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• OpenGL ES Analyzer
• Tuning the graphics pipeline
• Analyzer demo
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Developer preview

Jean-François Roy
GPU Software Developer Technologies
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Available on the
Attendees Site
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Developer preview

• Available as a developer preview with Xcode 4
■ Preview only supports PowerVR SGX devices with iOS 4
■ Preview cannot attach to a running application

• We want your feedback!
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The power of many

• Correlate data from multiple instruments
• Powerful data mining
• Well-understood tool and interface
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Activity Monitor

• Traces all 
OpenGL ES activity

• Provides key statistics

Overrides

• Disable specific 
parts of the 
graphics pipeline

• Helpful for finding 
bottlenecks ?
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Activity Monitor Overrides
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Activity Monitor
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Understanding the problem

• Your application may be doing…
■ A lot more work than you thought
■ Work in an unexpected order
■ The wrong kind of work
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Activity monitor

• Records a trace of all OpenGL ES activity
• Four main hubs of information

■ Frame statistics
■ API statistics
■ Command trace
■ Call tree

16



Frame statistics

• Get an idea of your per-frame workload
• Navigate the trace by frame
• Select range of frames in the timeline
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Primitives and batches

• Maximize ratio of primitives to batches (draw commands)
• Minimize batches
• Find your most costly frame w/r to geometry
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OpenGL commands

• Minimize how many commands you issue per frame
• Ratio of batches to GL commands should approach 1

■ If small, try sorting the geometry by state
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Redundant state changes

• How many commands were issued to change state to the same value
■ Trigger work in the driver nonetheless

• Don’t do them!
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Render passes

• The graphics hardware operates in render passes
• Aim for only one render pass per frame
• Some commands can force the hardware to end the current pass
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API statistics

• API statistics allow you to see what commands
■ Are used most frequently
■ Cost the most
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Cost in time

• Ideally, draw commands should dominate after loading
• Simple commands with can be costly when called frequently
• Minimize usage of expensive commands during gameplay or do them 
on another thread
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Cost in time

• Ideally, draw commands should dominate after loading
• Simple commands can be costly when called frequently
• Minimize usage of expensive commands during gameplay or do them 
on another thread
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Frequency

• Make sure you’re not issuing commands more than you need to
■ Likely that many of them are redundant

• Use performance extensions to reduce command count
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Time range filtering

• API statistics are re-computed to match the selected time range
■ Use the frame statistics table to select a range of frames
■ Region of interest highlighted by other instruments
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Command trace

• The complete list of every OpenGL command issued by your application
• Useful in conjunction with the other hubs
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Call tree

• Standard Instruments call tree view but focused onOpenGL commands
• Allows you to see which OpenGL commands took the most amount of 
time and from where they were called
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Activity Monitor
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Activity Monitor Overrides
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Overrides
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The basics

• CPU encodes rendering commands for GPU
• GPU reads and processes vertices
• GPU shades fragments for primitives
• Core Animation composites rendered results to framebuffer

CPU Vertex Fragment CA
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Pipelining

• Not all stages take the same amount of time

CPU Vertex Fragment CA
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• Not all stages take the same amount of time

CPU Vertex Fragment CA
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Pipelining

• Not all stages take the same amount of time
• Most stages can run in parallel with each other

CPU Vertex Fragment CA
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Pipelining

• Not all stages take the same amount of time
• Most stages can run in parallel with each other

CPU

Vertex

Fragment
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CPU

Vertex

Fragment Fragment
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FragmentFragment

CPU
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CPU

Vertex

Pipelining

• Not all stages take the same amount of time
• Most stages can run in parallel with each other
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Bottlenecks

• The slowest stage determines how long your frame takes
• Optimizing the slowest stage will produce the largest gains

CPU

Vertex

Fragment Fragment

CPU

Vertex

FragmentFragment

CPU

Vertex

CPU

Vertex
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Strategy

• Examine CPU/GPU utilization with CPU Sampler and OpenGL ES Driver 
instruments

• Apply various combinations of overrides with OpenGL ES Analyzer to 
see the effect on performance
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Stage by stage
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Topics

• CPU bottlenecks
• GPU bottlenecks

■ Bandwidth, computation, and workload size
■ Vertex bottlenecks
■ Fragment bottlenecks
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Identification and classification

• GPU utilization well below 100%
• Framerate unchanged when simplifying draw calls
• CPU mostly in GL framework, in either of two states:

■ Fully utilized
■ Frequently blocked
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High CPU utilization

• Usual culprit is handling state changes
■ Analyzer state statistics can tell you if state changes are redundant

• Some state changes are more expensive than others
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Reducing CPU utilization

• Minimize state changes
• Take advantage of per-object state

■ Textures
■ Programs
■ Vertex arrays

45



Pipeline stalls

• CPU may need to synchronize to access/modify an object in flight
■ Wait as long as possible to retrieve rendering results
■ Avoid modifying textures and VBOs after using them in a frame
■ Consider double- or triple-buffering objects if you need partial updates
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Summary

• Reduce state changes, particularly redundant ones
• Avoid making CPU wait for GPU
• Instruments can help you identify both these cases
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Workload size, bandwidth and computation

Workload Size Cost Per Elementx

• Workload size: 
Number of elements 
to be processed

Utilization =

• Cost per element

• Data: Fetching shader 
arguments, texture 
samples, writing outputs

• Computation: 
Shader calculations
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Identification and classification

Tiler utilization at or near 100%

• Workload size: Number 
of vertices 

• Frame rate increases when 
using simplified models

• Cost per vertex

• Data: Fetching 
of vertex data

• Computation: Vertex 
transformation/
lighting/shading

• Frame rate increases 
when doing less calculation
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Getting vertex data to the GPU quickly

• Use vertex buffer objects (VBOs)
■ Indicate usage pattern with storage hints

■ GL_STATIC_DRAW: update once, draw repeatedly
■ GL_DYNAMIC_DRAW: update repeatedly, draw repeatedly
■ GL_STREAM_DRAW: update once, draw at most a few times

• Use indexed draw calls where possible
■ Improves performance if vertices are reused
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Getting vertex data to the GPU quickly

• Interleave your vertex
attributes
■ Align vertex attributes and
strides to 4-byte boundaries
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Summary

• Take advantage of VBOs and VAOs
• Size/structure your vertex data for efficient data transfer
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Identification and classification

Renderer utilization at or near 100%

• Workload size: Number 
of visible fragments 

• Cost per fragment

• Data: Framebuffer and 
texture bandwidth

• Computation: Fragment 
shading
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Dealing with overdraw

• Hidden surface removal operates on groups of opaque objects
■ Maximum efficiency by drawing opaque objects together first

• Sort order:
■ Draw all opaque objects
■ Draw any objects using “discard” keyword
■ Draw all alpha blended objects
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Overdraw and blending/discard

• Blending affects every pixel in a quad
■ Even transparent ones

• Alpha-testing is generally expensive 
on embedded hardware

• Wasted pixels can add up as number 
of layers increase
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Sprite trimming

• Reduce area by using a shape that tightly encloses sprite
• Trades smaller shape for extra vertex processing
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What’s my limit?

• Bandwidth
■ Performance increases with smaller textures/lower bit depth

• Computation
■ Performance increases with simplified fragment shader

• Analyzer has overrides for both of these situations

57



Reducing framebuffer bandwidth

• If you don’t reuse your buffer contents from frame to frame:
■ Do a full-screen clear of all buffers at the start of the frame
■ Discard non-color buffers at the end of the frame

Color Depth

GLenum attachments[] = { GL_DEPTH_ATTACHMENT };
glDiscardFramebufferEXT(GL_READ_FRAMEBUFFER_APPLE, 1, attachments);
   
glBindRenderbuffer(GL_RENDERBUFFER, colorRenderbuffer);
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

Memory
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Reducing framebuffer bandwidth

• Even more important when performing multisample rendering

Single-sample FBOMultisample FBO

Color Depth Color

Memory
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Reducing framebuffer bandwidth

• Even more important when performing multisample rendering

Single-sample FBOMultisample FBO

Color

Memory
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Reducing texture bandwidth

• Use the smallest texture format and type suitable for your assets
■ PVRTC, if your content is suitable
■ Single-channel luminance, alpha
■ 16-bit formats: RGBA4444, RGBA5551, RGB565

• Size your textures appropriately for display 
■ Use mipmaps if your textures will be drawn at many different scales
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Summary

• Give the GPU the smallest number of pixels to deal with
■ Take advantage of GPU’s ability to cull hidden surfaces

• Minimize amount of external bandwidth consumed by GPU
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Topics

• Precision qualifiers
• Minimizing computation
• Dependent texture reads
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Introduction to shader precisions

• Specific to GLSL ES, not in desktop GLSL
• Varying precisions can differ between vertex and fragment stages 
• Appropriate precision choices are important for good performance
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highp

• Single-precision floating point
■ Use for vertex positions and texture coordinate calculations
■ Good for texture coordinates in general
uniform highp mat4 modelviewProjection;
uniform highp mat3 mapTexMatrix;
attribute highp vec3 position;
varying highp vec2 mapTexCoord;

mapTexCoord = (mapTexMatrix * position).st;
gl_Position = modelviewProjection * vec4(position, 1.0);
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mediump

• Half-precision floating point
■ Potentially higher throughput

• Good for texture coordinate varyings if:
■ Texture size < 512 × 512
■ Minimal wrapping/perspective
mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);
mediump float hdotn = sign(ndotl) * dot(normal, halfAngle);
mediump litColor = ambientColor + diffuseColor * ndotl;
litColor += specularColor * pow(hdotn, specularExponent);
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lowp

• [-2, +2] range, 8-bit fractional precision
■ Good for color, normals, and color mixing factors

• Use 3- and 4- component vectors
• Don’t swizzle components

uniform lowp sampler2D tex;

varying lowp vec3 litColor;

lowp vec3 modulatedColor = texture2D(tex, coord).rgb * litColor;
gl_FragColor = vec4(modulatedColor, 1.0);
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Choosing and using precisions

• Compiler is free to promote calculations to a higher precision
■ Keep in mind minimum required precision/range of type
■ Check implementation-specific precision and range

• Minimize conversions between precisions in calculations
■ Especially for conversions to/from lowp
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Hoisting computation

Uniform Vertex Fragment
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Expressing operations

• Operate only on the elements that you need
■ Don’t coerce expressions into being vectors

• When mixing scalars and vectors, keep scalars together

uniform vec3 attenFactor;

mediump float ndotl = max(dot(normal, objectLightDirection), 0.0);
mediump float attenuation = attenFactor.x + attenFactor.y * objectDistance 
+ attenFactor.z * (objectDistance * objectDistance);
litColor = ambientColor + diffuseColor * (ndotl / attenuation);
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GLSL built-ins

• Convenience functions for common functionality
• Convenient for hardware and shader compiler as well

lowp vec3 clean = texture2D(cleanTexture, coord).rgb;

lowp vec3 dirty = texture2D(dirtyTexture, coord).rgb;
lowp float dirtiness = texture2D(dirtMap, coord).a;

// BAD
lowp vec3 mixed = (1.0 - dirtiness) * clean + dirtiness * dirty;
lowp vec3 mixed = clean + (dirty - clean) * dirtiness;

// BETTER
lowp vec3 mixed = mix(clean, dirty, dirtiness);
// BETTER
lowp vec3 mixed = mix(clean, dirty, dirtiness);
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What are they?

• Dependent texture reads
■ Texture samples from coordinates modified in shader

• Non-dependent texture reads
■ Texture samples from coordinates passed directly from varyings 
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What causes them?

• Explicit texture coordinate modification in fragment shader

uniform lowp sampler2D tex;

varying highp vec2 coord;
varying highp vec2 warpTime;

lowp vec4 nonHoistableSample = texture2D(tex, coord + sin(warpTime));
lowp vec4 hoistableSample = texture2D(tex, coord + vec2(0.5, -0.5));
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What causes them?

• Projective or biased texture samples (on PowerVR SGX)

uniform lowp sampler2D tex;
varying highp vec3 coord;

// projection
lowp vec4 proj = texture2DProj(tex, coord);

// LOD bias
lowp vec4 bias = texture2D(tex, coord.st, bias);

// LOD selection
lowp vec4 lod = texture2DLod(tex, coord.st, lod);
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Why does this matter?

• Non-dependent reads are typically faster
■ Fewer shader cycles
■ Better parallelism
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Summary

• Choose your precisions carefully
• Make sure your calculations are:

■ Performed in the appropriate stage
■ Including texture coordinate calculations

■ Expressed efficiently
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Rules of thumb

• Target the slowest pipeline stage
■ Let the tools tell you where to tune
■ Don’t be afraid to do more work in other stages

• Do less
■ Take advantage of GPU hidden-surface removal
■ Use smaller data types
■ Minimize computation
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Part deux
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?
Expert
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It knows a thing or two

• Comprehensive expert system
• Knows the hardware and 
the software

• Finds problems in your app
■ …and provides recommendations 
on how to address each of them
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Categories of problems

• Redundant state changes
• Invalid framebuffer configurations
• Invalid texture configurations
• Invalid OpenGL operations
• Sub-optimal vertex data formats, layouts and storage
• Sub-optimal operation order
• Hardware-specific performance events
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PictureViewer, analyzed
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Expert
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ExpertActivity Monitor Overrides
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A call to arms

• Go get the tool
• Improve your performance
• Send us feedback
• Make an awesome app!
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Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Mike Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
OpenGL ES Programming Guide for iPhone OS
http://developer.apple.com/iphone

Khronos
http://www.khronos.org

Apple Developer Forums
http://devforums.apple.com
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Advanced Performance Analysis with Instruments Mission
Thursday 9:00AM

OpenGL Essential Design Practices Pacific Heights
Wednesday 11:30AM

OpenGL ES Overview for iPhone OS Presidio
Wednesday 2:00PM
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OpenGL ES Lab Graphics and Media Lab A
Thursday 9:00AM to 4:15PM
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