
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

In Mac OS X Lion

Session 119
Peter Ammon
Cocoa Frameworks Engineer

Resume and Automatic Termination

David Smith
Cocoa Frameworks Engineer

1



Resume and Automatic Termination

• On iOS, users love how apps 
pick up where they left off

• The app may or may not 
have terminated

• Simpler application model 
than Snow Leopard

• Mac OS X Lion is moving 
in the same direction

Automatic
Termination

Resume

2



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

3



In Mac OS X Lion

Peter Ammon
Cocoa Frameworks Engineer

Resume

4



Resume
Apps simply

where they left off
after quit, log out, or crash

5



Demo

6



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

7



Why Resume?
Why do I want to do this?

• Simplifying the application model
• Users will expect that the application state is not lost
• Macs will be able to silently restart without the user noticing

8



Why should I use the Cocoa APIs for this?

• There is a lot to restore
■ A window has a frame, on a display, on a space, 
or maybe it’s minimized, or full screen…

• It integrates with the rest of the system
■ Inter-application Z-order
■ Shift key

• It’s really easy
■ Incremental adoption
■ Complements existing persistence mechanisms
■ You don’t have to throw anything away

Why Resume?

9



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

10



Overview of Resume

• Mac OS X has special challenges not found on iOS
■ Multiple windows
■ Documents in many locations

• There is a lot more states that an app can get into
• Additional state contributions from frameworks and plug-ins
• Here is how we meet those challenges

11



Cocoa passes the
window its saved

state for restoration

The component 
provides the window 
(possibly creating it)

Cocoa notices it had a 
restorable window and 

asks the right component 
to provide it again

Overview of Resume

The user quits, logs out, or crashes

The app is relaunched

Cocoa asks the 
window to encode its 

restorable state
A restorable window

 is open

12



Overview of Resume

• Resume API is centered around windows
■ But support for global state, too

• Each component can take responsibility for its own windows
• Two phases

■ Recreating the windows that were previously open
■ Restoring view state within each window

13



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

14



Recreating Open Windows
API summary

• Mark a window as restorable
[window setRestorable:YES]

• Set the restoration class
[window setRestorationClass:[SomeClass class]]

• Implement the restore method
+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! state:(NSCoder *)state
! ! completionHandler:(void (^)(NSWindow *, NSError *)handler

15



Recreating Open Windows

• Invoke the completion handler with the corresponding window
• The identifier is an easy way to distinguish between different windows 
restored by the same class

■ Settable in IB

• The state parameter can be used to track even more information 
necessary for recreating the window

■ More on that later

API summary

+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! state:(NSCoder *)state
! ! completionHandler:(void (^)(NSWindow *, NSError *)handler

16



NSFontPanel example

[fontPanel setRestorable:YES];

[fontPanel setRestorationClass:[fontPanel class]];

+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! ! state:(NSCoder *)state
! ! ! completionHandler:(void (^)(NSWindow *, NSError *)handler {
! ! ! ! handler([self sharedFontPanel], NULL);
! ! ! }

Restoring Windows

This window may 
already exist!

17



NSDocument integration

• NSDocument sets its windows’ restoration class to the 
NSDocumentController

• NSDocumentController reopens windows by reopening 
their documents

• Customizable hooks

Restoring Windows

@implementation MyDocumentController

- (void)restoreWindowWithIdentifier:(NSString *)identifier

state:(NSCoder *)state

completionHandler:(void (^)(NSWindow *, NSError *))handler

@end

@implementation MyDocument

- (void)restoreDocumentWindowWithIdentifier:(NSString *)identifier

state:(NSCoder *)state

completionHandler:(void (^)(NSWindow *, NSError *))handler

@end

18



Demo

19



Restoring Windows

• Most windows should be restorable, with some exceptions
• Transient windows

■ Tooltips, shielding windows

• Windows the user does not want to restore
■ Private browsing in Safari

• Windows whose job is done
■ “Install Complete” window

• Windows that the app cannot restore (yet)

Which windows should be restorable?

20



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

21



Restoring State Within Windows

• Each component within the window has its own private state
■ NSView, NSWindow, NSWindowController, NSDocument
■ NSApplication, too

• The component invalidates its state whenever that state changes

• At some point later, the component will be asked to encode its state

• Upon relaunch, the component will be given its state to restore

[self invalidateRestorableState] Fast and inexpensive

- (void)encodeRestorableStateWithCoder:(NSCoder *)coder

- (void)restoreStateWithCoder:(NSCoder *)coder

22



Restoring State Within Windows

• Two useful NSWindow delegate methods
- (void)window:(NSWindow *)window willEncodeRestorableState:(NSCoder *)coder
- (void)window:(NSWindow *)window didDecodeRestorableState:(NSCoder *)coder 

• Easy way to do state restoration without subclassing

• Useful NSResponder class method
+ (NSArray *)restorableStateKeyPaths;

• Automatic state restoration of KVO-compliant properties

23



Restoring State Within Windows

• What state should be restored via this mechanism?
• Restore view and controller state
• Not model state

• Beware that model and view state may be out of sync!

Selected range

Scroll position

Text

24



Demo

25



Restoring Windows
Complex cases

• My window needs to know its state before I can even create it!
■ Multiple types of windows or documents

+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! ! state:(NSCoder *)state
! ! ! completionHandler:(void (^)(NSWindow *, NSError *)handler;

• Combined restorable state of the window, its window controller, 
and document

• If you can not restore the window, invoke the completion 
handler with nil
■ But always invoke it

26



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

27



Inter-view references

• How NSWindow records its first responder:
[coder encodeObject:firstResponder forKey:@"NSFirstResponder"]

• Encoding an NSResponder archives a reference to it
• Decoding it returns an existing NSResponder, never a new one
• References can cross windows

■ Example: Color and Font panels encode their targets

Advanced Topics

28



Advanced Topics
Sandboxed apps

• Encode URLs to files in any restorable state NSCoder
• You automatically get permission to reopen them

■ Even if they have been moved or renamed
■ URL encoding uses bookmarks

• Or use NSDocument

29



Advanced Topics
Case study: Mail

• Mail already restored its state via state from NSUserDefaults
• Integrating with Resume was ~ 60 LOC
• Idea

■ Gave each window a unique ID
■ Recorded it in both the user default record and the restorable state
■ Restored windows via the existing NSUserDefaults mechanism
■ In the Resume callback

■ Decode the unique ID from the restorable state
■ Find an existing window with that unique ID
■ Invoke the completion handler with that window (or nil)

30



Best Practices

• Do not assume that if your app is being launched, the user intends 
to use it immediately
■ Running applications get relaunched at login
■ Your app can be relaunched in the background
■ Splash screens, demanding dialogs, etc. will be perceived as annoying

31



Best Practices

• Do not create default windows in applicationDidFinishLaunching:
■ Your app may already have restored windows

■ N+1 effect
■ Prefer applicationOpenUntitledFile:
■ One exception: One-window apps like iPhoto

32



Best Practices

• Be prepared for unexpected changes
■ Screen size, preferences, etc. may change
■ File contents too (remember iCloud)

• Validate that all saved state still makes sense
• Do not forget versioning

33



Best Practices

• Partial state restoration is OK
■ (Though higher fidelity is obviously better)

• The more you use Cocoa, the less work it will take
■ Example: full screen
■ But if you already restore state, it’s easy to integrate with Resume

34



Resume Summary

• Resume is about state restoration
• Cocoa tracks the open restorable windows, and asks their 
restoration classes to recreate them on relaunch

• Each component can recreate the windows it is responsible for
• Each NSResponder can encode and restore its own private state

35



In Mac OS X Lion

David Smith
Cocoa Frameworks Engineer

Automatic Termination

36



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

37



What Is Automatic Termination?

• Decouples apps from processes
■ Open apps might have a process
■ Closed apps might not have a process

38



What Is Automatic Termination?

• Decouples apps from processes
■ Open apps might have a process
■ Closed apps might not have a process

• A new user model
■ Lets users focus on using apps instead of managing them

39



Use

Launch Quit

The Application Life Cycle 
circa 3000BC (Snow Leopard)

40



The Application Life Cycle 
circa 2011 (Lion)

Use

Launch Quit

41



What Is Automatic Termination?

• Decouples apps from processes
■ Open apps might have a process
■ Closed apps might not have a process

• A new user model
■ Lets users focus on using apps instead of managing them

• iOS-style memory reclamation on the Mac
• Instant relaunch

42



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

43



Benefits of Automatic Termination

• Play well with others
• Meet user expectations for new apps
• Relaunch instantly
• Get ready for the future

44



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

45



API Overview

• Simple API following the same pattern as 
Sudden Termination from Snow Leopard

46



An Important Aside…

• Automatic Termination is not Sudden Termination!
• An application can participate in one, both, or neither

■ Participating in both gets you nice benefits

47



API Overview

• Simple API following the same pattern as Sudden Termination 
from Snow Leopard

• Master “on” switch API
■ Set the key “NSSupportsAutomaticTermination” in your Info.plist
<key>NSSupportsAutomaticTermination</key>
<true/>
■ OR use NSProcessInfo
[[NSProcessInfo processInfo] setAutomaticTerminationSupportEnabled: YES];

48



API Overview

• Simple API following the same pattern as Sudden Termination 
from Snow Leopard

• Temporarily opt out when your app is working…
[[NSProcessInfo processInfo] disableAutomaticTermination:@”Reason”];

• …and return control to the system when you’re done
[[NSProcessInfo processInfo] enableAutomaticTermination:@”Reason”];

49



Running Applications with No Process

• When these criteria are met:
■ No visible windows
■ All open windows are restorable
■ Not the active app
■ No outstanding -disableAutomaticTermination: calls
■ The system is out of available memory

• The kernel may terminate the app’s process
■ The app will appear to still be running, and will relaunch 
transparently if needed

50



Processes with No Running Application

• When these criteria are met:
■ No open windows
■ Not the active app
■ At least one window has ever been open
■ No outstanding -disableAutomaticTermination: calls

• The app will appear to quit, but its process will remain running
■ This lets it relaunch instantly
■ It will terminate if the system needs to reclaim its resources

51



Demo

52



Testing Automatic Termination in Your App

• Simulate system memory pressure to verify expected behavior
■ Use /System/Library/CoreServices/talagent -memory_pressure
■ Only use this for testing! It is not guaranteed to exist

53



Recap: Adopting Automatic Termination

• Turn it on – Info.plist key or API
<key>NSSupportsAutomaticTermination</key>
<true/> 
OR
[[NSProcessInfo processInfo] setAutomaticTerminationSupportEnabled: YES]; 

• Wrap activity in paired -disable/-enable calls
[[NSProcessInfo processInfo] disableAutomaticTermination:@”Reason”];
[[NSProcessInfo processInfo] enableAutomaticTermination:@”Reason”];

• Test with simulated memory pressure
/System/Library/CoreServices/talagent -memory_pressure

54



Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions

55



Imagine a World…

…that has no “Quit” menu item
…with no need to know if an app is running
…in which your parents never call and say, “My computer is slow”

56



More Information

Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Documentation
Mac OS X Dev Center
http://developer.apple.com/devcenter/mac

Apple Developer Forums
http://devforums.apple.com

57



What’s New in Cocoa Presidio
Tuesday 10:15AM

Auto Save and Versions in Mac OS X 10.7 Lion Pacific Heights
Tuesday 3:15PM

Related Sessions

58



Labs

Cocoa, Auto Save, File Coordination, and Resume Lab App Frameworks Lab A
Thursday 2:00-4:00PM

59



60


