¢

OpenGL ES Tuning and Optimization

More frames per second

Alex Kan and Jean-Francois Roy
GPU Software

Session Overview

* OpenGL ES Analyzer
* Tuning the graphics pipeline
* Analyzer demo

OpenGL ES Analyzer Instrument

Developer preview

Jean-Francois Roy
GPU Software Developer Technologies

OpenGL ES Analyzer Instrument

Instruments Instrument Window Help Tue 10:25AM Q

@00 Instruments2

w)(@)(w) PictureViewer_1) @ || ~00:00:14 0

4 Run 1 of 1 "

(O]=]0])|

Record Target Inspection Range View Library Search

Instruments

Unoptimized MSAA Resolve

Suboptimal MSAA buffer resolve operaticn

r.
@ OpenGL ES
-ﬁ. =]

m Or
& OpenCL ES Analyzer <+ EH Frame Statistics &

Overrides Frame #4 # Triangles Rendered # Batches #CL Calls # Redundant State Changes
12 365
12 48
12 48
12 48
12 48
12z 48
12 48
Call Tree 12 48
12 48
12 48
12 48
de M 12 48
1 Librarie 12 48
Shaw Obj-C Only 12 48
[Flatten Recursion 16 55,

Available on the

Attendees Site

OpenGL ES Analyzer Instrument

Developer preview

10S 4

* Available as a developer preview with Xcode 4

- Preview only supports PowerVR SGX devices with iOS 4
- Preview cannot attach to a running application

* We want your feedback!

Why an Instrument?

OpenGL ES Analyzer Instrument

The power of many

* Correlate data from multiple instruments
* Powerful data mining
* Well-understood tool and interface

OpenGL ES Analyzer Instrument

Activity Monitor Overrides

* Traces all * Disable specific
OpenGL ES activity parts of the

* Provides key statistics graphics pipeline

* Helpful for finding
bottlenecks

OpenGL ES Analyzer Instrument

Activity Monitor Overrides

OpenGL ES Analyzer Instrument

Activity Monitor

Measuring OpenGL ES Activity

Measuring OpenGL ES Activity

Understanding the problem

* Your application may be doing...
* A lot more work than you thought
- Work in an unexpected order
- The wrong kind of work

Measuring OpenGL ES Activity

Activity monitor

* Records a trace of all OpenGL ES activity
* Four main hubs of information

- Frame statistics
= API statistics

- Command trace
- Call tree

Measuring OpenGL ES Activity

Frame statistics

* Get an idea of your per-frame workload

* Navigate the trace by frame

* Select range of frames in the timeline

EH Frame Statistics #
Frame # 4 # Triangles Rendered # Batches # GL Calls # Redundant State Changes # Render Passes
25296 1220
41732 239
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732

218
218
218
218
218
218
218
218
218
218
218
218

e
N = O WoNOOUVEBEWNEO

,_.
s
G0 00 00 Co Co OO 0O GO 00 00 GO 00 CO ©O 00 00 O

R s = = = R

Frame Statistics
Primitives and batches

* Maximize ratio of primitives to batches (draw commands)
* Minimize batches

* Find your most costly frame w/r to geometry

Triangles Rendered 4 # Batches A
25296
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732

ﬂ“mmmmmmmmmmmmmmmm

Frame Statistics
OpenGL commands

* Minimize how many commands you issue per frame
* Ratio of batches to GL commands should approach 1
- If small, try sorting the geometry by state

Batches A # GL Calls &
1220
239
218
218
218
218
218
218
218
218
218
218
218
218
218
218

o

ﬂ<‘wmooonaommmnoonmmmmm

Frame Statistics
Redundant state changes

* How many commands were issued to change state to the same value
- Trigger work in the driver nonetheless
* Don't do them!

Redundant State Changes 4
32
65
65
65
69
69
69
69
69
69
69

Frame Statistics
Render passes

* The graphics hardware operates in render passes
* Aim for only one render pass per frame
* Some commands can force the hardware to end the current pass

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Measuring OpenGL ES Activity

API statistics

* API statistics allow you to see what commands

- Are used most frequently
- Cost the most

EH API Statistics ¥

OpenGL ES Function
glClear

glDrawElements
EAGLPresentRenderBuffer
glUseProgram
glBindBuffer
glUniformMatrix4fv
glBufferData
glCompileShader
glVertexAttribPointer
glBindTexture
glDiscardFramebufferEXT
glEnableVertexAttribArray

Total Time (us) v
5025619
1683719
1092747

203210
188810
155419
146701
134188
115560
113148
100226

68953

Average Time (us)
487160
24750
104377
1720
370
768
1298
16773
414
399
9458
223

API Statistics

Cost in time

* |deally, draw commands should dominate after loading
* Simple commands with can be costly when called frequently

* Minimize usage of expensive commands during gameplay or do them
on another thread

API Statistics

Cost in time

* |deally, draw commands should dominate after loading
* Simple commands can be costly when called frequently

* Minimize usage of expensive commands during gameplay or do them
on another thread

glCompileShader 134188
glLinkProgram

.glCheckFramebufferStatus

API Statistics

Frequency

* Make sure you're not issuing commands more than you need to
- Likely that many of them are redundant
* Use performance extensions to reduce command count

API Statistics

Time range filtering

* API statistics are re-computed to match the selected time range

- Use the frame statistics table to select a range of frames
- Region of interest highlighted by other instruments

OpenGL ES Function Total Time (us) v
glClear 5025619
glDrawElements 1683719
EAGLPresentRenderBuffer 1092747
glUseProgram 203210
glBindBuffer 188810
glUniformMatrix4fv 155419
glBufferData 146701
glCompileShader 134188
glVertexAttribPointer 115560
glBindTexture 113148
glDiscardFramebufferEXT 100226
glEnableVertexAttribArray 68953

Measuring OpenGL ES Activity

Command trace

* The complete list of every OpenGL command issued by your application

* Useful in conjunction with the other hubs

EH Trace #) Trace
A Trace
EAGLInitWithAPIProperties(0x0000000000533940, 2ul, 0x00533950, 0x00533a40)
glCetString(GL_EXTENSIONS)
glGetintegerv(GL_RENDERBUFFER_BINDING, 0x2fffd6bc)
glGetintegerv(GL_DRAW_FRAMEBUFFER_BINDING_EXT, Ox2fffd6b8)
glGenRenderbuffers(1, {1u})
glBindRenderbuffer(GL_RENDERBUFFER, 1u)
[0x0000000000533940 renderbufferStorage:GL_RENDERBUFFER fromDrawable:0x0051e270]
glGenFramebuffers(1, {1u})
glBindFramebuffer(GL_FRAMEBUFFER, 1u)
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, GL_RENDERBUFFER, 1u)
glGenRenderbuffers(l, {2u})
glBindRenderbuffer(GL_RENDERBUFFER, 2u)
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 320, 480)
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, 2u)
glGetError()
glCheckFramebufferStatus(GL_FRAMEBUFFER)
r(GL_FRAMEBUFFER, Qu)
: BUFFER, O

O oo ~NOOWVhE WNEFEO

= e e e e
Sy 1 bW N = O

Measuring OpenGL ES Activity

Call tree

* Standard Instruments call tree view but focused onOpenGL commands

* Allows you to see which OpenGL commands took the most amount of
time and from where they were called

= Call Trees * , Call Tree

Running Time Running Count Symbol Name
4463.7ms 52.5% 845 0.4% glClear
1554.9ms 18.3% 6756 3.6% [_| PglDrawElements
962.9ms 11.3% 844 0.4% (4 »pCA::Display::DisplayLink::dispatch(unsigned long long, unsigned long long)
182.2ms 2.1% 9295 4.9% glUseProgram
171.5ms 2.0% 35586 19.1% glBindBuffer
146.7ms 1.7% 113 0.0% glBufferData
140.1ms 1.6% 15203 8.1% | wglUniformMatrix4fv
134.2ms 1.5% 8 0.0%] pglCompileShader
105.6ms 1.2% 21116 11.3% glVertexAttribPointer
104.2ms 1.2% 21136 11.3% glBindTexture
91.6ms 1.0% 844 0.4% glDiscardFramebufferEXT
63.9ms 0.7% 21116 11.3% _~| MglEnableVertexAttribArray
60.6ms 0.7% 21114 11.3% l:I »glActiveTexture OpenGLES
59.8ms 0.7% 5068 2.7% [=] MglUniform4f OpenGLES
34.1ms 0.4% 845 0.4% || pgluniform4fv OpenGLES

OpenGL ES Analyzer Instrument

Activity Monitor

OpenGL ES Analyzer Instrument

Activity Monitor Overrides

OpenGL ES Analyzer Instrument

Overrides

Tuning the Graphics Pipeline

Alex Kan
Embedded Graphics Acceleration

How a Frame Is Rendered
The basics

* CPU encodes rendering commands for GPU

* GPU reads and processes vertices

* GPU shades fragments for primitives

* Core Animation composites rendered results to framebuffer

How a Frame Is Rendered
Pipelining

* Not all stages take the same amount of time

How a Frame Is Rendered
Pipelining

* Not all stages take the same amount of time

Fragment

How a Frame Is Rendered
Pipelining

* Not all stages take the same amount of time
* Most stages can run in parallel with each other

Fragment

How a Frame Is Rendered
Pipelining

* Not all stages take the same amount of time
* Most stages can run in parallel with each other

Fragment

How a Frame Is Rendered
Pipelining

* Not all stages take the same amount of time
* Most stages can run in parallel with each other

Vertex Vertex

Fragment Fragment

How a Frame Is Rendered
Bottlenecks

* The slowest stage determines how long your frame takes
* Optimizing the slowest stage will produce the largest gains

Vertex Vertex

Fragment Fragment

Finding Bottlenecks Using Overrides
Strategy

* Examine CPU/GPU utilization with CPU Sampler and OpenGL ES Driver
instruments

* Apply various combinations of overrides with OpenGL ES Analyzer to
see the effect on performance

Overrides
® None
() Eliminate all OpenGL ES operations
() Eliminate rendering operations only
O Simplify fragment shader processing
O Simplify all shader processing
() Minimize utilized texture bandwidth
() Minimize number of pixels rendered

Optimizing the Pipeline

Stage by stage

Optimizing the Pipeline
Topics

* CPU bottlenecks
* GPU bottlenecks

- Bandwidth, computation, and workload size
- Vertex bottlenecks
- Fragment bottlenecks

CPU Bottlenecks

Identification and classification

* GPU utilization well below 100%
* Framerate unchanged when simplifying draw calls

* CPU mostly in GL framework, in either of two states:

» Fully utilized
* Frequently blocked

CPU Bottlenecks
High CPU utilization

* Usual culprit is handling state changes
- Analyzer state statistics can tell you if state changes are redundant
* Some state changes are more expensive than others

re

EH Frame Statistics =

Frame # A # Triangles Rendered # Batches # GL Calls # Redundant State Changes # Render Passes
25296 1220 32

41732 239 65

41732
41732
41732
41732
41732
41732
41732
41732
41732
41732
41732

o

218 65
218 65
218 69
218 69
218 69
218 69
218
218
218
218
218

O N OV B W=
100 0O 0O 0O 0o CO OO GO CO 0O 00 00 OO
S R I e i i

CPU Bottlenecks

Reducing CPU utilization

* Minimize state changes
» Take advantage of per-object state

- Textures
- Programs
- Vertex arrays

CPU Bottlenecks

Pipeline stalls

* CPU may need to synchronize to access/modify an object in flight
- Wait as long as possible to retrieve rendering results
- Avoid modifying textures and VBOs after using them in a frame
- Consider double- or triple-buffering objects if you need partial updates

CPU Bottlenecks

Summary

* Reduce state changes, particularly redundant ones
* Avoid making CPU wait for GPU
* Instruments can help you identify both these cases

GPU Bottlenecks

Workload size, bandwidth and computation

Utilization = Workload Size X Cost Per Element

» Workload size: * Cost per element
Nulgnber of eIerdnents * Data: Fetching shader
to be processe arguments, texture
samples, writing outputs

* Computation:
Shader calculations

Vertex Processing Bottlenecks
Identification and classification

Tiler utilization at or near 100%

» Workload size: Number
of vertices

* Frame rate increases when
using simplified models

* Cost per vertex

* Data: Fetching
of vertex data

* Computation: Vertex
transformation/
lighting/shading
* Frame rate increases

when doing less calculation

Vertex Fetching Bottlenecks
Getting vertex data to the GPU quickly

* Use vertex buffer objects (VBOs)

- Indicate usage pattern with storage hints
- GL_STATIC_DRAW: update once, draw repeatedly
- GL_DYNAMIC_DRAW: update repeatedly, draw repeatedly
- GL_STREAM_DRAW: update once, draw at most a few times

* Use indexed draw calls where possible

- Improves performance if vertices are reused

Vertex Fetching Bottlenecks
Getting vertex data to the GPU quickly

* Interleave your vertex
attributes

- Align vertex attributes and
strides to 4-byte boundaries

V2 V3| v4 | ...

3 LN ,"V
A 4 !

Draw Array...

Draw Array...

Vertex Processing Bottlenecks
Summary

* Take advantage of VBOs and VAOs

» Size/structure your vertex data for efficient data transfer

Fragment Processing Bottlenecks
Identification and classification

Renderer utilization at or near 100%

» Workload size: Number
of visible fragments

Overrides
(O None
O Eliminate all OpenGL ES operations
O Eliminate rendering operations only
O Simplify fragment shader processing
O Simplify all shader processing
(O Minimize utilized texture bandwidth
® Minimize number of pixels rendered

Processing Fewer Pixels
Dealing with overdraw

 Hidden surface removal operates on groups of opaque objects
- Maximum efficiency by drawing opaque objects together first
* Sort order:

- Draw all opaque objects
 Draw any objects using “discard” keyword
- Draw all alpha blended objects

Processing Fewer Pixels
Overdraw and blending/discard

* Blending affects every pixel in a quad
- Even transparent ones

* Alpha-testing is generally expensive
on embedded hardware

» Wasted pixels can add up as number
of layers increase

Processing Fewer Pixels
Sprite trimming

* Reduce area by using a shape that tightly encloses sprite
* Trades smaller shape for extra vertex processing

Processing Pixels Faster
What's my limit?

* Bandwidth
- Performance increases with smaller textures/lower bit depth

« Computation
- Performance increases with simplified fragment shader
* Analyzer has overrides for both of these situations

Overrides Overrides

() None () None
O Eliminate all OpenGL ES operations O Eliminate all OpenGL ES operations
O Eliminate rendering operations only O Eliminate rendering operations only
O Simplify fragment shader processing @ Simplify fragment shader processing
O Simplify all shader processing O Simplify all shader processing

| ® Minimize utilized texture bandwidth (O Minimize utilized texture bandwidth
() Minimize number of pixels rendered () Minimize number of pixels rendered

Bandwidth-Bound Fragment Processing
Reducing framebuffer bandwidth

* If you don't reuse your buffer contents from frame to frame:
= Do a full-screen clear of all buffers at the start of the frame
- Discard non-color buffers at the end of the frame

GLenum attachments[] = { GL_DEPTH_ATTACHMENT };
glDiscardFramebufferEXT(GL_READ_FRAMEBUFFER_APPLE, 1, attachments);

glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

Color | | Depth
t v t v

Bandwidth-Bound Fragment Processing
Reducing framebuffer bandwidth

* If you don't reuse your buffer contents from frame to frame:
= Do a full-screen clear of all buffers at the start of the frame
- Discard non-color buffers at the end of the frame

GLenum attachments[] = { GL_DEPTH_ATTACHMENT };
glDiscardFramebufferEXT(GL_READ_FRAMEBUFFER_APPLE, 1, attachments);

glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

Color | | Depth

\

Bandwidth-Bound Fragment Processing
Reducing framebuffer bandwidth

* Even more important when performing multisample rendering

Multisample FBO l ‘ Single-sample FBO

Bandwidth-Bound Fragment Processing
Reducing framebuffer bandwidth

* Even more important when performing multisample rendering

Multisample FBO l ‘ Single-sample FBO

Bandwidth-Bound Fragment Processing
Reducing texture bandwidth

* Use the smallest texture format and type suitable for your assets

- PVRTC, if your content is suitable
- Single-channel luminance, alpha
- 16-bit formats: RGBA4444, RGBA5551, RGB565
* Size your textures appropriately for display
- Use mipmaps if your textures will be drawn at many different scales

Fragment Processing Bottlenecks
Summary

* Give the GPU the smallest number of pixels to deal with
- Take advantage of GPU’s ability to cull hidden surfaces
* Minimize amount of external bandwidth consumed by GPU

Shader Tuning for GLSL ES

Shader Tuning for GLSL ES
Topics

* Precision qualifiers
* Minimizing computation
* Dependent texture reads

Care and Feeding of Shader Precisions
Introduction to shader precisions

* Specific to GLSL ES, not in desktop GLSL
*Varying precisions can differ between vertex and fragment stages
* Appropriate precision choices are important for good performance

Care and Feeding of Shader Precisions
highp

* Single-precision floating point
- Use for vertex positions and texture coordinate calculations
- Good for texture coordinates in general

uniform highp mat4 modelviewProjection;
uniform highp mat3 mapTexMatrix;
attribute highp vec3 position;

varying highp vec2 mapTexCoord;

(mapTexMatrix * position).st;
modelviewProjection x vec4(position, 1.0);

mapTexCoord
gl_Position

Care and Feeding of Shader Precisions
mediump

* Half-precision floating point
- Potentially higher throughput
*» Good for texture coordinate varyings if:
- Texture size < 512 X 512
- Minimal wrapping/perspective
mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);
mediump float hdotn = sign(ndotl) * dot(normal, halfAngle);

mediump litColor = ambientColor + diffuseColor * ndotl;
litColor += specularColor x pow(hdotn, specularExponent);

Care and Feeding of Shader Precisions
lowp

*[-2, +2] range, 8-bit fractional precision

- Good for color, normals, and color mixing factors
* Use 3- and 4- component vectors
* Don't swizzle components

uniform lowp sampler2D tex;

varying lowp vec3 litColor;

lowp vec3 modulatedColor = texture2D(tex, coord).rgb x litColor;
gl_FragColor = vec4(modulatedColor, 1.0);

Care and Feeding of Shader Precisions
Choosing and using precisions

» Compiler is free to promote calculations to a higher precision

- Keep in mind minimum required precision/range of type
- Check implementation-specific precision and range

* Minimize conversions between precisions in calculations
- Especially for conversions to/from lowp

Efficient Computation
Hoisting computation

Uniform Vertex Fragment

Efficient Computation
Expressing operations

* Operate only on the elements that you need
- Don't coerce expressions into being vectors
* When mixing scalars and vectors, keep scalars together

uniform vec3 attenFactor;

mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);

mediump float attenuation = attenFactor.x + attenFactor.y * objectDistance
+ attenFactor.z * (objectDistance * objectDistance);

litColor = ambientColor + diffuseColor * (ndotl / attenuation);

Efficient Computation
Expressing operations

* Operate only on the elements that you need
- Don’t coerce expressions into being vectors
* When mixing scalars and vectors, keep scalars together

uniform vec3 attenFactor;

mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);

mediump float attenuation = attenFactor.x + attenFactor.y *x objectDistance
+ attenFactor.z * (objectDistance * objectDistance);

litColor = ambientColor + diffuseColor *x (ndotl / attenuation);

Efficient Computation
Expressing operations

* Operate only on the elements that you need
- Don’t coerce expressions into being vectors
* When mixing scalars and vectors, keep scalars together

uniform vec3 attenFactor;

mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);

mediump float attenuation = attenFactor.x + attenFactor.y * objectDistance
+ attenFactor.z * (objectDistance * objectDistance);

litColor = ambientColor + diffuseColor * (ndotl / attenuation);

Efficient Computation
GLSL built-ins

* Convenience functions for common functionality

* Convenient for hardware and shader compiler as well

lowp vec3 clean = texture2D(cleanTexture, coord).rgb;

lowp vec3 dirty = texture2D(dirtyTexture, coord).rgb;
lowp float dirtiness = texture2D(dirtMap, coord).a;

// BAD
lowp vec3 mixed (1.0 - dirtiness) * clean + dirtiness * dirty;
lowp vec3 mixed = clean + (dirty - clean) * dirtiness;

// BETTER
lowp vec3 mixed = mix(clean, dirty, dirtiness);

Dependent Texture Reads
What are they?

* Dependent texture reads
- Texture samples from coordinates modified in shader
* Non-dependent texture reads
- Texture samples from coordinates passed directly from varyings

Dependent Texture Reads
What causes them?

* Explicit texture coordinate modification in fragment shader

uniform lowp sampler2D tex;
varying highp vec2 coord;
varying highp vec2 warpTime;

lowp vec4 nonHoistableSample = texture2D(tex, coord + sin(warpTime));
lowp vec4 hoistableSample = texture2D(tex, coord + vec2(0.5, -0.5));

Dependent Texture Reads
What causes them?

* Projective or biased texture samples (on PowerVR SGX)

uniform lowp sampler2D tex;
varying highp vec3 coord;

// projection
lowp vec4 proj texture2DProj(tex, coord);

// LOD bias
lowp vec4 bias = texture2D(tex, coord.st, bias);

// LOD selection
lowp vec4 lod = texture2DLod(tex, coord.st, lod);

Dependent Texture Reads
Why does this matter?

* Non-dependent reads are typically faster

- Fewer shader cycles
- Better parallelism

Shader Tuning

Summary

* Choose your precisions carefully
* Make sure your calculations are:

- Performed in the appropriate stage
- Including texture coordinate calculations
- Expressed efficiently

Summary
Rules of thumb

* Target the slowest pipeline stage

- Let the tools tell you where to tune

- Don't be afraid to do more work in other stages
*Do less

- Take advantage of GPU hidden-surface removal

- Use smaller data types
- Minimize computation

OpenGL ES Analyzer Instrument

Part deux

OpenGL ES Analyzer Instrument

OpenGL ES Expert

It knows a thing or two

* Comprehensive expert system

* Knows the hardware and
the software

* Finds problems in your app

- ...and provides recommendations
on how to address each of them

OpenGL ES Expert

Categories of problems

* Redundant state changes

* Invalid framebuffer configurations

* Invalid texture configurations

* Invalid OpenGL operations

* Sub-optimal vertex data formats, layouts and storage
* Sub-optimal operation order

» Hardware-specific performance events

Demo

PictureViewer, analyzed

OpenGL ES Analyzer Instrument

OpenGL ES Analyzer Instrument

Instrument Window Help on 10:50 AM Q

Instruments2

@, PictureViewer_1 | ® @D|| ~00:00:14Ye || OO -]| W

4 >
Record Target Inspection Range | Run1of 1 J View Library Search

Instruments

Unoptimized MSAA Resolve

Suboptimal MSAA buffer resolve operaticn

r.
.@: OpenGL ES

K] Or
& OpenCGL ES Analyzer <+ EH Frame Statistics &

Overrides Frame #4 # Triangles Rendered # Batches # GL Calls # Redundant State Changes
12 365
12 48
12 48
12 48
12 48
12z 48
12 48
Call Tree 12 48
12 48
12 48
12 48
g : 12 48
fide Tut' 12 48
how Obj-C Only 12 48
[Flatten Recursion 16 55

OpenGL ES Analyzer Instrument

A call to arms

* Go get the tool

* Improve your performance

Instrument Window Help

< Run 1of 1

Inspection

 Send us feedback A -
* Make an awesome app!

Done

=
o= OpenGL ES
-I§

])
& OpenGL ES Analyzer <+ EH Frame Statistics @
Overrides Frame #4 riangles Rendered s # GL Calls
12 365
12 48
12 4
12
12
1z

oo 0o o

o o

Call Tree 7 12

@

o

More Information

Allan Schaffer

Graphics and Game Technologies Evangelist
aschaffer@apple.com

Mike Jurewitz

Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
OpenGL ES Programming Guide for iPhone OS
http://developer.apple.com/iphone

Khronos
http://www.khronos.org

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Advanced Performance Analysis with Instruments

Mission
Thursday 9:00AM

OpenGL Essential Design Practices

Pacific Heights
Wednesday 11:30AM

OpenGL ES Overview for iPhone OS

Presidio
Wednesday 2:00PM

Labs

Graphics and Media Lab A
OpenGL ES Lab Thursday 9:00AM to 4:15PM

& WWDCI0

