf.) NVIDIA

Values (local memory) | 10 @ 1 8 -] 0o -2 3 5 0O 11 0 2
e g -
Step 1 Stride 8 Thread IDs @ o e 9 o é @ 7 4/

Values

2 1 1

0 6 0 <) 3 7,
Step 2 Stride 4 Thread IDs éWO
3 13 0) 3 7

8
Values 8 7

Step 3 Stride 2 Thread IDs é@jj

-2

VEIES 13 13 0 9

21 20

v J
Step 4 Stride 1 Thread IDs @

41 20

Values 131 131 o0

Fast Memory Access: Coalescing <X

NVIDIA

* Compute 1.1

- Applies to GeForce 8600/8800 GT, 9400M, 9600 GT
- A coordinated read by a half-warp (16 threads)

- A contiguous region of global memory:

- 64 bytes — each thread reads a word:int, float, ...
- 128 bytes — each thread reads a double-word: int2, float2, ...
- 256 bytes — each thread reads a quad-word: int4, float4, ...

Fast Memory Access: Coalescing, Cont. <X

NVIDIA

* Compute 1.1

- Additional restrictions:
- Starting address for a region must be a multiple of region size

- The k" thread in a half-warp must access the k" element in a workgroup
being read

- Exception: not all threads must be participating
- Predicated access, divergence within a halfwarp

Coalesced Access: Reading Floats

t14 t15

| |

<3

NVIDIA

All Threads Participate

t2 t3 t14 ti15

X x| | |

140 144

Some Threads Do Not Participate

Uncoalesced Access: Reading Floats <X

NVIDIA

t14 ti15

| |

140 144

Permuted Access by Threads

t14 ti15

SO N

132 136 140 144 184 188 192

Misaligned Starting Address (not a multiple of 64)

Coalescing Compute >= 1.2 <X

NVIDIA

* Much improved coalescing capabilities in 10-series architecture
- GeForce GTX285
- GeForce 330M

» Hardware combines addresses within a half-warp into one or more
aligned segments

- 32,64, or 128 bytes

* All threads with addresses within a segment are serviced with a
single memory transaction

- Regardless of ordering or alignment within the segment

Thread 5
Thread 6
Thread 7

Thread 8

Thread 9
Thread 10

Thread 11

Thread 12

Thread 13
Thread 14

Address 120

Address 124

Address 128

Address 132

Address 136

Address 140

Address 144

Address 148

Address 152

Address 156

Address 160

Address 164

Address 168

Address 172

Address 176

Address 180

Address 184

Address 188

Address 192

Address 196

Address 200

Address 204

Address 208

Address 212

Address 214

Address 218

Address 222

jJuswbas g9

Thread 7

Thread 8
| Thread 10

| Thread 11
Thread 12

Thread 13
Thread 14

Address 120

Address 124

Address 128

Address 132

Address 136

Address 140

Address 144

Address 148

Address 152

Address 156

Address 160

Address 164

Address 168

Address 172

Address 176

Address 180

Address 184

Address 188

Address 192

Address 196

Address 200

Address 204

Address 252

Address 256

Y
juswbas ggeL

Thread 0

Address 96
Address 100
Address 104
Address 108
Address 112
Address 116
Address 120
Address 124

Address 128

Thread 1

Thread 4

Address 132

Address 136

Address 140

Address 144

Thread 5

Address 148

Thread 6

Address 152

Thread 7

Address 156

Thread 8

-

[

Address 160

Thread 9

Address 164

8

I Thread 10 I

Address 168

Thread 11

Address 172

Thread 12

Address 176

Thread 13

Thread 14

L

Address 180

Address 184

Address 188

Address 192

Address 196

Address 200

jJuswbas gzs

jJuswbas g9

Coalescing: Timing Results (8800 GTX) <X

NVIDIA

* Experiment:

- Kernel: read a float, increment, write back
= 3M floats (12MB)
- Times averaged over 10K runs

* 12K blocks x 256 threads reading floats:
356us—-coalesced

357us—-coalesced, some threads don't participate
» 3,494us—permuted/misaligned thread access
* 4K blocks x 256 threads reading float[3] (e.g. RGB):
- 3,302us—float[3] uncoalesced
359us—float[3] coalesced through local memory

Use Local Memory <X

NVIDIA

* Local memory

- High speed, low latency on-chip memory
- Load an image tile into local memory and share pixels between threads

~Instruction |
SP | SP |
SP |3 5| SP |
SP lo|%| SP |
SP | Sp

Local Memory Architecture

* Many threads accessing memory
- Therefore, memory is divided into banks
- Essential to achieve high bandwidth
* Each bank can service one address per cycle

- A memory can service as many simultaneous
accesses as it has banks

* Multiple simultaneous accesses to a bank
result in a bank conflict

- Conflicting accesses are serialized

<3

NVIDIA

Bank Addressing Examples <X

NVIDIA

No Bank Conflicts No Bank Conflicts
Linear addressing stride == Random 1:1 Permutation

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

\ 4 \ 4 A\ 4 A\ 4 v \ 4 v A\ 4

Thread 15 2 Bank 15 Thread 15 Bank 15

Bank Addressing Examples <X

NVIDIA

2-way Bank Conflicts
Linear addressing stride ==

8-way Bank Conflicts
Linear addressing stride ==

X8

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 8
Thread 9

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

}/

=

<

Thread 10

Thread 11 Bank 15 Thread 15 Bank 15

Applying Textures Optical Flow Example <X

NVIDIA

* Optical Flow calculation motion of points
In image pairs

* Embarrassingly parallel, compute intensive

* Applications:

- Image stabilization, feature tracking,
video encoding

* Optical flow makes use of:
- Texture cache
- Texture hardware bilinear interpolation

Image Sequence: Middlebury “Minicooper” sequence, frames 10-11

Architecture <X

Algorithm: Pyramidal Lucas Kanade Optical Flow NVIDIA.

Downsample @ —— Scharr Edge filter » Solve for flow v=G'b

. . - G
Source image pair Precompute G lteratev= G'b

l Images (1,J) Gax2 Flow (v

Flow
¥ / Result

X,

Texture Cache

* Solving for flow v = G'b is an iterative algorithm

Estimate motion v= G'b(x)y)
Update position (x;y’) = (x'+v,, y+v,)
Repeat N iterations or until convergence

* Different areas have different amount of motion,
but spatially coherent

- Lookup window offset varies inside the image
- Texturing hardware manages caches for you!

<3

NVIDIA

Small Motion
(< 3 pixels)

Large Motion
(3-7 pixels)

Hardware Interpolation <X

NVIDIA

* Sub-pixel accuracy and sampling is crucial
- Between iterations, x,y is non-integer

o, (x,p)=T"(x,p)=J " (x+g, +v ,y+g, +v))

. image level L
pE [alk(an/)lx(X,y) pixel centre p

o, (x,y)I (x,y) window w,
. guess g from previous level L+1

X=p W, y=p,-W,

Hardware Interpolation <X

NVIDIA

* Use Texture Hardware Linear Interpolation

Exact Sampling

sampler_t bilinSample = cordinates ; s
| CLK_FILTER_LINEAR;

float Jsample = read_imagef(J_float,
bilinSampler, Jidx+(float2)(i,j)).x;

Optical Flow Demo <X

NVIDIA

* Pyramidal Lucas Kanade Optical Flow

MO GPU LK Optical Flow

° Vl Sua | |Zat 10N d one on G P U by S h arin g . Liicas'Kahadé Pyratidal Optical Flow, Dense (6/40::430 polrﬁp]

Hardware: GeForce GTX 285

data between OpenGL and OpenCL ’ProcessmgTJme*fram‘e 5_?62995,1‘“&__.___

Optical Flow Performance <X

NVIDIA

LK Pyramidal Optical Flow 8800 GT vs. GTX285

B GTX 285
B 8800 GT

(%]
c
RS
)
©
—
Q
o

350
Time (ms)
Lower is better

More Information

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Apple Developer Forums
http://devforums.apple.com

Labs

Location Graphics & Media Lab C
OpenCL Lab Thursday 9:00AM

& WWDCI0

