
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 117

Performing Calendar Calculations

Chris Kane
Software Engineer

1

What We Will Cover

• Review calendars and calendrical calculations
• Introduce the APIs related to calendars, dates, and times
• Discuss troublesome calendrical issues

2

Labeling Time

• Time is a continuum
• People need to describe time

■ When events occurred
■ Amounts of time

• What to do?
■ Could count days
■ Today is “Day #410957”

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

3

Calendar Components

• Human inventions to describe event times
■ Count recurrences various natural cycles
■ Group and decompose them into smaller, human-tractable quantities

■ We will call these counters “units” and “components”

• Unit of “day” is too granular, so it is decomposed (hours, minutes, …)
• But “day” also too fine-grained, so we have years and months

■ “8 June, 2011” is easier to deal with than “Day #410957”

4

Different Calendars

• Many different calendars evolved over the millennia
• Gregorian, Islamic, Japanese, Hebrew, Chinese, Indian, …

■ Gregorian calendar is the calendar used in Europe,
North and South America, and many other parts of the world

• Each has unique ways of counting and grouping
and describing eras, years, months, and days

5

Calendrical Calculations

• Arithmetic-like operations on calendar components
■ What day is 90 days from today?
■ How many weeks until my next birthday?

• Conversions between calendars
• Calendrical calculations are subtle

6

Example: Add One Month to a Date

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

February

9 January + 1 month = 9 February

7

30 January + 1 month = 28 February

When Best Result Does Not Exist

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

February

8

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

February

Add Another Month

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

March

28 February + 1 month = 28 March

9

30 January + 2 months = 30 March

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

March

Or Instead, Add Two Months

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January

10

So…

• 30 January + 1 month + 1 month = 28 March
• 30 January + 2 months = 30 March
• Calendrical calculations are subtle
• Generally, smaller components are preserved
• Do not do calendrical calculations yourself!
• But how you use the operations also matters…

11

Calendar and Time APIs

12

Cocoa APIs

• NSTimeInterval
• NSDate
• NSCalendar
• NSDateComponents
• NSTimeZone
• NSDateFormatter

13

Calendar-Independent Time Scale

• Seconds since the reference date
■ NSTimeInterval
■ A floating-point number of seconds after the reference date,
in the reference time zone (GMT/UTC)

• Value is currently about +329 million (seconds)

+– 0

14

Reference Date

Gregorian 1 January 2001 00:00:00 GMT

Islamic 7 Shawwal 1421 00:00:00 GMT

Japanese 1 January 平成13 00:00:00 GMT

Hebrew 6 Tevet 5761 00:00:00 GMT

Republic of China 1 January 90 00:00:00 GMT

Indian 11 Pausa 1922 00:00:00 GMT

15

NSDate

• Object which contains a NSTimeInterval
■ The number of seconds after the reference date in GMT

• No associated calendar
• Time zone is GMT

16

NSCalendar

• Represents calendars
• Knows about the “arithmetic” properties of calendars

■ How many months are in a year
■ How many hours are in a day
■ How NSTimeIntervals map to and from calendar dates

• Know how to do calendrical calculations

17

NSDateComponents

• Object containing a set of calendar components
• Component values are signed integers
• Can be used to hold a set of absolute or relative components

■ Absolute: exact values
■ Relative: amounts

• Example: hour value “4” and minute “15” could mean:
■ Absolute: 4:15 (am)
■ Relative: 4 hours and 15 minutes

18

NSTimeZone

• Represents a time zone
■ A geopolitical region which defines a set of rules for how local time
is calculated from the reference time zone (GMT/UTC)

• Hours and minutes offset from GMT
• Knows when “Daylight Saving Time” or “Summer Time” occur

■ A transition to a different offset from GMT

• Governments change the rules of their time zones from time to time

19

Calendrical Calculations

20

Common NSCalendar Operations

• components:fromDate:
• dateFromComponents:
• dateByAddingComponents:toDate:options:
• components:fromDate:toDate:options:

21

Causes of Trouble

• Calendar irregularities
• Ambiguities in a set of components

■ Nonexistent dates
■ Multiple matching dates

22

Irregularities

• Leap day in Gregorian calendar
■ 29 February

• Time zone transitions
■ Forward transitions cause an hour skip
■ Backward cause an hour to occur twice

• Dateline transitions
■ Samoa will skip 30 December, 2011

23

Hebrew Calendar

• Some months sometimes have 29 days, other years 30
• Year has either 12 or 13 months
• Months are numbered: 1, 2, 3, 4, 5, 6, (7), 8, 9, 10, 11, 12, 13

■ (7) is leap month

24

Japanese Imperial Eras

• Calendar same as Gregorian, except for year numbering
• Years are numbered from the start of the emperor’s reign

■ 31 December, Showa 63
■ 1 January, Showa 64
■ …
■ 7 January, Showa 64
■ 8 January, Heisei 1

• So, year number may change in the middle of a year

25

Example: Advancing by Days

• Given a starting date
• While some condition remains true

■ Perform some operation
■ Advance to the next day, at the same time

26

Advancing by Days

NSDate *date = [NSDate dateWithString:@”2011-01-01 00:00:00 +0000”];

while (... condition ...) {

 // perform operation

 date = ... advance date to next day midnight ...

}

27

86400
(number of seconds in a day)

28

Attempt #1: Add 86400 seconds

NSDate *date = [NSDate dateWithString:@”2011-01-01 00:00:00 +0000”];

while (... condition ...) {

 // perform operation

 date = [date dateByAddingTimeInterval: 86400];

}

29

Attempt #1: Add 86400 seconds

• 1 January 00:00:00 + 86400 seconds = 2 January 00:00:00
• 2 January 00:00:00 + 86400 seconds = 3 January 00:00:00
• …

• 13 March 00:00:00 + 86400 seconds = 14 March 01:00:00 (2011, in U.S.)

• 14 March 01:00:00 + 86400 seconds = 15 March 01:00:00

30

Attempt #2: Add 1 Day

NSCalendar *calendar = ...

// create an NSDateComponents with “1 day”:

NSDateComponents *dc = [[NSDateComponents new] autorelease];

[dc setDay: 1];

NSDate *date = ...

while (... condition ...) {

 // perform operation

 date = [calendar dateByAddingComponents:dc toDate:date options:0];

}

31

Attempt #2: Add 1 Day

• 1 January 00:00:00 + 1 day = 2 January 00:00:00
• 2 January 00:00:00 + 1 day = 3 January 00:00:00
• …

• 13 March 00:00:00 + 1 day = 14 March 00:00:00 (2011, in U.S.)

• 14 March 00:00:00 + 1 day = 15 March 00:00:00

32

Causes of Trouble

• Calendar irregularities
• Ambiguities in a set of components

■ Nonexistent dates
■ Multiple matching dates

33

Ambiguities

• A set of components can be ambiguous
• A date with those components may not exist

■ 37 June, in Gregorian calendar
■ 29 February, most years

• Multiple possible dates may exist
■ Tuesday at 16:00
■ Hour repeated during summer time back to standard time transition

34

Nonexistent Dates

• Nominal result date of arithmetic may not exist
• Time zone DST forward transitions

■ 01:59:59 + 1 second = 03:00:00 (in U.S.)

• <day before transition> 02:20 + 1 day = <day of transition> ???:20

35

Return to Advancing-by-Days Example

• In Brazil, time zone transitions occur at “midnight”: 23:59:59 -> 01:00:00

• <day before transition> 00:00 + 1 day = <day of transition> ???:00
• Loop continues…

• <day of transition> ???:00 + 1 day = <day after transition> ???:00
• … Just like when we added 1 month to 30 January, then again

36

Attempt #3

• Previous: add 1 day to the current working date to get next date
• Instead: add an increasing number of days to the original date

37

Attempt #3: Add Increasing Number of Days

NSCalendar *cal = ...; NSDate *original = ...;

NSDateComponents *dc = [[NSDateComponents new] autorelease];

NSInteger numDays = 0;

NSDate *date = original;

while (... condition ...) {

 // perform operation

 numDays++;

 [dc setDay:numDays];

 date = [cal dateByAddingComponents:dc toDate:original options:0];

}

38

New Result in Brazil

• <original> 00:00 + N days = <day before transition> 00:00

• <original> 00:00 + (N+1) days = <day of transition> ???:00

• <original> 00:00 + (N+2) days = <day after transition> 00:00
• … Just like when we added 2 months to 30 January

39

Sidebar: Avoid Stressing Boundaries

• Midnight; end of the year; the year 1
• Problematic: Brazilian time zone transition at midnight

■ Other countries transition at 1 am or 2 am
■ Better: use noon instead of midnight as "don’t care" time

• Better: Samoan time zone change NOT skipping 31 December
• Problematic: using NSDate objects to represent “just a time”

■ Developer uses year 1, month 1, day 1, plus desired time
■ Better: use the date of time interval 0.0, + time

40

Week-based Calendars

41

Week-based Calendars

• Week: a cyclic period of 7 days (weekdays)
• Any calendar can be interpreted in a week-based fashion
• Can be convenient when doing calculations with weeks and weekdays
• How can you specify a given day?

■ {Year, Day # within year}: {2011, 159}
■ {Year, Month, Day # within month}: {2011, 6, 8}
■ {Week-based Year, Week # within year, Weekday}: {2011, 23, Wednesday}

42

Week-based Calendars Defined

• A week-based calendar has an integral number of weeks
• Two properties define a week-based calendar

■ The weekday which is the beginning of the week (and year)
■ Minimum number of days a straddling week needs in the new year
to be considered the first week of that new year

• ISO 8601 defines a week-based calendar

43

Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14

44

Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14

45

Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14

46

Suppose first day of the week is Monday
First Week of Year

2010-12 2011-01

Saturday 18 25 1 8

Sunday 19 26 2 9

Monday 20 27 3 10

Tuesday 21 28 4 11

Wednesday 22 29 5 12

Thursday 23 30 6 13

Friday 24 31 7 14

47

Week-based Calendar Trouble

• Year number for days in a week-based calendar interpretation
may not be same as for ordinary calendar

• Must not mix ordinary year number with week-based components
• Nor week-based year number with ordinary components
• Can cause ambiguity

■ There is no 2 January in “2011” (ISO 8601)
■ 2 January 2011 (ordinary year) is {2010, 52, 7}
■ “2 January 2011” (week-based) is {2012, 1, 1}

48

New NSCalendar API

• NSYearCalendarUnit constant specifies ordinary calendar year
• New component types in Mac OS X 10.7 and iOS 5.0

■ NSWeekOfYearCalendarUnit
■ NSWeekOfMonthCalendarUnit
■ NSYearForWeekOfYearCalendarUnit
■ Use of NSWeekCalendarUnit discouraged

49

Date Formatting and Parsing

50

NSDateFormatter

• An object to convert dates to strings and strings to dates,
in a locale-sensitive way

51

Date Formatting Gotcha #1

• Suppose a developer writes this code in 2010:
NSDateFormatter *df = [NSDateFormatter new];

... other configuration ...

[df setDateFormat:@”YYYY-MM-dd”]; // want strings like “2011-01-01”

• This code appears to work
• But for 1 January 2011, yields “2010-01-01”
• “YYYY” is week-based calendar year
• “yyyy” is ordinary calendar year

52

Date Formatting Gotcha #2

[df setDateFormat:@”yyyy-MM-dd HH:mm:ss”]; // hour: “00” - “23”

• For 1 January, 2011, 2pm, this yields one of:
■ “2011-01-01 14:00:00”
■ “2011-01-01 02:00:00 pm”

• For parsing, first string will succeed for some users, fails for others

53

Date Formatting Gotcha #2

• Date formatters start with the current
user locale

• Some user preferences override even
a specifically set format pattern

• 24-hour clock setting overrides set
format pattern

• So “hour” result depends on user’s setting:
■ “2011-01-01 14:00:00”
■ “2011-01-01 02:00:00 pm”

54

Date Formatting Gotcha #2

• For cases where the current user locale should not be used,
the locale needs to be set on the date formatter

• For “internet” date strings, “en_US_POSIX” locale often works well
NSLocale *locale;

locale = [[NSLocale alloc] initWithLocaleIdentifier:@”en_US_POSIX”];

[df setLocale: locale];

[locale release];

55

Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Documentation
Mac OS X and iOS Foundation
http://developer.apple.com/cocoa

Apple Developer Forums
http://devforums.apple.com

More Information

56

 Cocoa, Autosave, File Coordination and Resume Lab Application Frameworks Lab A
Thursday 2:00-4:00PM

Labs

57

Take-Away Points

• Use the system calculation algorithms
• Care must be taken when using them
• Avoid boundary conditions
• Try to imagine interesting boundary cases for testing

58

59

