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This is a talk about writing code
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Easy to… read

… learn

… understand

… maintain

… change
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Easy to change software
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Your second-most important goal
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What is your most important goal?
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Ship products!
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This is how we think at Apple

8



Over 30 iOS releases since 2007
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Releases are complicated

Legal

Marketing

Bug fixes
New app features

Improving existing features

Changing priorities

Competition

Tight schedules

Too few people

Testing

New hardware

New OS features

Work with other companies

Too many people

App Store submission
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Help you make change easier
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You always change your software
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What Kinds of Change?

•  Bug fixes
•  Adding new features
•  Enhancing existing features
•  Changing code someone else wrote
•  Changing code you wrote six months ago
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General conventions
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Mac and iOS conventions
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Things to think about
Topics
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• Style
• Stories
• Laziness
• Hygiene
• Notifications

Topics

• Optimization
• Dependencies
• Mixing
• Expectations
• Wrap up
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More than skin deep
Style
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Coding conventions
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Coding Conventions

• Brace style for if-else
• Parenthesis Style
• Leading underscores
• Code indenting
• CapitalizationStyle (i.e. capitalization_style)
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Local consistency is important
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The beginnings of style
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Style goes deeper
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“People think that I can teach 
 them style. What stuff it all is! Have 
something to say, and say it as 

 clearly as you can. That is the only 
secret of style.”
Matthew Arnold
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Clarity
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Clear writing is easier to understand
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Clear code is easier to change
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Elements of a clear coding style?
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!

!

 Good names

 Common idioms
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!

!

 Good names

 Common idioms
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Good Names Are Descriptive

NSString *searchString = [self _searchString];
BOOL searchStringIsNotEmpty = [searchString length] != 0;

if (searchStringIsNotEmpty) {
    [self _findBanner]->findString(searchString, 
        shouldBeep ? BeepOnFailure : DoNotBeepOnFailure);
}
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Good Names Are Descriptive

NSString *searchString = [self _searchString];
BOOL searchStringIsNotEmpty = [searchString length] != 0;

if (searchStringIsNotEmpty) {
    [self _findBanner]->findString(searchString, 
        shouldBeep ? YES : NO);
}

32



Descriptive Names
You can go overboard

@interface YesYouCanMakeNamesForClassesWhichAreTooLong
{
    id _aReallyVerboseNameJustToBePerfectlyClear;
}
@end
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Bad Names? Boolean Arguments
Hard to know what they mean

[magnifier stopMagnifying:NO];
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Bad Names? Boolean Arguments
Hard to know what they mean

- (void)stopMagnifying:(BOOL)animated;
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Bad Names? Boolean Arguments
Hard to know what they mean

- (void)stopMagnifyingAnimated:(BOOL)animated;
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Good names are descriptive
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!

!

 Good names

 Common idioms
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!

!

Good names

 Common idioms
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Workhorse Lines of Code
Hard to know what they mean

[_rightView setAlpha:![[_temporary text] length] ? 1.0 : 0.0];
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Count square brackets?
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Workhorse Lines of Code
Hard to know what they mean

[_rightView setAlpha:![[_temporary text] length] ? 1.0 : 0.0];
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Rewrite Workhorse Lines of Code
Be clear!

BOOL textIsEmpty = [_temporary.text length] == 0;
float alpha = textIsEmpty ? 1.0 : 0.0;
[_rightView setAlpha:alpha];
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Read and understand quickly
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Design patterns

45



Design Patterns
Very common patterns

• Singleton
• Observer
• Prototype
• Chain of responsibility
• Command
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Design Patterns
Patterns used in Apple frameworks

• MVC
• Target-action
• Delegation
• Autorelease
• View controller
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Idioms communicate at a high level
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Shared vocabulary
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!

Good names

Common idioms
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More than skin deep
Style
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Now I understand
Stories
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Bug. Why?
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Did not anticipate

Did not understand
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Debug
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“Everyone knows that debugging is 
twice as hard as writing a program in 
the first place. So if you are as clever 

 as you can be when you write it, how 
will you ever debug it?”
Brian Kernighan
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Step 1: Debugger
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What are you really looking for?
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Step 1: Debugger
Think
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How could this bug happen?
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“The most effective debugging tool is 
still careful thought, coupled with 
judiciously placed print statements.”

Brian Kernighan
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Debugging is understanding
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Debugging is not jiggling code
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-performSelector:withObject:afterDelay:

Rarely right!

64



Why?

[self foo];
[self bar];
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Each bug fix should tell a story
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Investigate. Eureka!

Tell someone before you code the fix
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Tell the story during code review
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Write the story into your bug tracker
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Anticipate more

Understand better

70



Now I understand
Stories
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Wake me when it is over
Laziness
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Lazy initialization
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It is good
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It is not magic
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Singleton Objects
Lazy initialization is common

FooController *controller = [FooController sharedInstance];
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Singleton Objects
Lazy initialization is common

@implementation FooController

+ (FooController *)sharedInstance
{
    static dispatch_once_t once;
    static FooController *instance;
    dispatch_once(&once, ^{
        instance = [[FooController alloc] init];
    });
    return instance;
}

@end
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Singleton Objects
Lazy initialization is common

@implementation FooController (Continued)

- (id)init
{
   ...

    BarController *barController = [BarController    
      sharedInstance];   
    ...
}

@end
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Singleton Objects
Lazy initialization is common

@implementation BarController

- (id)init
{
   ...

    FooController *fooController = [FooController    
      sharedInstance];   
    ...
}

@end
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Init storm
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Several problems
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Long pause
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Order of initialization
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Singleton Objects
How many do you have?

@implementation FooController

+ (FooController *)sharedInstance
{
    static dispatch_once_t once;
    static FooController *instance;
    dispatch_once(&once, ^{
        instance = [[FooController alloc] init];
    });
    return instance;
}

@end
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Singleton Objects
How many do you have?

@implementation FooController

+ (FooController *)sharedInstance
{
    static FooController *instance;
    if (!instance)
       instance = [[FooController alloc] init];
    return instance;
}

@end
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Multiple instantiation of singleton
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Mess
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Think through lazy initialization
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No silver bullets
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Lightweight alloc at program start

Better singleton decomposition
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Alternative accessor patterns
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Alternative Accessor Patterns
Create or not?

@interface FooController

+ (FooController *)sharedInstance; // will create
+ (FooController *)activeInstance; // won’t create
+ (FooController *)sharedInstance
     createIfNeeded:(BOOL)createIfNeeded; 

@end
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Wake me when it is over
Laziness
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You make the mess… you clean it up!
Hygiene
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Good hygiene takes effort
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“The best writing is rewriting.”

E.B. White
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Do not throw away code
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Conflict?
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Changes are part of a process
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Your top priority should be to ship
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Do not rewrite… refactor
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Refactoring

Keep functionality, but change form
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What about cruft?
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Cruft is not…

…code you do not understand

…code you did not write

…code you do not like
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What is genuine cruft?
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What Is Genuine Cruft?

• Dead code
• Comments which no longer apply
• There is no number three
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Use compiler for dead code checks
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Delete or check old comments
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Accumulated knowledge
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Size of change is important
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Small: clean up as you go
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Medium: need coordination
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Large: need real planning
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Beware of regressions
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Test!
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You make the mess… you clean it up!
Hygiene
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Open the window and holler!
Notifications
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goto
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Notifications are a glorified goto
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You do not even say where to go!
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You can go to more than one place!
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Frustrate code inspection

You can not see what code will run
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Non-deterministic behavior

Callbacks are unordered
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Notifications can complicate change
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Not all bad
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Notifications promote loose coupling
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Model/View/Controller (MVC)

CoreData
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will/did

128



You should know about endpoints
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Think twice about other uses
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Code can be too loosely coupled
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Consider protocols or delegates

132



goto NextTopic;
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The 3% solution
Optimization
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“We should forget about small 
efficiencies, say about 97% of the time: 
premature optimization is 

 the root of all evil.”

Donald Knuth

…97% of the time…
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…97% of the time…

100% - 97% = 3%
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Which 3% to worry about?
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Things Which Can Be Slow

• Memory allocation
• View creation
• Drawing
• Questionable algorithms
• Questionable data structures
• I/O
• Blocking on information
• Unnecessary work
• New work you just added
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Optimize when you have measured
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Use Instruments
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Optimize when you understand
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Optimize code with clearest role
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Optimize slowest and oldest 3%
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Keep new code easiest to change
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Trades are OK!

Never make the program slower
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Change, test, measure, optimize
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The 3% solution
Optimization
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“Don’t call us… we’ll call you”
Dependencies
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Implications of change
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Limit collateral damage
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!

!

 Inheritance trees

 Call graphs
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!

!

 Inheritance trees

 Call graphs
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Shallow is better
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Avoid layers of overridden methods
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Use delegation
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Delegation

• Customize by calling another object
• Keeps conceptual overhead small
• Vary customization at runtime as needed
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!

!

Inheritance trees

 Call graphs
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Smaller is better
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Limit includes

159



You get faster compile times
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Strive for unidirectional calling
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Bidirectional Call Graph
We are all friends here

Foo
@interface {
    Bar *_b;
}
- (void)foo;
@end

@implementation
[_b bar];
@end

Bar
@interface {
    Foo *_f;
}
- (void)bar;
@end

@implementation
[_f foo];
@end
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Bidirectional Call Graph
We are all friends here

Foo
@interface {
    Bar *_b;
}
- (void)foo:(id)arg;
@end

@implementation
[_b bar];
@end

Bar
@interface {
    Foo *_f;
}
- (void)bar;
@end

@implementation
[_f foo];
@end
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Bidirectional Call Graph
We are all friends here

Foo
@interface {
    Bar *_b;
}
- (void)foo:(id)arg;
@end

@implementation
[_b bar];
@end

Bar
@interface {
    Foo *_f;
}
- (void)bar;
@end

@implementation
[_f foo:arg];
@end
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Unidirectional Call Graph
Rethink relationship

Master
@interface {
    Slave *_s;
}
- (void)changed;
@end

@implementation
[_s update:arg];
@end

Slave
@interface {

}
- (void)update:(id)arg;
@end

@implementation

@end
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Unidirectional Call Graph
Rethink relationship

Master
@interface {
    Slave *_s;
}
- (void)dataReceived;
- (void)processData;
@end

@implementation
[_s update:arg];
@end

Slave
@interface {

}
- (void)update:(id)arg;
@end

@implementation

@end
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Inheritance trees

Call graphs
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“Don’t call us… we’ll call you”
Dependencies

168



Purity of essence (OPE)
Mixing
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Model/View/Controller (MVC)
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Do not mix model and view changes
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Do not mix different things

172



Computation and I/O

173



Algorithms and data sources

174



UI and a specific screen resolution

175



UX and an interface paradigm
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Conflicted About Animation Arguments
Is this mixing too much?

- (void)setEditing:(BOOL)editing animated:(BOOL)animated;
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Hard-code animations?

178



Multitasking gestures
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We change how the system works

180



App launch without animating… hard

181



Do not mix different things
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Purity of essence (OPE)
Mixing
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How do I work this thing?
Expectations
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Bugs are often disappointments
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I expected A, you did B

186



“Be conservative in what you send; 
 be liberal in what you accept.”

Jon Postel
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Hard to use wrong

188



Method arguments

Assertions and early returns
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Assertions
This will never work

// UIActionSheet.m

- (void)showInView:(UIView *)view
{
    NSParameterAssert(view != nil);
    
    ...
}
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Early Returns
The method will not run right now

- (void)beginWork
{
    if (AlreadyBusy())
        return;
    ...
}
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What about ivars?

192



Global variables are bad, right?
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Scope is too broad

194



ivar scope also can be too broad
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Rules of Thumb for ivars

• As few as possible
• Simple life-cycles
• Avoid tight relationships
• Avoid letting non-setter methods change ivars
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Hard to manage ivar state?
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Use a state machine

198



UIGestureRecognizers

199



Multitasking gestures
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State Machines
How do they help?

• States help to think things through
• States help to limit possibilities
• States help to make assertions
• Need to add a feature?

■ Add a state
■ Handle the transitions
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Hard to use wrong

202



How do I work this thing?
Expectations

203



Ten things to think about
Wrap Up
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Easy To Change Code
Ten things to think about

1. Write clear code
2. Bug fixes should tell a story
3. Keep control of lazy initialization
4. Refactor instead of rewriting
5. Use notifications for the right things
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Easy To Change Code, (Cont.)
Ten things to think about

6. Keep new code easy to change
7. Optimize slowest and oldest code
8. Limit dependencies
9. Do not mix different things
10. Make code that is hard to use wrong
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