
John Harper

Part 2

2

To dive deeper into Core Animation

3

• New and overlooked APIs
• Mental model of CA performance
• High-DPI details

4

5

• Shadows provide crucial depth cues in 2D user interfaces
• iPhone OS 3.2 supports the full set of CALayer shadow APIs
• New API for more efficient shadows

■ @property CGPathRef shadowPath

• Defines the opaque region of the layer
• Lets the compositor cache a shadow bitmap

6

CALayer *sublayer = [CALayer layer];
sublayer.bounds = sublayer_bounds;
sublayer.backgroundColor = random_color();

sublayer.shadowOpacity = shadowsEnabled ? .5 : 0;
sublayer.shadowRadius = 10;
sublayer.shadowOffset = CGSizeMake(0, 10);

CGPathRef shadowPath
 = [UIBezierPath bezierPathWithRect:sublayer_bounds].CGPath;
sublayer.shadowPath = pathEnabled ? shadowPath : nil;

7

• Most layers use bitmaps to provide their content
■ Doesn’t scale well, doesn’t animate well

• Use a CAShapeLayer with path for scalable/animatable content
• Performance tradeoffs

■ Uses little memory
■ Uses more CPU to render
■ No cost for transparent areas

• Best for a few large elements

8

CGPathRef path0 = random_arrow();
CGPathRef path1 = random_arrow();

CGRect shape_bounds
 = CGRectUnion(CGPathGetBoundingBox(path0),
 CGPathGetBoundingBox(path1));

CAShapeLayer *sublayer = [CAShapeLayer layer];
sublayer.fillColor = random_color();
sublayer.position = random_point(…);
sublayer.bounds = shape_bounds;

9

CABasicAnimation *anim
 = [CABasicAnimation animationWithKeyPath:@"path"];

anim.fromValue = (id)path0;
anim.toValue = (id)path1;

anim.duration = random_float() * 3 + 1;
anim.timingFunction = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
anim.autoreverses = YES;
anim.repeatCount = HUGE_VAL;

[sublayer addAnimation:anim forKey:nil];

10

• Animated UIs on embedded devices can be challenging
• Can now request that a layer subtree is flattened to a bitmap

■ layer.shouldRasterize = YES

• Bitmap version will be reused when possible
■ May significantly improve performance

11

12

shouldRasterize=YES

13

14

• Devices are memory-challenged, so cache space is limited
• Caching and not-reusing is more expensive than not caching
• Rasterizing locks the layer image to a particular size
• Rasterization occurs before the mask is applied

15

• Keyframe animations move properties through
multiple points

• Smooth curves need timing functions or a path
• iOS 4 adds new calculation modes

■ anim.calculationMode = kCAAnimationCubic

• Will interpolate continuously through all points
■ Catmull-Rom spline, but you can customize this

16

• Animating layer rotation has been problematic
■ Using “transform” property—angle is modulo 360°
■ Using “transform.rotation.z” property—Euler angle issues

• CAPropertyAnimation now has a valueFunction property
■ Animated property is set to a function of the interpolated value
■ layer.transform = makeRotationMatrix(t), where t ∈ [0…2]

17

CABasicAnimation *anim
 = [CABasicAnimation animationWithKeyPath:@"transform"];

anim.fromValue = [NSNumber numberWithDouble:0];
anim.toValue = [NSNumber numberWithDouble:2*M_PI];

anim.valueFunction
 = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];

anim.duration = 2;
[layer addAnimation:anim forKey:nil];

18

• Animations created explicitly can use a delegate
• Implicit animations can use a block

[CATransaction setCompletionBlock:^{
 // block that runs when animations have completed
 [CATransaction setDisableActions:YES];
 [layer removeFromSuperlayer];
}];

layer.opacity = 0;
layer.position = CGPointMake (2000, layer.position.y);

19

• Use shadowPath for high-performance shadows
• Use CAShapeLayer for scalable, animatable vector content
• Use shouldRasterize=YES for cached layers

20

21

22

• GPU converts triangles to pixels
■ Each is filled with a color or image
■ Each can “blend” over background

• Destination can also be an image

23

• CA translates your layers into triangles
■ “backgroundColor” is two colored triangles
■ “contents” is two triangles with an image

• Cached or masked layers draw offscreen
• Areas under opaque regions are ignored

24

• What are the costs?
■ How many destination pixels?—Write bandwidth
■ How many source pixels?—Read bandwidth
■ How many buffers?—Rendering passes

• Too many masked layers limited by rendering passes

• Too much non-opaque content limited by write bandwidth
• Too many large images limited by read bandwidth

25

26

• Minimize alpha-blended pixels
• Use “Color Blended Layers” option, or CA_COLOR_OPAQUE=1
• Ensure opaque CGImageRef’s have no alpha channel

■ Set “layer.opaque = YES” for layers that draw opaque content

• Cut layers with opaque regions into multiple sublayers

27

• Use images that match screen resolution
■ e.g., don’t use 1024x768 image for 200x150 layer

• Use “Color Misaligned Images” option, or CA_COLOR_SUBPIXEL=1

28

• Ideally one rendering pass per frame
• Complex compositing features often require multiple passes

■ Masking, group opacity, filters

• Use “Color Offscreen” Instruments option, or CA_COLOR_OFFSCREEN=1
• Layer bitmap caching can hide extra passes

■ Unless the cached subtree changes during the animation!

29

• Performance optimization algorithm

 while (fps < 60)
• Eliminate rendering passes
• Reduce read bandwidth
• Reduce write bandwidth

30

31

320

480

32

320640

480960

33

320

480

640

960

34

640

960

640x960

320x480

35

• 2x scale factor applied to your UIWindow
■ All your view geometry remains relative to 320x480
■ Use contentsScale=2 for screen-resolution content
■ When rasterizing layers, layer.rasterizationScale=2

• To get back to the native 640x960 viewport
■ Use a scale=½ matrix to cancel the implicit scale=2 matrix

36

37

• Use shadowPath whenever possible
• Use shouldRasterize whenever necessary
• Consider what your layers mean to the GPU

38

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Mailing List
quartz-dev@.lists.apple.com

Documentation
http://developer.apple.com/graphicsimaging/coreanimation/

Apple Developer Forums
http://devforums.apple.com

39

Building Animation Driven Interfaces Pacific Heights
Thursday 9:00AM

Core Animation in Practice, Part 1 Nob Hill
Thursday 11:30AM

40

Core Animation Lab Graphics and Media Lab D
Thursday 3:15PM

Animation Lab Application Frameworks Lab C
Thursday 4:30PM

Animation Lab Application Frameworks Lab A
Friday 9:00AM

41

42

43

