
More frames per second

Alex Kan and Jean-François Roy
GPU Software

2

• OpenGL ES Analyzer
• Tuning the graphics pipeline
• Analyzer demo

3

Developer preview

Jean-François Roy
GPU Software Developer Technologies

4

5

6

Available on the
Attendees Site

7

Developer preview

• Available as a developer preview with Xcode 4
■ Preview only supports PowerVR SGX devices with iOS 4
■ Preview cannot attach to a running application

• We want your feedback!

8

9

The power of many

• Correlate data from multiple instruments
• Powerful data mining
• Well-understood tool and interface

10

Activity Monitor

• Traces all
OpenGL ES activity

• Provides key statistics

Overrides

• Disable specific
parts of the
graphics pipeline

• Helpful for finding
bottlenecks ?

11

Activity Monitor Overrides

12

Activity Monitor

13

14

Understanding the problem

• Your application may be doing…
■ A lot more work than you thought
■ Work in an unexpected order
■ The wrong kind of work

15

Activity monitor

• Records a trace of all OpenGL ES activity
• Four main hubs of information

■ Frame statistics
■ API statistics
■ Command trace
■ Call tree

16

Frame statistics

• Get an idea of your per-frame workload
• Navigate the trace by frame
• Select range of frames in the timeline

17

Primitives and batches

• Maximize ratio of primitives to batches (draw commands)
• Minimize batches
• Find your most costly frame w/r to geometry

18

OpenGL commands

• Minimize how many commands you issue per frame
• Ratio of batches to GL commands should approach 1

■ If small, try sorting the geometry by state

19

Redundant state changes

• How many commands were issued to change state to the same value
■ Trigger work in the driver nonetheless

• Don’t do them!

20

Render passes

• The graphics hardware operates in render passes
• Aim for only one render pass per frame
• Some commands can force the hardware to end the current pass

21

API statistics

• API statistics allow you to see what commands
■ Are used most frequently
■ Cost the most

22

Cost in time

• Ideally, draw commands should dominate after loading
• Simple commands with can be costly when called frequently
• Minimize usage of expensive commands during gameplay or do them
on another thread

23

Cost in time

• Ideally, draw commands should dominate after loading
• Simple commands can be costly when called frequently
• Minimize usage of expensive commands during gameplay or do them
on another thread

24

Frequency

• Make sure you’re not issuing commands more than you need to
■ Likely that many of them are redundant

• Use performance extensions to reduce command count

25

Time range filtering

• API statistics are re-computed to match the selected time range
■ Use the frame statistics table to select a range of frames
■ Region of interest highlighted by other instruments

26

Command trace

• The complete list of every OpenGL command issued by your application
• Useful in conjunction with the other hubs

27

Call tree

• Standard Instruments call tree view but focused onOpenGL commands
• Allows you to see which OpenGL commands took the most amount of
time and from where they were called

28

Activity Monitor

29

Activity Monitor Overrides

30

Overrides

31

Alex Kan
Embedded Graphics Acceleration

32

The basics

• CPU encodes rendering commands for GPU
• GPU reads and processes vertices
• GPU shades fragments for primitives
• Core Animation composites rendered results to framebuffer

CPU Vertex Fragment CA

33

Pipelining

• Not all stages take the same amount of time

CPU Vertex Fragment CA

34

Pipelining

• Not all stages take the same amount of time

CPU Vertex Fragment CA

35

Pipelining

• Not all stages take the same amount of time
• Most stages can run in parallel with each other

CPU Vertex Fragment CA

36

Pipelining

• Not all stages take the same amount of time
• Most stages can run in parallel with each other

CPU

Vertex

Fragment

37

CPU

Vertex

Fragment Fragment

CPU

Vertex

FragmentFragment

CPU

Vertex

CPU

Vertex

Pipelining

• Not all stages take the same amount of time
• Most stages can run in parallel with each other

38

Bottlenecks

• The slowest stage determines how long your frame takes
• Optimizing the slowest stage will produce the largest gains

CPU

Vertex

Fragment Fragment

CPU

Vertex

FragmentFragment

CPU

Vertex

CPU

Vertex

39

Strategy

• Examine CPU/GPU utilization with CPU Sampler and OpenGL ES Driver
instruments

• Apply various combinations of overrides with OpenGL ES Analyzer to
see the effect on performance

40

Stage by stage

41

Topics

• CPU bottlenecks
• GPU bottlenecks

■ Bandwidth, computation, and workload size
■ Vertex bottlenecks
■ Fragment bottlenecks

42

Identification and classification

• GPU utilization well below 100%
• Framerate unchanged when simplifying draw calls
• CPU mostly in GL framework, in either of two states:

■ Fully utilized
■ Frequently blocked

43

High CPU utilization

• Usual culprit is handling state changes
■ Analyzer state statistics can tell you if state changes are redundant

• Some state changes are more expensive than others

44

Reducing CPU utilization

• Minimize state changes
• Take advantage of per-object state

■ Textures
■ Programs
■ Vertex arrays

45

Pipeline stalls

• CPU may need to synchronize to access/modify an object in flight
■ Wait as long as possible to retrieve rendering results
■ Avoid modifying textures and VBOs after using them in a frame
■ Consider double- or triple-buffering objects if you need partial updates

46

Summary

• Reduce state changes, particularly redundant ones
• Avoid making CPU wait for GPU
• Instruments can help you identify both these cases

47

Workload size, bandwidth and computation

Workload Size Cost Per Elementx

• Workload size:
Number of elements
to be processed

Utilization =

• Cost per element

• Data: Fetching shader
arguments, texture
samples, writing outputs

• Computation:
Shader calculations

48

Identification and classification

Tiler utilization at or near 100%

• Workload size: Number
of vertices

• Frame rate increases when
using simplified models

• Cost per vertex

• Data: Fetching
of vertex data

• Computation: Vertex
transformation/
lighting/shading

• Frame rate increases
when doing less calculation

49

Getting vertex data to the GPU quickly

• Use vertex buffer objects (VBOs)
■ Indicate usage pattern with storage hints

■ GL_STATIC_DRAW: update once, draw repeatedly
■ GL_DYNAMIC_DRAW: update repeatedly, draw repeatedly
■ GL_STREAM_DRAW: update once, draw at most a few times

• Use indexed draw calls where possible
■ Improves performance if vertices are reused

50

Getting vertex data to the GPU quickly

• Interleave your vertex
attributes
■ Align vertex attributes and
strides to 4-byte boundaries

51

Summary

• Take advantage of VBOs and VAOs
• Size/structure your vertex data for efficient data transfer

52

Identification and classification

Renderer utilization at or near 100%

• Workload size: Number
of visible fragments

• Cost per fragment

• Data: Framebuffer and
texture bandwidth

• Computation: Fragment
shading

53

Dealing with overdraw

• Hidden surface removal operates on groups of opaque objects
■ Maximum efficiency by drawing opaque objects together first

• Sort order:
■ Draw all opaque objects
■ Draw any objects using “discard” keyword
■ Draw all alpha blended objects

54

Overdraw and blending/discard

• Blending affects every pixel in a quad
■ Even transparent ones

• Alpha-testing is generally expensive
on embedded hardware

• Wasted pixels can add up as number
of layers increase

55

Sprite trimming

• Reduce area by using a shape that tightly encloses sprite
• Trades smaller shape for extra vertex processing

56

What’s my limit?

• Bandwidth
■ Performance increases with smaller textures/lower bit depth

• Computation
■ Performance increases with simplified fragment shader

• Analyzer has overrides for both of these situations

57

Reducing framebuffer bandwidth

• If you don’t reuse your buffer contents from frame to frame:
■ Do a full-screen clear of all buffers at the start of the frame
■ Discard non-color buffers at the end of the frame

Color Depth

GLenum attachments[] = { GL_DEPTH_ATTACHMENT };
glDiscardFramebufferEXT(GL_READ_FRAMEBUFFER_APPLE, 1, attachments);

glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

Memory

58

Reducing framebuffer bandwidth

• If you don’t reuse your buffer contents from frame to frame:
■ Do a full-screen clear of all buffers at the start of the frame
■ Discard non-color buffers at the end of the frame

Memory

Color Depth

GLenum attachments[] = { GL_DEPTH_ATTACHMENT };
glDiscardFramebufferEXT(GL_READ_FRAMEBUFFER_APPLE, 1, attachments);

glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

59

Reducing framebuffer bandwidth

• Even more important when performing multisample rendering

Single-sample FBOMultisample FBO

Color Depth Color

Memory

60

Reducing framebuffer bandwidth

• Even more important when performing multisample rendering

Single-sample FBOMultisample FBO

Color

Memory

Color Depth

61

Reducing texture bandwidth

• Use the smallest texture format and type suitable for your assets
■ PVRTC, if your content is suitable
■ Single-channel luminance, alpha
■ 16-bit formats: RGBA4444, RGBA5551, RGB565

• Size your textures appropriately for display
■ Use mipmaps if your textures will be drawn at many different scales

62

Summary

• Give the GPU the smallest number of pixels to deal with
■ Take advantage of GPU’s ability to cull hidden surfaces

• Minimize amount of external bandwidth consumed by GPU

63

64

Topics

• Precision qualifiers
• Minimizing computation
• Dependent texture reads

65

Introduction to shader precisions

• Specific to GLSL ES, not in desktop GLSL
• Varying precisions can differ between vertex and fragment stages
• Appropriate precision choices are important for good performance

66

highp

• Single-precision floating point
■ Use for vertex positions and texture coordinate calculations
■ Good for texture coordinates in general
uniform highp mat4 modelviewProjection;
uniform highp mat3 mapTexMatrix;
attribute highp vec3 position;
varying highp vec2 mapTexCoord;

mapTexCoord = (mapTexMatrix * position).st;
gl_Position = modelviewProjection * vec4(position, 1.0);

67

mediump

• Half-precision floating point
■ Potentially higher throughput

• Good for texture coordinate varyings if:
■ Texture size < 512 × 512
■ Minimal wrapping/perspective
mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);
mediump float hdotn = sign(ndotl) * dot(normal, halfAngle);
mediump litColor = ambientColor + diffuseColor * ndotl;
litColor += specularColor * pow(hdotn, specularExponent);

68

lowp

• [-2, +2] range, 8-bit fractional precision
■ Good for color, normals, and color mixing factors

• Use 3- and 4- component vectors
• Don’t swizzle components

uniform lowp sampler2D tex;

varying lowp vec3 litColor;

lowp vec3 modulatedColor = texture2D(tex, coord).rgb * litColor;
gl_FragColor = vec4(modulatedColor, 1.0);

69

Choosing and using precisions

• Compiler is free to promote calculations to a higher precision
■ Keep in mind minimum required precision/range of type
■ Check implementation-specific precision and range

• Minimize conversions between precisions in calculations
■ Especially for conversions to/from lowp

70

Hoisting computation

Uniform Vertex Fragment

71

Expressing operations

• Operate only on the elements that you need
■ Don’t coerce expressions into being vectors

• When mixing scalars and vectors, keep scalars together

uniform vec3 attenFactor;

mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);
mediump float attenuation = attenFactor.x + attenFactor.y * objectDistance
+ attenFactor.z * (objectDistance * objectDistance);
litColor = ambientColor + diffuseColor * (ndotl / attenuation);

72

Expressing operations

• Operate only on the elements that you need
■ Don’t coerce expressions into being vectors

• When mixing scalars and vectors, keep scalars together

uniform vec3 attenFactor;

mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);
mediump float attenuation = attenFactor.x + attenFactor.y * objectDistance
+ attenFactor.z * (objectDistance * objectDistance);
litColor = ambientColor + diffuseColor * (ndotl / attenuation);

73

Expressing operations

• Operate only on the elements that you need
■ Don’t coerce expressions into being vectors

• When mixing scalars and vectors, keep scalars together

uniform vec3 attenFactor;

mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);
mediump float attenuation = attenFactor.x + attenFactor.y * objectDistance
+ attenFactor.z * (objectDistance * objectDistance);
litColor = ambientColor + diffuseColor * (ndotl / attenuation);

74

GLSL built-ins

• Convenience functions for common functionality
• Convenient for hardware and shader compiler as well

lowp vec3 clean = texture2D(cleanTexture, coord).rgb;

lowp vec3 dirty = texture2D(dirtyTexture, coord).rgb;
lowp float dirtiness = texture2D(dirtMap, coord).a;

// BAD
lowp vec3 mixed = (1.0 - dirtiness) * clean + dirtiness * dirty;
lowp vec3 mixed = clean + (dirty - clean) * dirtiness;

// BETTER
lowp vec3 mixed = mix(clean, dirty, dirtiness);
// BETTER
lowp vec3 mixed = mix(clean, dirty, dirtiness);

75

What are they?

• Dependent texture reads
■ Texture samples from coordinates modified in shader

• Non-dependent texture reads
■ Texture samples from coordinates passed directly from varyings

76

What causes them?

• Explicit texture coordinate modification in fragment shader

uniform lowp sampler2D tex;

varying highp vec2 coord;
varying highp vec2 warpTime;

lowp vec4 nonHoistableSample = texture2D(tex, coord + sin(warpTime));
lowp vec4 hoistableSample = texture2D(tex, coord + vec2(0.5, -0.5));

77

What causes them?

• Projective or biased texture samples (on PowerVR SGX)

uniform lowp sampler2D tex;
varying highp vec3 coord;

// projection
lowp vec4 proj = texture2DProj(tex, coord);

// LOD bias
lowp vec4 bias = texture2D(tex, coord.st, bias);

// LOD selection
lowp vec4 lod = texture2DLod(tex, coord.st, lod);

78

Why does this matter?

• Non-dependent reads are typically faster
■ Fewer shader cycles
■ Better parallelism

79

Summary

• Choose your precisions carefully
• Make sure your calculations are:

■ Performed in the appropriate stage
■ Including texture coordinate calculations

■ Expressed efficiently

80

Rules of thumb

• Target the slowest pipeline stage
■ Let the tools tell you where to tune
■ Don’t be afraid to do more work in other stages

• Do less
■ Take advantage of GPU hidden-surface removal
■ Use smaller data types
■ Minimize computation

81

Part deux

82

?
Expert

83

It knows a thing or two

• Comprehensive expert system
• Knows the hardware and
the software

• Finds problems in your app
■ …and provides recommendations
on how to address each of them

84

Categories of problems

• Redundant state changes
• Invalid framebuffer configurations
• Invalid texture configurations
• Invalid OpenGL operations
• Sub-optimal vertex data formats, layouts and storage
• Sub-optimal operation order
• Hardware-specific performance events

85

PictureViewer, analyzed

86

Expert

87

ExpertActivity Monitor Overrides

88

A call to arms

• Go get the tool
• Improve your performance
• Send us feedback
• Make an awesome app!

89

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Mike Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
OpenGL ES Programming Guide for iPhone OS
http://developer.apple.com/iphone

Khronos
http://www.khronos.org

Apple Developer Forums
http://devforums.apple.com

90

Advanced Performance Analysis with Instruments Mission
Thursday 9:00AM

OpenGL Essential Design Practices Pacific Heights
Wednesday 11:30AM

OpenGL ES Overview for iPhone OS Presidio
Wednesday 2:00PM

91

OpenGL ES Lab Graphics and Media Lab A
Thursday 9:00AM to 4:15PM

92

93

94

