¢

Core Animation in Practice
Part 2

John Harper




Goal of This Session

To dive deeper into Core Animation




What You'll Learn

* New and overlooked APIs
* Mental model of CA performance
* High-DPI details




Selected APIs




Drop Shadows

 Shadows provide crucial depth cues in 2D user interfaces
*iPhone OS 3.2 supports the full set of CALayer shadow APIs
* New API for more efficient shadows

- @property CGPathRef shadowPath
* Defines the opaque region of the layer
* Lets the compositor cache a shadow bitmap




Shadow Example

CALayer xsublayer = [CALayer layer];
sublayer.bounds = sublayer_bounds;
sublayer.backgroundColor = random_color();

sublayer.shadowOpacity = shadowsEnabled ? .5 : 0;
sublayer.shadowRadius = 10;
sublayer.shadowOffset = CGSizeMake(0, 10);

CGPathRef shadowPath
= [UIBezierPath bezierPathWithRect:sublayer_bounds]
sublayer.shadowPath = pathEnabled ? shadowPath : nil;




Shape Layers

* Most layers use bitmaps to provide their content

- Doesn't scale well, doesn’t animate well
* Use a CAShapelayer with path for scalable/animatable content
* Performance tradeoffs

- Uses little memory
- Uses more CPU to render
- No cost for transparent areas

* Best for a few large elements




Arrows Example

CGPathRef path@ = random_arrow();
CGPathRef pathl = random_arrow();

CGRect shape_bounds
= CGRectUnion(CGPathGetBoundingBox(patho),
CGPathGetBoundingBox(pathl));

CAShapelLayer xsublayer = [CAShapelLayer layer];
sublayer.fillColor = random_color();
sublayer.position = random_point(..);
sublayer.bounds = shape_bounds;




Arrows Example

CABasicAnimation *anim
= [CABasicAnimation animationWithKeyPath:@"path"];

anim.fromValue = (id)path®;
anim.toValue = (id)pathl;

anim.duration = random_float() * 3 + 1;
anim.timingFunction = [CAMediaTimingFunction
functionWithName: kCAMediaTimingFunctionEaseInEaseOut];
anim.autoreverses = YES;

anim. repeatCount = HUGE_VAL;

[sublayer addAnimation:anim forKey:nil];




Bitmap Caching

* Animated Uls on embedded devices can be challenging
 Can now request that a layer subtree is flattened to a bitmap
- layer.shouldRasterize = YES
* Bitmap version will be reused when possible
- May significantly improve performance




Bitmap Caching

Scale 2

hello, world

c Screen Buffer

Layer Tree




Bitmap Caching

Scale 2 he”O, world

Cache Buffer

shoulaRasterize=YES

&

Layer Tree

hello, world

Screen Buffer




Bitmap Caching

&

Scale V4 h€”0, world

Cache Buffer

&

hello, world

Layer Tree

Screen Buffer




Bitmap Caching Caveats

* Devices are memory-challenged, so cache space is limited

* Caching and not-reusing is more expensive than not caching
* Rasterizing locks the layer image to a particular size

» Rasterization occurs before the mask is applied




Cubic Keyframe Interpolation

* Keyframe animations move properties through
multiple points

* Smooth curves need timing functions or a path
*i0S 4 adds new calculation modes
- anim.calculationMode = kCAAnimationCubic
* Will interpolate continuously through all points
- Catmull-Rom spline, but you can customize this




Animation Functions

* Animating layer rotation has been problematic

- Using “transform” property—angle is modulo 360°
- Using “transform.rotation.z” property—Euler angle issues

* CAPropertyAnimation now has a valueFunction property
- Animated property is set to a function of the interpolated value
- layer.transform = makeRotationMatrix(t), where t € [0...2TT]




Animation Functions

CABasicAnimation *anim
= [CABasicAnimation animationWithKeyPath:@"transform"];

anim.fromValue = [NSNumber numberWithDouble:0];
anim.toValue = [NSNumber numberWithDouble:2xM _PI];

anim.valueFunction
= [CAValueFunction functionWithName:kCAValueFunctionRotateZ];

anim.duration = 2;
[layer addAnimation:anim forKey:nill];




Animation Completion

* Animations created explicitly can use a delegate
* Implicit animations can use a block

[CATransaction setCompletionBlock:”{
// block that runs when animations have completed
[CATransaction setDisableActions:YES];
[layer removeFromSuperlayer];

H;

layer.opacity = 0;
layer.position = CGPointMake (2000, layer.position.y);




Summary

* Use shadowPath for high-performance shadows
» Use CAShapelayer for scalable, animatable vector content
* Use shouldRasterize=YES for cached layers




Performance




How Do GPUs Work?

Primitive
Processing

Primitive
Assembly

Fragment
Shader

Stencil

Dither

, —



How Do GPUs Work?

* GPU converts triangles to pixels

- Each is filled with a color or image
» Each can “blend” over background

* Destination can also be an image




How Do We Use the GPU?

* CA translates your layers into triangles

- “backgroundColor”is two colored triangles
- “contents” is two triangles with an image

* Cached or masked layers draw offscreen
» Areas under opaque regions are ignored




GPU Performance Model

* What are the costs?

- How many destination pixels? —Write bandwidth
- How many source pixels? —Read bandwidth
- How many buffers?—Rendering passes

* Too much non-opaque content = limited by write bandwidth
* Too many large images = limited by read bandwidth
* Too many masked layers — limited by rendering passes







Write Bandwidth

* Minimize alpha-blended pixels
* Use “Color Blended Layers” option, or CA_COLOR_OPAQUE=1
* Ensure opaque CGlmageRef’s have no alpha channel

- Set “layer.opaque = YES” for layers that draw opaque content
* Cut layers with opaque regions into multiple sublayers




Read Bandwidth

* Use images that match screen resolution
- e.g., don't use 1024x768 image for 200x150 layer
* Use “Color Misaligned Images” option, or CA_COLOR_SUBPIXEL=T




Rendering Passes

* |deally one rendering pass per frame
» Complex compositing features often require multiple passes
- Masking, group opacity, filters
* Use “Color Offscreen” Instruments option, or CA_COLOR_OFFSCREEN=1
* Layer bitmap caching can hide extra passes
- Unless the cached subtree changes during the animation!




Summary

* Performance optimization algorithm

while (fps < 60)
- Eliminate rendering passes
- Reduce read bandwidth
- Reduce write bandwidth




High DPI




High DPI Content

=

| :Lorem ipsum
{ :dolor sit amet, :

.consectetur
‘adipiscing elit.:
‘Fusce ;
:aliquam tortor :
el .quis enim '

:auctor id

.ultricies nisl
.consequat.

€ )

Layer Tree




High DPI Content

Scale 2x

Lorem ipsum
dolor sit amet, .
consectetur
‘adipiscing elit.
Fusce gm

-aliquam tortor
quis enim '
‘auctor id
ultricies nisl
consequat.




Lorem ipsum |
dolor sit amet, |
consectetur
‘adipiscing elit.
Fusce am

allquam tortor .

Auis, enim
\auctor id
ultricies nisl

consequat.




Native Pixels

Scale 2x

320x480

Scale 14x

Lorem,

contentsScale=1 ipsum...

640x960




High DPl Summary

» 2x scale factor applied to your UIWindow

- All your view geometry remains relative to 320x480
- Use contentsScale=2 for screen-resolution content
- When rasterizing layers, layer.rasterizationScale=2
* To get back to the native 640x960 viewport
- Use a scale="2 matrix to cancel the implicit scale=2 matrix







Summary

* Use shadowPath whenever possible
* Use shouldRasterize whenever necessary
* Consider what your layers mean to the GPU




More Information

Allan Schaffer

Graphics and Game Technologies Evangelist
aschaffer@apple.com

Mailing List

quartz-dev@ lists.apple.com

Documentation
http://developer.apple.com/graphicsimaging/coreanimation/

Apple Developer Forums
http://devforums.apple.com




Related Sessions

Building Animation Driven Interfaces o

Core Animation in Practice, Part 1 ?ﬁmgy 11:30AM




Labs

Core Animation Lab

Graphics and Media Lab D
Thursday 3:15PM

Animation Lab

Application Frameworks Lab C
Thursday 4:30PM

Animation Lab

Application Frameworks Lab A
Friday 9:00AM




& WWDCI0









