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What We Will Cover

• Review calendars and calendrical calculations
• Introduce the APIs related to calendars, dates, and times
• Discuss troublesome calendrical issues
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Labeling Time

• Time is a continuum
• People need to describe time

■ When events occurred
■ Amounts of time

• What to do?
■ Could count days
■ Today is “Day #410957”
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Calendar Components

• Human inventions to describe event times
■ Count recurrences various natural cycles
■ Group and decompose them into smaller, human-tractable quantities

■ We will call these counters “units” and “components”

• Unit of “day” is too granular, so it is decomposed (hours, minutes, …)
• But “day” also too fine-grained, so we have years and months

■ “8 June, 2011” is easier to deal with than “Day #410957”
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Different Calendars

• Many different calendars evolved over the millennia
• Gregorian, Islamic, Japanese, Hebrew, Chinese, Indian, …

■ Gregorian calendar is the calendar used in Europe, 
North and South America, and many other parts of the world

• Each has unique ways of counting and grouping 
and describing eras, years, months, and days
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Calendrical Calculations

• Arithmetic-like operations on calendar components
■ What day is 90 days from today?
■ How many weeks until my next birthday?

• Conversions between calendars
• Calendrical calculations are subtle
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Example: Add One Month to a Date

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

February

9 January + 1 month = 9 February
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30 January + 1 month = 28 February

When Best Result Does Not Exist

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

February
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Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

February

Add Another Month

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

March

28 February + 1 month = 28 March
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30 January + 2 months = 30 March

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

March

Or Instead, Add Two Months

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January
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So…

• 30 January + 1 month + 1 month = 28 March
• 30 January + 2 months = 30 March
• Calendrical calculations are subtle
• Generally, smaller components are preserved
• Do not do calendrical calculations yourself!
• But how you use the operations also matters…
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Calendar and Time APIs
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Cocoa APIs

• NSTimeInterval
• NSDate
• NSCalendar
• NSDateComponents
• NSTimeZone
• NSDateFormatter
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Calendar-Independent Time Scale

• Seconds since the reference date
■ NSTimeInterval
■ A floating-point number of seconds after the reference date, 
in the reference time zone (GMT/UTC)

• Value is currently about +329 million (seconds)

+– 0

14



Reference Date

Gregorian   1 January 2001  00:00:00 GMT

Islamic 7 Shawwal 1421  00:00:00 GMT

Japanese 1 January 平成13  00:00:00 GMT

Hebrew 6 Tevet 5761  00:00:00 GMT

Republic of China 1 January 90  00:00:00 GMT

Indian 11 Pausa 1922  00:00:00 GMT
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NSDate

• Object which contains a NSTimeInterval
■ The number of seconds after the reference date in GMT

• No associated calendar
• Time zone is GMT
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NSCalendar

• Represents calendars
• Knows about the “arithmetic” properties of calendars

■ How many months are in a year
■ How many hours are in a day
■ How NSTimeIntervals map to and from calendar dates

• Know how to do calendrical calculations
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NSDateComponents

• Object containing a set of calendar components
• Component values are signed integers
• Can be used to hold a set of absolute or relative components

■ Absolute: exact values
■ Relative: amounts

• Example: hour value “4” and minute “15” could mean:
■ Absolute: 4:15 (am)
■ Relative: 4 hours and 15 minutes
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NSTimeZone

• Represents a time zone
■ A geopolitical region which defines a set of rules for how local time 
is calculated from the reference time zone (GMT/UTC)

• Hours and minutes offset from GMT
• Knows when “Daylight Saving Time” or “Summer Time” occur

■ A transition to a different offset from GMT

• Governments change the rules of their time zones from time to time
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Calendrical Calculations
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Common NSCalendar Operations

• components:fromDate:
• dateFromComponents:
• dateByAddingComponents:toDate:options:
• components:fromDate:toDate:options:
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Causes of Trouble

• Calendar irregularities
• Ambiguities in a set of components

■ Nonexistent dates
■ Multiple matching dates
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Irregularities

• Leap day in Gregorian calendar
■ 29 February

• Time zone transitions
■ Forward transitions cause an hour skip
■ Backward cause an hour to occur twice

• Dateline transitions
■ Samoa will skip 30 December, 2011
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Hebrew Calendar

• Some months sometimes have 29 days, other years 30 
• Year has either 12 or 13 months
• Months are numbered: 1, 2, 3, 4, 5, 6, (7), 8, 9, 10, 11, 12, 13

■ (7) is leap month
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Japanese Imperial Eras

• Calendar same as Gregorian, except for year numbering
• Years are numbered from the start of the emperor’s reign

■ 31 December, Showa 63
■ 1 January, Showa 64
■ …
■ 7 January, Showa 64
■ 8 January, Heisei 1

• So, year number may change in the middle of a year
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Example: Advancing by Days

• Given a starting date
• While some condition remains true 

■ Perform some operation
■ Advance to the next day, at the same time
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Advancing by Days

NSDate *date = [NSDate dateWithString:@”2011-01-01 00:00:00 +0000”];

while (... condition ...) {

    // perform operation

    ....

    date = ... advance date to next day midnight ...

}
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86400
(number of seconds in a day)
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Attempt #1: Add 86400 seconds

NSDate *date = [NSDate dateWithString:@”2011-01-01 00:00:00 +0000”];

while (... condition ...) {

    // perform operation

    ....

    date = [date dateByAddingTimeInterval: 86400];

}
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Attempt #1: Add 86400 seconds

• 1 January 00:00:00 + 86400 seconds = 2 January 00:00:00
• 2 January 00:00:00 + 86400 seconds = 3 January 00:00:00
• …

• 13 March 00:00:00 + 86400 seconds = 14 March 01:00:00  (2011, in U.S.)

• 14 March 01:00:00 + 86400 seconds = 15 March 01:00:00
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Attempt #2: Add 1 Day

NSCalendar *calendar = ...

// create an NSDateComponents with “1 day”:

NSDateComponents *dc = [[NSDateComponents new] autorelease];

[dc setDay: 1];

NSDate *date = ...

while (... condition ...) {

   // perform operation

   date = [calendar dateByAddingComponents:dc toDate:date options:0];

}
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Attempt #2: Add 1 Day

• 1 January 00:00:00 + 1 day = 2 January 00:00:00
• 2 January 00:00:00 + 1 day = 3 January 00:00:00
• …

• 13 March 00:00:00 + 1 day = 14 March 00:00:00  (2011, in U.S.)

• 14 March 00:00:00 + 1 day = 15 March 00:00:00
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Causes of Trouble

• Calendar irregularities
• Ambiguities in a set of components

■ Nonexistent dates
■ Multiple matching dates
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Ambiguities

• A set of components can be ambiguous
• A date with those components may not exist

■ 37 June, in Gregorian calendar
■ 29 February, most years

• Multiple possible dates may exist
■ Tuesday at 16:00
■ Hour repeated during summer time back to standard time transition
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Nonexistent Dates

• Nominal result date of arithmetic may not exist
• Time zone DST forward transitions

■ 01:59:59 + 1 second = 03:00:00 (in U.S.)

• <day before transition> 02:20 + 1 day = <day of transition> ???:20
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Return to Advancing-by-Days Example

• In Brazil, time zone transitions occur at “midnight”:  23:59:59 -> 01:00:00

• <day before transition> 00:00 + 1 day = <day of transition> ???:00
• Loop continues…

• <day of transition> ???:00 + 1 day = <day after transition> ???:00
• … Just like when we added 1 month to 30 January, then again
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Attempt #3

• Previous: add 1 day to the current working date to get next date
• Instead: add an increasing number of days to the original date
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Attempt #3: Add Increasing Number of Days

NSCalendar *cal = ...;  NSDate *original = ...;

NSDateComponents *dc = [[NSDateComponents new] autorelease];

NSInteger numDays = 0;

NSDate *date = original;

while (... condition ...) {

   // perform operation

   numDays++;

   [dc setDay:numDays];

   date = [cal dateByAddingComponents:dc toDate:original options:0];

}
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New Result in Brazil

• <original> 00:00 + N days = <day before transition> 00:00

• <original> 00:00 + (N+1) days = <day of transition> ???:00

• <original> 00:00 + (N+2) days = <day after transition> 00:00
• … Just like when we added 2 months to 30 January
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Sidebar: Avoid Stressing Boundaries

• Midnight; end of the year; the year 1
• Problematic: Brazilian time zone transition at midnight

■ Other countries transition at 1 am or 2 am
■ Better: use noon instead of midnight as "don’t care" time

• Better: Samoan time zone change NOT skipping 31 December
• Problematic: using NSDate objects to represent “just a time”

■ Developer uses year 1, month 1, day 1, plus desired time
■ Better: use the date of time interval 0.0, + time
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Week-based Calendars
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Week-based Calendars

• Week: a cyclic period of 7 days (weekdays)
• Any calendar can be interpreted in a week-based fashion
• Can be convenient when doing calculations with weeks and weekdays
• How can you specify a given day?

■ {Year, Day # within year}:  {2011, 159}
■ {Year, Month, Day # within month}: {2011, 6, 8}
■ {Week-based Year, Week # within year, Weekday}: {2011, 23, Wednesday}
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Week-based Calendars Defined

• A week-based calendar has an integral number of weeks
• Two properties define a week-based calendar

■ The weekday which is the beginning of the week (and year)
■ Minimum number of days a straddling week needs in the new year
to be considered the first week of that new year

• ISO 8601 defines a week-based calendar
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Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14
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Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14
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Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14
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Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14
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Week-based Calendar Trouble

• Year number for days in a week-based calendar interpretation 
may not be same as for ordinary calendar 

• Must not mix ordinary year number with week-based components
• Nor week-based year number with ordinary components
• Can cause ambiguity

■ There is no 2 January in “2011” (ISO 8601)
■ 2 January 2011 (ordinary year) is {2010, 52, 7}
■ “2 January 2011” (week-based) is {2012, 1, 1}
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New NSCalendar API

• NSYearCalendarUnit constant specifies ordinary calendar year
• New component types in Mac OS X 10.7 and iOS 5.0

■ NSWeekOfYearCalendarUnit
■ NSWeekOfMonthCalendarUnit
■ NSYearForWeekOfYearCalendarUnit
■ Use of NSWeekCalendarUnit discouraged
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Date Formatting and Parsing
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NSDateFormatter

• An object to convert dates to strings and strings to dates, 
in a locale-sensitive way
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Date Formatting Gotcha #1

• Suppose a developer writes this code in 2010:
NSDateFormatter *df = [NSDateFormatter new];

... other configuration ...

[df setDateFormat:@”YYYY-MM-dd”]; // want strings like “2011-01-01”

• This code appears to work
• But for 1 January 2011, yields “2010-01-01”
• “YYYY” is week-based calendar year
• “yyyy” is ordinary calendar year
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Date Formatting Gotcha #2

[df setDateFormat:@”yyyy-MM-dd HH:mm:ss”]; // hour: “00” - “23”

• For 1 January, 2011, 2pm, this yields one of:
■ “2011-01-01 14:00:00”
■ “2011-01-01 02:00:00 pm”

• For parsing, first string will succeed for some users, fails for others
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Date Formatting Gotcha #2

• Date formatters start with the current 
user locale

• Some user preferences override even 
a specifically set format pattern 

• 24-hour clock setting overrides set 
format pattern

• So “hour” result depends on user’s setting:
■ “2011-01-01 14:00:00”
■ “2011-01-01 02:00:00 pm”
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Date Formatting Gotcha #2

• For cases where the current user locale should not be used, 
the locale needs to be set on the date formatter

• For “internet” date strings, “en_US_POSIX” locale often works well
NSLocale *locale;

locale = [[NSLocale alloc] initWithLocaleIdentifier:@”en_US_POSIX”];

[df setLocale: locale];

[locale release];
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Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Documentation
Mac OS X and iOS Foundation
http://developer.apple.com/cocoa

Apple Developer Forums
http://devforums.apple.com

More Information
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 Cocoa, Autosave, File Coordination and Resume Lab Application Frameworks Lab A
Thursday 2:00-4:00PM

Labs
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Take-Away Points

• Use the system calculation algorithms
• Care must be taken when using them
• Avoid boundary conditions
• Try to imagine interesting boundary cases for testing
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