Performing Calendar Calculations

Session 117

Chris Kane
Software Engineer

These are confidential sessions—please refrain from streaming, blogging, or taking pictures




What We Will Cover

* Review calendars and calendrical calculations
* Introduce the APIs related to calendars, dates, and times
* Discuss troublesome calendrical issues




Labeling Time

* Time is a continuum

* People need to describe time
- When events occurred
- Amounts of time

* What to do?

- Could count days
- Today is “Day #410957"




Calendar Components

* Human inventions to describe event times

= Count recurrences various natural cycles

- Group and decompose them into smaller, human-tractable quantities
- We will call these counters “units” and “components”

* Unit of “day” is too granular, so it is decomposed (hours, minutes, ...)
* But “day” also too fine-grained, so we have years and months
- “8 June, 2011" is easier to deal with than “Day #410957”




Different Calendars

« Many different calendars evolved over the millennia
* Gregorian, Islamic, Japanese, Hebrew, Chinese, Indian, ...

- Gregorian calendar is the calendar used in Europe,
North and South America, and many other parts of the world

* Each has unique ways of counting and grouping
and describing eras, years, months, and days




Calendrical Calculations

* Arithmetic-like operations on calendar components

- What day is 90 days from today?
- How many weeks until my next birthday?

* Conversions between calendars
e Calendrical calculations are subtle




Example: Add One Month to a Date

9 January + 1 month = 9 February

January February

Sun Mon Tue Wed Thu Fri Sat un Mon Tue Wed Thu Fri Sat
4




When Best Result Does Not Exist

30 January + 1 month = 28 February

January February

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 1 2 3
8 9 10 N 12 13 8 9 10
15 16 17 18 19 20 15 [¢ 17
22 23 24 2 < 22 23 24

29




Add Another Month

28 February + 1 month = 28 March

February March

Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat
3 1 2 3
10 7 8 9 10
14 15 17
22 24

31




Or Instead, Add Two Months

January

30 January + 2 months = 30 March

Sun Mon Tue Wed Thu Fri

1
8
(5
22

29

2
)
16
23

3
10
17

24

4
11
18
2

5

12

19

Sat
6
13
20

March

Sun Mon Tue Wed Thu

Fri

Y1
3
10

17




So...

* 30 January + 1 month + 1 month = 28 March
* 30 January + 2 months = 30 March

* Calendrical calculations are subtle

* Generally, smaller components are preserved
* Do not do calendrical calculations yourself!

* But how you use the operations also matters...




Calendar and Time APIs




Cocoa APIs

* NSTimelnterval

* NSDate

* NSCalendar

* NSDateComponents
* NSTimeZone

* NSDateFormatter




Calendar-Independent Time Scale

* Seconds since the reference date e e 0 S—

=« NSTimelnterval

- A floating-point number of seconds after the reference date,
in the reference time zone (GMT/UTC)

*Value is currently about +329 million (seconds)




Reference Date

Gregorian

NEIle

Japanese

Hebrew

Republic of China

Indian

1 January 2001 00:00:00 GMT

7 Shawwal 1421 00:00:00 GMT

1 January 13 00:00:00 GMT
6 Tevet 5761 00:00:00 GMT

1 January 90 00:00:00 GMT

11 Pausa 1922 00:00:00 GMT




NSDate

* Object which contains a NSTimelnterval

- The number of seconds after the reference date in GMT
* No associated calendar
* Time zone is GMT




NSCalendar

* Represents calendars
* Knows about the “arithmetic” properties of calendars

- How many months are in a year

- How many hours are in a day
- How NSTimelntervals map to and from calendar dates

* Know how to do calendrical calculations




NSDateComponents

* Object containing a set of calendar components

* Component values are signed integers

* Can be used to hold a set of absolute or relative components
- Absolute: exact values
- Relative: amounts

* Example: hour value “4” and minute “15” could mean:

= Absolute: 4:15 (am)
= Relative: 4 hours and 15 minutes




NSTimeZone

* Represents a time zone

- A geopolitical region which defines a set of rules for how local time
is calculated from the reference time zone (GMT/UTC)

* Hours and minutes offset from GMT
* Knows when “Daylight Saving Time” or “Summer Time” occur
- A transition to a different offset from GMT
* Governments change the rules of their time zones from time to time




Calendrical Calculations




Common NSCalendar Operations

« components:fromDate:

» dateFromComponents:

* dateByAddingComponents:toDate:options:
« components:fromDate:toDate:options:




Causes of Trouble

* Calendar irregularities
* Ambiguities in a set of components

- Nonexistent dates
- Multiple matching dates




Irregularities

* Leap day in Gregorian calendar
= 29 February
* Time zone transitions

- Forward transitions cause an hour skip
- Backward cause an hour to occur twice

* Dateline transitions
- Samoa will skip 30 December, 2011




Hebrew Calendar

* Some months sometimes have 29 days, other years 30

* Year has either 12 or 13 months

* Months are numbered: 1, 2, 3,4, 5,6, (7), 8,9, 10, 11, 12, 13
= (7) is leap month




Japanese Imperial Eras

* Calendar same as Gregorian, except for year numbering

* Years are numbered from the start of the emperor’s reign
- 31 December, Showa 63
- 1 January, Showa 64

- 7 January, Showa 64
=8 January, Heisel 1

* S0, year number may change in the middle of a year




Example: Advancing by Days

* Given a starting date
* While some condition remains true

- Perform some operation
- Advance to the next day, at the same time




Advancing by Days

NSDate *date = [NSDate dateWithString:@"2011-01-01 00:00:00 +0000"];
while (... condition ...) {

// perform operation

date = ... advance date to next day midnight ...




86400

(number of seconds in a day)




Attempt #1: Add 86400 seconds

NSDate *date = [NSDate dateWithString:@"2011-01-01 00:00:00 +0000"];
while (... condition ...) {

// perform operation

date = [date dateByAddingTimeInterval: 86400];




Attempt #1: Add 86400 seconds

* 1 January 00:00:00 + 86400 seconds = 2 January 00:00:00

» 2 January 00:00:00 + 86400 seconds = 3 January 00:00:00

* 13 March 00:00:00 + 86400 seconds = 14 March 01:00:00 (2011, in U.S.)
* 14 March 01:00:00 + 86400 seconds = 15 March 01:00:00




Attempt #2: Add 1 Day

NSCalendar xcalendar = ...
// create an NSDateComponents with “1 day”:
NSDateComponents xdc = [[NSDateComponents new] autoreleasel;
[dc setDay: 11;
NSDate *date = ...
while (... condition ...) {
// perform operation

date = [calendar dateByAddingComponents:dc toDate:date options:0];




Attempt #2: Add 1 Day

* 1 January 00:00:00 + 1 day = 2 January 00:00:00
* 2 January 00:00:00 + 1 day = 3 January 00:00:00

* 13 March 00:00:00 + 1 day = 14 March 00:00:00 (2011, in U.S.)

* 14 March 00:00:00 + 1 day = 15 March 00:00:00




Causes of Trouble

* Calendar irregularities
* Ambiguities in a set of components

- Nonexistent dates
- Multiple matching dates




Ambiguities

* A set of components can be ambiguous
* A date with those components may not exist
= 37 June, in Gregorian calendar
- 29 February, most years
* Multiple possible dates may exist
- Tuesday at 16:00
- Hour repeated during summer time back to standard time transition




Nonexistent Dates

* Nominal result date of arithmetic may not exist
* Time zone DST forward transitions
= 01:59:59 + 1 second = 03:00:00 (in U.S.)
* <day before transition> 02:20 + 1 day = <day of transition> 77?7:20




Return to Advancing-by-Days Example

* In Brazil, time zone transitions occur at “midnight”: 23:59:59 -> 01:00:00
* <day before transition> 00:00 + 1 day = <day of transition> 722:00

* Loop continues...

* <day of transition> 7?7:00 + 1 day = <day after transition> 7?72:00

* ... Just like when we added 1 month to 30 January, then again




Attempt #3

* Previous: add 1 day to the current working date to get next date
* Instead: add an increasing number of days to the original date




Attempt #3: Add Increasing Number of Days

NSCalendar xcal = ...; NSDate *original = ...;
NSDateComponents *dc = [[NSDateComponents new] autorelease];
NSInteger numDays = 0;
NSDate *xdate = original;
while (... condition ...) {
// perform operation
numDays++;
[dc setDay:numDays];
date = [cal dateByAddingComponents:dc toDate:original options:0];




New Result in Brazil

« <original> 00:00 + N days = <day before transition> 00:00

* <original> 00:00 + (N+1) days = <day of transition> 7?7?:00

* <original> 00:00 + (N+2) days = <day after transition> 00:00
* ... Just like when we added 2 months to 30 January




Sidebar: Avoid Stressing Boundaries

* Midnight; end of the year; the year 1
* Problematic: Brazilian time zone transition at midnight

- Other countries transition at 1 am or 2 am
- Better: use noon instead of midnight as "don’t care" time

* Better: Samoan time zone change NOT skipping 31 December
* Problematic: using NSDate objects to represent “just a time”

- Developer uses year 1, month 1, day 1, plus desired time
= Better; use the date of time interval 0.0, + time




Week-based Calendars




Week-based Calendars

* Week: a cyclic period of 7 days (weekdays)
* Any calendar can be interpreted in a week-based fashion
* Can be convenient when doing calculations with weeks and weekdays
* How can you specify a given day?
- {Year, Day # within year}: {2011, 159}
- {Year, Month, Day # within month}: {2011, 6, 8}
- {Week-based Year, Week # within year, Weekday}: {2011, 23, Wednesday}




Week-based Calendars Defined

* A week-based calendar has an integral number of weeks
* Two properties define a week-based calendar

- The weekday which is the beginning of the week (and year)

- Minimum number of days a straddling week needs in the new year
to be considered the first week of that new year

*|SO 8601 defines a week-based calendar




First Week of Year
Suppose first day of the week is Monday

2010-12 2011-01
Saturday 18 1
Sunday 19
Monday 20
Tuesday 21
Wednesday 22
Thursday 23
Friday 24




First Week of Year
Suppose first day of the week is Monday

2010-12 2011-01
Saturday 18 1
Sunday 19
Monday 20
Tuesday 21
Wednesday 22
Thursday 23
Friday 24




First Week of Year
Suppose first day of the week is Monday

2010-12 2011-01
Saturday 18 1
Sunday 19
Monday 20
Tuesday 21
Wednesday 22
Thursday 23
Friday 24




First Week of Year
Suppose first day of the week is Monday

2010-12 2011-01
Saturday 18 1
Sunday 19
Monday 20
Tuesday 21
Wednesday 22
Thursday 23
Friday 24




Week-based Calendar Trouble

* Year number for days in a week-based calendar interpretation
may not be same as for ordinary calendar

* Must not mix ordinary year number with week-based components
* Nor week-based year number with ordinary components
* Can cause ambiguity

= There is no 2 January in“2011” (ISO 8601)
- 2 January 2011 (ordinary year) is {2010, 52, 7}
- “2 January 201" (week-based) is {2012, 1, 1}




New NSCalendar API

* NSYearCalendarUnit constant specifies ordinary calendar year
* New component types in Mac OS X 10.7 and iOS 5.0

- NSWeekOfYearCalendarUnit

- NSWeekOfMonthCalendarUnit

- NSYearForWeekOfYearCalendarUnit

- Use of NSWeekCalendarUnit discouraged




Date Formatting and Parsing




NSDateFormatter

* An object to convert dates to strings and strings to dates,
in a locale-sensitive way




Date Formatting Gotcha #1

* Suppose a developer writes this code in 2010:
NSDateFormatter *xdf = [NSDateFormatter new];

. other configuration ...
[df setDateFormat:@”"YYYY-MM-dd”]; // want strings like “2011-01-01"

* This code appears to work

* But for 1 January 2011, yields “2010-01-01"
*"YYYY"is week-based calendar year

* "yyyy"is ordinary calendar year




Date Formatting Gotcha #2

[df setDateFormat:@"yyyy-MM-dd HH:mm:ss”]; // hour: “00" - “23"
* For 1 January, 2011, 2pm, this yields one of:
= “2011-01-01 14:00:00"
-"2011-01-01 02:00:00 pm”
* For parsing, first string will succeed for some users, fails for others




Date Formatting Gotcha #2

* Date formatters start with the current
user locale

* Some user preferences override even
a specifically set format pattern

* 24-hour clock setting overrides set
format pattern

* S0 “hour” result depends on user’s setting:

=“2011-01-01 14:00:00"
- “2011-01-01 02:00:00 pm”

24-Hour Time

Set Automatically




Date Formatting Gotcha #2

* For cases where the current user locale should not be used,
the locale needs to be set on the date formatter

* For “internet” date strings, “en_US_POSIX" locale often works well
NSLocale xlocale;
locale = [[NSLocale alloc] initWithLocalelIdentifier:@”en_US_POSIX"];
[df setLocale: localel;

[locale releasel;




More Information

Bill Dudney

Application Frameworks Evangelist
dudney@apple.com

Documentation
Mac OS X and iOS Foundation
http://developer.apple.com/cocoa

Apple Developer Forums
http://devforums.apple.com




Labs

Application Frameworks Lab A

Cocoa, Autosave, File Coordination and Resume Lab Thirsday 2:00-400PM




Take-Away Points

* Use the system calculation algorithms

* Care must be taken when using them

* Avoid boundary conditions

* Try to imagine interesting boundary cases for testing




& WWDC2011




