
Chris Moore
iPhone OS Software Engineer

2

3

How can I access them?

What are the new features?

Deep dive

Let’s code!

4

Fast translation = Dodge

Rotation = Attack

5

Measures gravity and user acceleration

6

• Gravity for rotations
• User acceleration for shakes

• No rotation about gravity

Low-pass filter isolates gravity

High-pass filter isolates
user acceleration/”shake”

7

8

Accurate rotation in
the face of high-user
acceleration, and
vice versa

Rotation about gravity

Accurate for fast rotations

9

10

11

12

-0.008

-0.002

0.004

0.009

0.015

Va
lu

e
(G

’s)

Time

Noise
Ideal

iPhone 3GS Accelerometer

iPhone 4 Accelerometer

iPhone 4 Device Motion’s Gravity

13

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Va
lu

e
(G

’s)

Time

Sensitivity to user acceleration

Ideal

iPhone 4 Accelerometer

iPhone 4 Device Motion’s Gravity

14

Accurate rotation in
the face of high-user
acceleration, and
vice versa

Rotation about gravity

Accurate for fast rotations

15

16

Patrick Piemonte
iPhone OS Software Engineer

17

18

New framework in iOS 4

19

Your Application

20

21

22

23

Push and pull

• Push
■ Must provide NSOperationQueue and block

• Pull
■ Periodically ask CMMotionManager for latest sample
■ Often done when view is updated

24

Push vs. pull tradeoffs

 Advantages Disadvantages Recommendation

Push

Pull

 Never miss a sample
Increased overhead

Often best to drop
samples

Data collection apps

 More efficient

 Less code required
May need
additional timer Most apps and games

25

• Core Motion creates its own thread to:
■ Handle raw data from sensors
■ Run device motion algorithms

• Pushing data:
■ Only your block will execute on your threads

• Pulling data:
■ Core Motion will never interrupt your threads

26

Retrieve data

Setup

Clean-up

27

-(void) startAnimation
{

 // Create a CMMotionManager instance
 motionManager = [[CMMotionManager alloc] init];

 // Ensure that the data we’re interested in is available
 if (!motionManager.isDeviceMotionAvailable) {
 // Fail gracefully
 }

 // Set the desired update interval (60Hz in this case)
 motionManager.deviceMotionUpdateInterval = 1.0 / 60.0;

 // Start updates
 // Note: We could call the following here instead:
 // [motionManager startDeviceMotionUpdatesToQueue:withHandler:]
 [motionManager startDeviceMotionUpdates];

}

28

-(void) drawView:(id)sender
{

 CMDeviceMotion *newestDeviceMotion = motionManager.deviceMotion;

 // ...
}

29

-(void) stopAnimation
{

 [motionManager stopDeviceMotionUpdates];
 [motionManager release];

 //...
}

30

• Two methods to receive data:
■ Push
■ Pull

• Processing done on Core Motion’s
own thread

• Three steps to use Core Motion:
■ Setup
■ Retrieve data
■ Cleanup

Summary

31

32

33

@property(readonly, nonatomic) CMAcceleration gravity;
@property(readonly, nonatomic) CMAcceleration userAcceleration;

// Units are G's
typedef struct {
double x;
double y;
double z;
} CMAcceleration;

+Y

-Y

+X
-Z

-X

+Z

34

static const double kFilterConst = 0.1;

// motionManager is an instance of CMMotionManager
CMAcceleration accel = motionManager.deviceMotion.userAcceleration;

// userAccel is an instance of CMAcceleration
userAccel.x = userAccel.x*(1.0 - kFilterConst) + accel.x* kFilterConst;
userAccel.y = userAccel.y*(1.0 - kFilterConst) + accel.y* kFilterConst;
userAccel.z = userAccel.z*(1.0 - kFilterConst) + accel.z* kFilterConst;

35

@property(readonly, nonatomic) CMRotationRate rotationRate;

// Units are radians/second
typedef struct {
double x;
double y;
double z;
} CMRotationRate;

36

37

• Orientation of the device in 3D
• Ways to express:

■ Rotation matrix
■ Quaternion
■ Euler angles (pitch, roll, yaw)

@property(readonly, nonatomic) CMAttitude *attitude;

38

• Chosen when your app starts
device motion updates

• Z axis is always vertical
■ Gravity is always [0, 0, -1]

• X and Y axes are both
orthogonal to gravity

Up = Z1 = Z2

Gravity

North
X1 X2

East
Y1

Y2

39

CMDeviceMotion *deviceMotion = motionManager.deviceMotion;

CMRotationMatrix R = deviceMotion.attitude.rotationMatrix;

CMAcceleration gravityReference = {0.0, 0.0, -1.0};

// gravityDevice == deviceMotion.gravity
gravityDevice = multiplyMatrixAndVector(R, gravityReference);

deviceMotion.gravity = R

40

• Why
■ Provide comfortable “resting” orientation

• How

-[CMAttitude multiplyByInverseOfAttitude:]

41

referenceAttitude = [motionManager.deviceMotion.attitude retain];

attitude = motionManager.deviceMotion.attitude;
[attitude multiplyByInverseOfAttitude: referenceAttitude];

Time

42

Patrick Piemonte
iPhone OS Software Engineer

43

44

45

46

• GPS aiding
• Compass aiding

47

• Games
■ Simulations
■ Racing games
■ Boxing/fighting games

• Augmented reality
• 3D visualization
• Much, much more!

48

Allan Schaffer
Graphics Evangelist
aschaffer@apple.com

Documentation
Event Handling Guide for iPhoneOS
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

49

Using Core Location in iOS 4 Presidio
Wednesday 10:15AM

Game Design and Development for iPhone OS, Part 1 (Repeat) Presidio
Friday 9:00AM

Game Design and Development for iPhone OS, Part 2 (Repeat) Presidio
Friday 10:15AM

Introducing Blocks and Grand Central Dispatch on iPhone Russian Hill
Wednesday 11:30AM

OpenGL ES Overview for iPhone OS Presidio
Wednesday 2:00PM

50

Core Motion Lab Graphics and Media Lab D
Thursday 11:30AM

Game Design for iPhone OS Lab Graphics and Media Lab A
Friday 11:30AM

OpenGL ES Lab Graphics and Media Lab A
Thursday 9:00AM

51

52

53

54

