¢

OpenGL for Mac OS X

Matt Collins
GPU Software




Introduction
You're wondering where we're at?

* What can | target?
* What's new in 10.6.3 and 10.6.4?
* What does this mean for your app?




Your App Looks Great ... Now You Want SPEED

* Performance tips and tricks to make your app shine




I've Heard About This Super Inferred
Phong Shading Thing

* Cool techniques with 10.6.3+

* Rendering techniques and examples




OpenGL

* Lowest-level access to graphics hardware
* Most other graphics frameworks live on top of OpenGL

- Core Image
- Core Animation
» Quartz Composer




Last Time at WWDC...

* Buffer objects

= Vertex buffers
- Index buffers

* Frame buffer objects
* Fixed function pipeline
- Multitexture
* Programmable pipeline—shaders
- Vertex/Geometry/Fragment shader




Where Are We Now?

* Better access to hardware functionality!
* 10.6.3 and above only!




First, Some Advice...

» Use Generic Vertex Attributes
- Shaders are native
- Fixed Function is emulated in the drivers
- Easier to share with OpenGL ES 2.0




Now Available!

* Making life easier
-EXT_provoking_vertex
-EXT_vertex_array_bgra
-ARB_depth_buffer_float

* Empowering your app
-ARB_framebuffer_object
-ARB_texture_array
-ARB_instanced_arrays

Now
Available




Now Available! oNow

* Performance and memory
NV_conditional_render
ARB_texture_rg

- EXT_texture_compression_rgtc
- EXT _packed_float

-EXT_texture_shared_exponent




Learning!

* What does it do?
* What's my motivation, director?
* Demo of cool stuff!




Flexibility




Provoking Vertex Selection
EXT_provoking_vertex

* Control which vertex supplies attributes during Flat shading

* New entry points:

-gLProvokingVertexEXT(GLenum mode)

- GL_FIRST_VERTEX_CONVENTION
* GL_LAST_VERTEX_CONVENTION

* What about Quads?
- Hardware dependent behavior
- GL_QUADS_FOLLOW_PROVOKING_VERTEX




Provoking Vertex Selection
EXT_provoking_vertex

* Motivation?
- Better flexibility

- Allows the app to pick where to pull color/attributes from
without modifying art assets




Provoking Vertex Selection
EXT_provoking_vertex




BGRA Ordering

EXT_vertex_array_bgra

* Specify colors in BGRA order
* GL_BGRA is the SIZE parameter:

-glColorPointer
-glSecondaryColorPointer
-glVertexAttribPointer

* Size implied to be four
* Unsigned bytes only!




BGRA Ordering

EXT_vertex_array_bgra

glBindBuffer(GL_ARRAY_BUFFER, colorVBOName);
glVertexAttribPointer(index, GL_BGRA, GL_UNSIGNED_BYTE,
GL_FALSE, 0, NULL);




Floating Point Depth Buffers
ARB_depth_buffer_float

* Floating point depth buffer

* New formats
-GL_DEPTH_COMPONENT32F
-GL_DEPTH32F_STENCILS

* New type
-GL_FLOAT_32_UNSIGNED_INT_ 24 8 REV




Floating Point Depth Buffers
ARB_depth_buffer_float

* Motivation
- Very deep scenes
- Very small scenes
* Note:
- Precision is greater closer to the near plane
» Precision is greater closer to 0.0




Empowerment




Array Textures
EXT_texture_array

* Array of 1D or 2D textures
- Each layer is a distinct image
- No filtering between layers
- Distinct mipmaps per level
* Programmable pipeline only!
* New texture target
- GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_1D_ARRAY_EXT
* New samplers
-samp ler2DArray, samplerlDArray




Array Textures
EXT_texture_array

* Why?
- Store unique data slices
* Why not use 3D textures?
- Can't mipmap each level




Demo

Array height maps




Instancing
ARB_instanced_arrays

* Reuse primitives within a single draw

* Programmable Pipeline only!

* Requires Generic Vertex Attributes

* Vertex attributes at different rates
-glVertexAttribDivisorARB




Instancing
ARB_instanced_arrays

* Saves overhead

* Many different
techniques

= Stream instancing

= Source vertex
attributes at
different rates

= Position/orientation
matrices, for example

E — B E — B Position

-

st

Attribute




Demo

Instanced gears




Frame Buffer Objects
ARB_framebuffer_object

* Generalized offscreen render targets!
* Different dimensions
* Different formats




Frame Buffer Objects
ARB_framebuffer_object

* FBOs themselves are not new
* But ARB_fbo allows new techniques

- Reuse Z-buffer
- Render various data types

* More on this later!




Performance and Memory




RG Textures
ARB_texture_rg

* One and two channel textures
*Can be R or RG

- Many formats, including:
- 8/16/32 unsigned ints
- 16/32 floating point

* Can be a render target!




RG Textures
ARB_texture_rg

* But why?
- Combines with ARB_fbo
- Rendering data to a texture
- Luminance isn't renderable
* You may not need four components
- Screen space motion blur
- Deferred shading




Deferred Shading

* Transform geometry as usual

* Render lighting attributes for each visible pixel to G-buffer

* Render fullscreen quad

* Read from G-buffer to perform lighting calculations in screen-space




Deferred Shading
G-buffer layout

X Position Y Position

X Component Y Component

16-bit Float

Z Position

Position

Alpha

Normal




Deferred Shading

Storing out attributes

varying vec3 position, normal;
varying vec4 color;

void main() {
gl _FragDatal@].xyz = position.xyz;
gl_FragbDatall] = color;
gl_FragData[2].xy = n.xy;

I3




Demo

Deferred shading




Packed Floats
EXT_packed_float

* Pack three floats into 32 bits

* Format
<internalformat> GL_R11F _G11F B10OF_ EXT
-<type> UNSIGNED_INT_10F_11F_11F_REV_EXT

11 bits




Packed Floats
EXT_packed_float

* Why?
- High dynamic range
- Sun is 1000x brighter than shadow
- 8 bits are not enough to express this!




Conditional Rendering
NV conditional render

* Rendering based on occlusion queries
- Removes roundtrip from GPU

*glBeginConditionalRenderNV(GLuint id, GLenum mode)

- id—An occlusion query
-mode—Wait or not

*glEndConditionalRenderNV()




Conditional Rendering
NV conditional render

// Setup by turning off writes
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthMask (GL_FALSE);

glBeginQuery(GL_SAMPLES_PASSED_ARB, query);
// Draw your coarse bounding volume
glDrawElements(...);

glEndQuery (GL_SAMPLES_PASSED_ARB) ;

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask (GL_TRUE) ;

// Conditionally render based on query result
glBeginConditionalRenderNV(query, GL_QUERY_WAIT_NV);
glDrawElements(...);

glEndConditionalRenderNV();




Demo

Conditional rendering




Performance Tips
Some stuff to avoid...

* Immediate mode is costly!

- Specifying every point individually is SLOOOOOW
- All data sent over the bus
 You have VRAM, use it!

glBegin(GL POINTS);
glCo
glVe glDrawArrays(...)

glVe glDrawElements(...)
glVe
glEnuvy;




Performance Tips
Some stuff to avoid...

* Display Lists don't really help...
- Not a performance boost
- Sure you are caching commands, but Display Lists inherit state
= SO, we can't cache state—which is what hurts you

ATRAATN] A+ 1 \ I

glDrawArrays(...)
glDrawElements(...)

=4




Performance Tips

* Batch your state!

- Important way to improve performance
- All state changes require driver validation
- Also sends a state vector to hardware

- This is expensive!
- Avoid by drawing similar objects
* Check Shark to see where time is being spent

* Also use Driver Monitor




Performance Tips

* Hoist heavy calculations up the pipeline

- Vertex shader may run 10,000 times a frame
 Fragment Shader will run 1600 x 1200 = 1.92 million times!
- Much more with overdraw!
* Keep an eye out for fallback!

- CGLGetParameter (ctx, kCGLCPGPUVertexProcessing, &vtx);
- CGLGetParameter (ctx, kKCGLCPGPUFragmentProcessing, &frag);




Performance Tips

* Z-prepass with color writes turned off

- Depth writes 2x as fast

- Z-test AFTER the Fragment stage

- Premade Z-buffer allows early-Z optimizations
- Helps complex shaders and lots of overdraw

- Certain techniques need incoming-Z
- Crytek-style Screen Space Ambient Occlusion




Performance Tips




Performance Tips

*gLFlushMappedBufferRange
- Map/Unmap will DMA the entire buffer
- Asynchronous modification of the buffer object
- Minimizes data copied back to system memory

glBufferParameteriAPPLE (GL_ARRAY_BUFFER,
GL_BUFFER_FLUSHING_UNMAP_APPLE,
GL_FALSE) ;

.. //do unrelated work
GLvoid xdata = gWMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);

.. //update data buffer

gLFlushMappedBufferRangeAPPLE (GL_ARRAY_BUFFER, offset, bytes);
success = glUnmapBuffer(GL_ARRAY_BUFFER);




Performance Tips

*glFence
- Test when a command is done
- gLF lushMappedBufferRange completed?
- Needed with Multithreaded Engine and g IMapBuffer!

- Multithreaded synchronization
- Texture upload on background context




Performance Tips

g WMapBuffer

Write Data

glFlushMappedBufferRange glTestFence

glSetFence

glUnmapBuffer

GLuint fence;

glGenFencesAPPLE(1, &fence);

... // do work here
glSetFenceAPPLE(fence);

... // do unrelated stuff
glTestFenceAPPLE (GL_FENCE_APPLE, fence);




Can We Put This All Together?

* An example leveraging these different techniques at once?
- Instancing—lots of objects
- Texture_rg—some type of deferred shading
- Array Textures—terrain




Sources

* Hargreaves, Shawn and Harris, Mike. 2004.“Deferred Shading.”
Presentation. http://download.nvidia.com/developer/presentations/
2004/6800_Leagues/6800_Leagues_Deferred_Shading.pdf

* Mitting, M. 2007.“Finding Next Gen—CryEngine 2." SIGGRAPH 2007.

* Shishkovtsov, Oles. 2006.“Deferred Shading in S.T.A.L.KE.R.”
In GPU Gems 2, Addison-Wesley. pp 143-166

« Valiant, M. 2007.”"Deferred Rendering in Killzone 2.”
http://www.guerrilla-games.com/publications/dr_kz2_rsx_dev07.pdf




More Information

Allan Schaffer

Graphics and Game Technologies Evangelist
aschaffer@apple.com

Documentation
OpenGL Dev Center
http://developer.apple.com/opengl|

Apple Developer Forums
http://devforums.apple.com




Related Sessions

OpenGL Essential Design Practices

Pacific Heights
Wednesday 11:30AM

OpenGL ES Overview for the iPhone OS

Presidio
Wednesday 2:00PM

OpenGL ES Shading and Advanced Rendering

Presidio
Wednesday 3:15PM

OpenGL ES Tuning and Optimization

Presidio
Wednesday 4:30PM

Taking Advantage of Multiple GPUs

Nob Hill
Thursday 10:15PM




Labs

Graphics and Media Lab C

OpenGL for Mac OS X Lab Thursday 2:00PM

Graphics and Media Lab A

OpenGL ES Lab Thursday 9:00AM




& WWDCI0









