
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Your second-most important goal as a developer

Session 112

Writing Easy-To-Change Code

Ken Kocienda
Principal Engineer, iOS Apps and Frameworks

1

This is a talk about writing code

2

Easy to… read

… learn

… understand

… maintain

… change

3

Easy to change software

4

Your second-most important goal

5

What is your most important goal?

6

Ship products!

7

This is how we think at Apple

8

Over 30 iOS releases since 2007

9

Releases are complicated

Legal

Marketing

Bug fixes
New app features

Improving existing features

Changing priorities

Competition

Tight schedules

Too few people

Testing

New hardware

New OS features

Work with other companies

Too many people

App Store submission

10

Help you make change easier

11

You always change your software

12

What Kinds of Change?

• Bug fixes
• Adding new features
• Enhancing existing features
• Changing code someone else wrote
• Changing code you wrote six months ago

13

General conventions

14

Mac and iOS conventions

15

Things to think about
Topics

16

• Style
• Stories
• Laziness
• Hygiene
• Notifications

Topics

• Optimization
• Dependencies
• Mixing
• Expectations
• Wrap up

17

More than skin deep
Style

18

Coding conventions

19

Coding Conventions

• Brace style for if-else
• Parenthesis Style
• Leading underscores
• Code indenting
• CapitalizationStyle (i.e. capitalization_style)

20

Local consistency is important

21

The beginnings of style

22

Style goes deeper

23

“People think that I can teach
 them style. What stuff it all is! Have
something to say, and say it as

 clearly as you can. That is the only
secret of style.”
Matthew Arnold

24

Clarity

25

Clear writing is easier to understand

26

Clear code is easier to change

27

Elements of a clear coding style?

28

!

!

 Good names

 Common idioms

29

!

!

 Good names

 Common idioms

30

Good Names Are Descriptive

NSString *searchString = [self _searchString];
BOOL searchStringIsNotEmpty = [searchString length] != 0;

if (searchStringIsNotEmpty) {
 [self _findBanner]->findString(searchString,
 shouldBeep ? BeepOnFailure : DoNotBeepOnFailure);
}

31

Good Names Are Descriptive

NSString *searchString = [self _searchString];
BOOL searchStringIsNotEmpty = [searchString length] != 0;

if (searchStringIsNotEmpty) {
 [self _findBanner]->findString(searchString,
 shouldBeep ? YES : NO);
}

32

Descriptive Names
You can go overboard

@interface YesYouCanMakeNamesForClassesWhichAreTooLong
{
 id _aReallyVerboseNameJustToBePerfectlyClear;
}
@end

33

Bad Names? Boolean Arguments
Hard to know what they mean

[magnifier stopMagnifying:NO];

34

Bad Names? Boolean Arguments
Hard to know what they mean

- (void)stopMagnifying:(BOOL)animated;

35

Bad Names? Boolean Arguments
Hard to know what they mean

- (void)stopMagnifyingAnimated:(BOOL)animated;

36

Good names are descriptive

37

!

!

 Good names

 Common idioms

38

!

!

Good names

 Common idioms

39

Workhorse Lines of Code
Hard to know what they mean

[_rightView setAlpha:![[_temporary text] length] ? 1.0 : 0.0];

40

Count square brackets?

41

Workhorse Lines of Code
Hard to know what they mean

[_rightView setAlpha:![[_temporary text] length] ? 1.0 : 0.0];

42

Rewrite Workhorse Lines of Code
Be clear!

BOOL textIsEmpty = [_temporary.text length] == 0;
float alpha = textIsEmpty ? 1.0 : 0.0;
[_rightView setAlpha:alpha];

43

Read and understand quickly

44

Design patterns

45

Design Patterns
Very common patterns

• Singleton
• Observer
• Prototype
• Chain of responsibility
• Command

46

Design Patterns
Patterns used in Apple frameworks

• MVC
• Target-action
• Delegation
• Autorelease
• View controller

47

Idioms communicate at a high level

48

Shared vocabulary

49

!

!

Good names

Common idioms

50

More than skin deep
Style

51

Now I understand
Stories

52

Bug. Why?

53

Did not anticipate

Did not understand

54

Debug

55

“Everyone knows that debugging is
twice as hard as writing a program in
the first place. So if you are as clever

 as you can be when you write it, how
will you ever debug it?”
Brian Kernighan

56

Step 1: Debugger

57

What are you really looking for?

58

Step 1: Debugger
Think

59

How could this bug happen?

60

“The most effective debugging tool is
still careful thought, coupled with
judiciously placed print statements.”

Brian Kernighan

61

Debugging is understanding

62

Debugging is not jiggling code

63

-performSelector:withObject:afterDelay:

Rarely right!

64

Why?

[self foo];
[self bar];

65

Each bug fix should tell a story

66

Investigate. Eureka!

Tell someone before you code the fix

67

Tell the story during code review

68

Write the story into your bug tracker

69

Anticipate more

Understand better

70

Now I understand
Stories

71

Wake me when it is over
Laziness

72

Lazy initialization

73

It is good

74

It is not magic

75

Singleton Objects
Lazy initialization is common

FooController *controller = [FooController sharedInstance];

76

Singleton Objects
Lazy initialization is common

@implementation FooController

+ (FooController *)sharedInstance
{
 static dispatch_once_t once;
 static FooController *instance;
 dispatch_once(&once, ^{
 instance = [[FooController alloc] init];
 });
 return instance;
}

@end

77

Singleton Objects
Lazy initialization is common

@implementation FooController (Continued)

- (id)init
{
 ...

 BarController *barController = [BarController
 sharedInstance];
 ...
}

@end

78

Singleton Objects
Lazy initialization is common

@implementation BarController

- (id)init
{
 ...

 FooController *fooController = [FooController
 sharedInstance];
 ...
}

@end

79

Init storm

80

Several problems

81

Long pause

82

Order of initialization

83

Singleton Objects
How many do you have?

@implementation FooController

+ (FooController *)sharedInstance
{
 static dispatch_once_t once;
 static FooController *instance;
 dispatch_once(&once, ^{
 instance = [[FooController alloc] init];
 });
 return instance;
}

@end

84

Singleton Objects
How many do you have?

@implementation FooController

+ (FooController *)sharedInstance
{
 static FooController *instance;
 if (!instance)
 instance = [[FooController alloc] init];
 return instance;
}

@end

85

Multiple instantiation of singleton

86

Mess

87

Think through lazy initialization

88

No silver bullets

89

Lightweight alloc at program start

Better singleton decomposition

90

Alternative accessor patterns

91

Alternative Accessor Patterns
Create or not?

@interface FooController

+ (FooController *)sharedInstance; // will create
+ (FooController *)activeInstance; // won’t create
+ (FooController *)sharedInstance
 createIfNeeded:(BOOL)createIfNeeded;

@end

92

Wake me when it is over
Laziness

93

You make the mess… you clean it up!
Hygiene

94

Good hygiene takes effort

95

“The best writing is rewriting.”

E.B. White

96

Do not throw away code

97

Conflict?

98

Changes are part of a process

99

Your top priority should be to ship

100

Do not rewrite… refactor

101

Refactoring

Keep functionality, but change form

102

What about cruft?

103

Cruft is not…

…code you do not understand

…code you did not write

…code you do not like

104

What is genuine cruft?

105

What Is Genuine Cruft?

• Dead code
• Comments which no longer apply
• There is no number three

106

Use compiler for dead code checks

107

Delete or check old comments

108

Accumulated knowledge

109

Size of change is important

110

Small: clean up as you go

111

Medium: need coordination

112

Large: need real planning

113

Beware of regressions

114

Test!

115

You make the mess… you clean it up!
Hygiene

116

Open the window and holler!
Notifications

117

goto

118

Notifications are a glorified goto

119

You do not even say where to go!

120

You can go to more than one place!

121

Frustrate code inspection

You can not see what code will run

122

Non-deterministic behavior

Callbacks are unordered

123

Notifications can complicate change

124

Not all bad

125

Notifications promote loose coupling

126

Model/View/Controller (MVC)

CoreData

127

will/did

128

You should know about endpoints

129

Think twice about other uses

130

Code can be too loosely coupled

131

Consider protocols or delegates

132

goto NextTopic;

133

The 3% solution
Optimization

134

“We should forget about small
efficiencies, say about 97% of the time:
premature optimization is

 the root of all evil.”

Donald Knuth

…97% of the time…

135

…97% of the time…

100% - 97% = 3%

136

Which 3% to worry about?

137

Things Which Can Be Slow

• Memory allocation
• View creation
• Drawing
• Questionable algorithms
• Questionable data structures
• I/O
• Blocking on information
• Unnecessary work
• New work you just added

138

Optimize when you have measured

139

Use Instruments

140

Optimize when you understand

141

Optimize code with clearest role

142

Optimize slowest and oldest 3%

143

Keep new code easiest to change

144

Trades are OK!

Never make the program slower

145

Change, test, measure, optimize

146

The 3% solution
Optimization

147

“Don’t call us… we’ll call you”
Dependencies

148

Implications of change

149

Limit collateral damage

150

!

!

 Inheritance trees

 Call graphs

151

!

!

 Inheritance trees

 Call graphs

152

Shallow is better

153

Avoid layers of overridden methods

154

Use delegation

155

Delegation

• Customize by calling another object
• Keeps conceptual overhead small
• Vary customization at runtime as needed

156

!

!

Inheritance trees

 Call graphs

157

Smaller is better

158

Limit includes

159

You get faster compile times

160

Strive for unidirectional calling

161

Bidirectional Call Graph
We are all friends here

Foo
@interface {
 Bar *_b;
}
- (void)foo;
@end

@implementation
[_b bar];
@end

Bar
@interface {
 Foo *_f;
}
- (void)bar;
@end

@implementation
[_f foo];
@end

162

Bidirectional Call Graph
We are all friends here

Foo
@interface {
 Bar *_b;
}
- (void)foo:(id)arg;
@end

@implementation
[_b bar];
@end

Bar
@interface {
 Foo *_f;
}
- (void)bar;
@end

@implementation
[_f foo];
@end

163

Bidirectional Call Graph
We are all friends here

Foo
@interface {
 Bar *_b;
}
- (void)foo:(id)arg;
@end

@implementation
[_b bar];
@end

Bar
@interface {
 Foo *_f;
}
- (void)bar;
@end

@implementation
[_f foo:arg];
@end

164

Unidirectional Call Graph
Rethink relationship

Master
@interface {
 Slave *_s;
}
- (void)changed;
@end

@implementation
[_s update:arg];
@end

Slave
@interface {

}
- (void)update:(id)arg;
@end

@implementation

@end

165

Unidirectional Call Graph
Rethink relationship

Master
@interface {
 Slave *_s;
}
- (void)dataReceived;
- (void)processData;
@end

@implementation
[_s update:arg];
@end

Slave
@interface {

}
- (void)update:(id)arg;
@end

@implementation

@end

166

!

!

Inheritance trees

Call graphs

167

“Don’t call us… we’ll call you”
Dependencies

168

Purity of essence (OPE)
Mixing

169

Model/View/Controller (MVC)

170

Do not mix model and view changes

171

Do not mix different things

172

Computation and I/O

173

Algorithms and data sources

174

UI and a specific screen resolution

175

UX and an interface paradigm

176

Conflicted About Animation Arguments
Is this mixing too much?

- (void)setEditing:(BOOL)editing animated:(BOOL)animated;

177

Hard-code animations?

178

Multitasking gestures

179

We change how the system works

180

App launch without animating… hard

181

Do not mix different things

182

Purity of essence (OPE)
Mixing

183

How do I work this thing?
Expectations

184

Bugs are often disappointments

185

I expected A, you did B

186

“Be conservative in what you send;
 be liberal in what you accept.”

Jon Postel

187

Hard to use wrong

188

Method arguments

Assertions and early returns

189

Assertions
This will never work

// UIActionSheet.m

- (void)showInView:(UIView *)view
{
 NSParameterAssert(view != nil);

 ...
}

190

Early Returns
The method will not run right now

- (void)beginWork
{
 if (AlreadyBusy())
 return;
 ...
}

191

What about ivars?

192

Global variables are bad, right?

193

Scope is too broad

194

ivar scope also can be too broad

195

Rules of Thumb for ivars

• As few as possible
• Simple life-cycles
• Avoid tight relationships
• Avoid letting non-setter methods change ivars

196

Hard to manage ivar state?

197

Use a state machine

198

UIGestureRecognizers

199

Multitasking gestures

200

State Machines
How do they help?

• States help to think things through
• States help to limit possibilities
• States help to make assertions
• Need to add a feature?

■ Add a state
■ Handle the transitions

201

Hard to use wrong

202

How do I work this thing?
Expectations

203

Ten things to think about
Wrap Up

204

Easy To Change Code
Ten things to think about

1. Write clear code
2. Bug fixes should tell a story
3. Keep control of lazy initialization
4. Refactor instead of rewriting
5. Use notifications for the right things

205

Easy To Change Code, (Cont.)
Ten things to think about

6. Keep new code easy to change
7. Optimize slowest and oldest code
8. Limit dependencies
9. Do not mix different things
10. Make code that is hard to use wrong

206

207

