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Resume and Automatic Termination

• On iOS, users love how apps 
pick up where they left off

• The app may or may not 
have terminated

• Simpler application model 
than Snow Leopard

• Mac OS X Lion is moving 
in the same direction

Automatic
Termination

Resume
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Resume and Automatic Termination

• Resume
■ Why Resume?
■ API overview
■ Recreating open windows
■ Restoring state within windows
■ Advanced topics and best practices

• Automatic Termination
■ What is Automatic Termination?
■ Benefits of Automatic Termination
■ API overview
■ Future directions
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Resume
Apps simply

where they left off
after quit, log out, or crash
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Demo
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Why Resume?
Why do I want to do this?

• Simplifying the application model
• Users will expect that the application state is not lost
• Macs will be able to silently restart without the user noticing
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Why should I use the Cocoa APIs for this?

• There is a lot to restore
■ A window has a frame, on a display, on a space, 
or maybe it’s minimized, or full screen…

• It integrates with the rest of the system
■ Inter-application Z-order
■ Shift key

• It’s really easy
■ Incremental adoption
■ Complements existing persistence mechanisms
■ You don’t have to throw anything away

Why Resume?
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Overview of Resume

• Mac OS X has special challenges not found on iOS
■ Multiple windows
■ Documents in many locations

• There is a lot more states that an app can get into
• Additional state contributions from frameworks and plug-ins
• Here is how we meet those challenges
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Cocoa passes the
window its saved

state for restoration

The component 
provides the window 
(possibly creating it)

Cocoa notices it had a 
restorable window and 

asks the right component 
to provide it again

Overview of Resume

The user quits, logs out, or crashes

The app is relaunched

Cocoa asks the 
window to encode its 

restorable state
A restorable window

 is open
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Overview of Resume

• Resume API is centered around windows
■ But support for global state, too

• Each component can take responsibility for its own windows
• Two phases

■ Recreating the windows that were previously open
■ Restoring view state within each window
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Recreating Open Windows
API summary

• Mark a window as restorable
[window setRestorable:YES]

• Set the restoration class
[window setRestorationClass:[SomeClass class]]

• Implement the restore method
+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! state:(NSCoder *)state
! ! completionHandler:(void (^)(NSWindow *, NSError *)handler
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Recreating Open Windows

• Invoke the completion handler with the corresponding window
• The identifier is an easy way to distinguish between different windows 
restored by the same class

■ Settable in IB

• The state parameter can be used to track even more information 
necessary for recreating the window

■ More on that later

API summary

+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! state:(NSCoder *)state
! ! completionHandler:(void (^)(NSWindow *, NSError *)handler
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NSFontPanel example

[fontPanel setRestorable:YES];

[fontPanel setRestorationClass:[fontPanel class]];

+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! ! state:(NSCoder *)state
! ! ! completionHandler:(void (^)(NSWindow *, NSError *)handler {
! ! ! ! handler([self sharedFontPanel], NULL);
! ! ! }

Restoring Windows

This window may 
already exist!
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NSDocument integration

• NSDocument sets its windows’ restoration class to the 
NSDocumentController

• NSDocumentController reopens windows by reopening 
their documents

• Customizable hooks

Restoring Windows

@implementation MyDocumentController

- (void)restoreWindowWithIdentifier:(NSString *)identifier

state:(NSCoder *)state

completionHandler:(void (^)(NSWindow *, NSError *))handler

@end

@implementation MyDocument

- (void)restoreDocumentWindowWithIdentifier:(NSString *)identifier

state:(NSCoder *)state

completionHandler:(void (^)(NSWindow *, NSError *))handler

@end
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Demo
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Restoring Windows

• Most windows should be restorable, with some exceptions
• Transient windows

■ Tooltips, shielding windows

• Windows the user does not want to restore
■ Private browsing in Safari

• Windows whose job is done
■ “Install Complete” window

• Windows that the app cannot restore (yet)

Which windows should be restorable?
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Restoring State Within Windows

• Each component within the window has its own private state
■ NSView, NSWindow, NSWindowController, NSDocument
■ NSApplication, too

• The component invalidates its state whenever that state changes

• At some point later, the component will be asked to encode its state

• Upon relaunch, the component will be given its state to restore

[self invalidateRestorableState] Fast and inexpensive

- (void)encodeRestorableStateWithCoder:(NSCoder *)coder

- (void)restoreStateWithCoder:(NSCoder *)coder
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Restoring State Within Windows

• Two useful NSWindow delegate methods
- (void)window:(NSWindow *)window willEncodeRestorableState:(NSCoder *)coder
- (void)window:(NSWindow *)window didDecodeRestorableState:(NSCoder *)coder 

• Easy way to do state restoration without subclassing

• Useful NSResponder class method
+ (NSArray *)restorableStateKeyPaths;

• Automatic state restoration of KVO-compliant properties
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Restoring State Within Windows

• What state should be restored via this mechanism?
• Restore view and controller state
• Not model state

• Beware that model and view state may be out of sync!

Selected range

Scroll position

Text
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Demo
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Restoring Windows
Complex cases

• My window needs to know its state before I can even create it!
■ Multiple types of windows or documents

+ (void)restoreWindowWithIdentifier:(NSString *)identifier
! ! ! state:(NSCoder *)state
! ! ! completionHandler:(void (^)(NSWindow *, NSError *)handler;

• Combined restorable state of the window, its window controller, 
and document

• If you can not restore the window, invoke the completion 
handler with nil
■ But always invoke it
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Inter-view references

• How NSWindow records its first responder:
[coder encodeObject:firstResponder forKey:@"NSFirstResponder"]

• Encoding an NSResponder archives a reference to it
• Decoding it returns an existing NSResponder, never a new one
• References can cross windows

■ Example: Color and Font panels encode their targets

Advanced Topics
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Advanced Topics
Sandboxed apps

• Encode URLs to files in any restorable state NSCoder
• You automatically get permission to reopen them

■ Even if they have been moved or renamed
■ URL encoding uses bookmarks

• Or use NSDocument
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Advanced Topics
Case study: Mail

• Mail already restored its state via state from NSUserDefaults
• Integrating with Resume was ~ 60 LOC
• Idea

■ Gave each window a unique ID
■ Recorded it in both the user default record and the restorable state
■ Restored windows via the existing NSUserDefaults mechanism
■ In the Resume callback

■ Decode the unique ID from the restorable state
■ Find an existing window with that unique ID
■ Invoke the completion handler with that window (or nil)
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Best Practices

• Do not assume that if your app is being launched, the user intends 
to use it immediately
■ Running applications get relaunched at login
■ Your app can be relaunched in the background
■ Splash screens, demanding dialogs, etc. will be perceived as annoying
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Best Practices

• Do not create default windows in applicationDidFinishLaunching:
■ Your app may already have restored windows

■ N+1 effect
■ Prefer applicationOpenUntitledFile:
■ One exception: One-window apps like iPhoto
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Best Practices

• Be prepared for unexpected changes
■ Screen size, preferences, etc. may change
■ File contents too (remember iCloud)

• Validate that all saved state still makes sense
• Do not forget versioning
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Best Practices

• Partial state restoration is OK
■ (Though higher fidelity is obviously better)

• The more you use Cocoa, the less work it will take
■ Example: full screen
■ But if you already restore state, it’s easy to integrate with Resume
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Resume Summary

• Resume is about state restoration
• Cocoa tracks the open restorable windows, and asks their 
restoration classes to recreate them on relaunch

• Each component can recreate the windows it is responsible for
• Each NSResponder can encode and restore its own private state
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What Is Automatic Termination?

• Decouples apps from processes
■ Open apps might have a process
■ Closed apps might not have a process
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What Is Automatic Termination?

• Decouples apps from processes
■ Open apps might have a process
■ Closed apps might not have a process

• A new user model
■ Lets users focus on using apps instead of managing them
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Use

Launch Quit

The Application Life Cycle 
circa 3000BC (Snow Leopard)
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The Application Life Cycle 
circa 2011 (Lion)

Use

Launch Quit

41



What Is Automatic Termination?

• Decouples apps from processes
■ Open apps might have a process
■ Closed apps might not have a process

• A new user model
■ Lets users focus on using apps instead of managing them

• iOS-style memory reclamation on the Mac
• Instant relaunch
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Benefits of Automatic Termination

• Play well with others
• Meet user expectations for new apps
• Relaunch instantly
• Get ready for the future
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API Overview

• Simple API following the same pattern as 
Sudden Termination from Snow Leopard
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An Important Aside…

• Automatic Termination is not Sudden Termination!
• An application can participate in one, both, or neither

■ Participating in both gets you nice benefits
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API Overview

• Simple API following the same pattern as Sudden Termination 
from Snow Leopard

• Master “on” switch API
■ Set the key “NSSupportsAutomaticTermination” in your Info.plist
<key>NSSupportsAutomaticTermination</key>
<true/>
■ OR use NSProcessInfo
[[NSProcessInfo processInfo] setAutomaticTerminationSupportEnabled: YES];
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API Overview

• Simple API following the same pattern as Sudden Termination 
from Snow Leopard

• Temporarily opt out when your app is working…
[[NSProcessInfo processInfo] disableAutomaticTermination:@”Reason”];

• …and return control to the system when you’re done
[[NSProcessInfo processInfo] enableAutomaticTermination:@”Reason”];
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Running Applications with No Process

• When these criteria are met:
■ No visible windows
■ All open windows are restorable
■ Not the active app
■ No outstanding -disableAutomaticTermination: calls
■ The system is out of available memory

• The kernel may terminate the app’s process
■ The app will appear to still be running, and will relaunch 
transparently if needed
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Processes with No Running Application

• When these criteria are met:
■ No open windows
■ Not the active app
■ At least one window has ever been open
■ No outstanding -disableAutomaticTermination: calls

• The app will appear to quit, but its process will remain running
■ This lets it relaunch instantly
■ It will terminate if the system needs to reclaim its resources
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Demo
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Testing Automatic Termination in Your App

• Simulate system memory pressure to verify expected behavior
■ Use /System/Library/CoreServices/talagent -memory_pressure
■ Only use this for testing! It is not guaranteed to exist
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Recap: Adopting Automatic Termination

• Turn it on – Info.plist key or API
<key>NSSupportsAutomaticTermination</key>
<true/> 
OR
[[NSProcessInfo processInfo] setAutomaticTerminationSupportEnabled: YES]; 

• Wrap activity in paired -disable/-enable calls
[[NSProcessInfo processInfo] disableAutomaticTermination:@”Reason”];
[[NSProcessInfo processInfo] enableAutomaticTermination:@”Reason”];

• Test with simulated memory pressure
/System/Library/CoreServices/talagent -memory_pressure
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Imagine a World…

…that has no “Quit” menu item
…with no need to know if an app is running
…in which your parents never call and say, “My computer is slow”
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More Information

Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Documentation
Mac OS X Dev Center
http://developer.apple.com/devcenter/mac

Apple Developer Forums
http://devforums.apple.com
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What’s New in Cocoa Presidio
Tuesday 10:15AM

Auto Save and Versions in Mac OS X 10.7 Lion Pacific Heights
Tuesday 3:15PM

Related Sessions
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Labs

Cocoa, Auto Save, File Coordination, and Resume Lab App Frameworks Lab A
Thursday 2:00-4:00PM
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