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• Provide everyone a great user experience
• Automated user interface scripting

■ Internal testing
■ Power users
■ Development tools

• Section 508: Sales into government and education accounts

Accessibility Benefits

Provide everyone a great user experience
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Provide everyone a great user experience
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VoiceOver Your ApplicationFramework 
and Tools
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Lion Update
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Lion Technologies

• New user features accessible
• New framework features give you more for free
• New Accessibility Inspector
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Versions
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Autocorrect and Look Up
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Full Screen
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Sandboxing
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Sandboxing
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Sandboxing
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Sandboxing
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Overlay Scrollers
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Popovers
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View-based Table Views

• Use for complex table cells
• Connect the textField outlet to the 
primary text field
■ NSTableCellView has built-in outlet
■ Add outlet to custom views used 
as table cell views

• Use the table row insert / move / 
remove methods where appropriate
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Identifiers

• NSUserInterfaceItemIdentification protocol
-(NSString *) identifier

- (void) setIdentifier:(NSString *)id

• Implemented by NSWindow, NSView, NSCell and others
• Set in Interface Builder or in code
• Reported to accessibility clients as AXIdentifier
• Particularly useful for automated UI testing
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Accessibility Inspector

• Redesigned, simplified user interface
• Retained functionality of previous version
• Added new navigation features
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Accessibility Inspector
Demo
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Lion Technologies

• New user features accessible
• New framework features give you more for free
• New Accessibility Inspector
• Check AppKit release notes for more details
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Design Patterns to 
Simplify Mac Accessibility
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Design Patterns
For simplifying Mac accessibility

• Implied versus explicit information
• Approaches for building a custom view
• Accessibility client needs drive requirements
• Requirements drive a short list of things to consider
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Print
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Attribute Name Attribute Value

AXRole “AXButton”

AXRoleDescription “button”

AXParent window UI element

AXWindow window UI element

AXTopLevelUIElement window UI element

AXEnabled YES

AXFocused NO

AXTitle “Print”

AXPosition (1084, 227)

AXSize 32 x 23

Actions
AXPress

Print
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A Simple Custom View
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A Simple Custom View
Click to select
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A Simple Custom View
Click to select
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A Simple Custom View
Handles full keyboard navigation
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A Simple Custom View
Handles full keyboard navigation

38



View handles everything
Approach 1

• Drawing
■ Draw background, then draw 
each square

• Event handling
■ Calculate which color was hit 
based on the mouse location

SimpleView
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Objects used for substructure
Approach 2

• Drawing
■ Subelements know their 
own bounds

■ Draw background, then tell 
each swatch to draw itself

• Event Handling
■ Hit test each color swatch object

SimpleView

ColorSwatch

ColorSwatch
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ColorSwatchView

Compose three custom views
Approach 3

• Many things already handled
■ Hit testing
■ Keyboard focus
■ Basic accessibility support

ColorSwatchView

SimpleView
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NSSegmentedCell

Use framework classes where possible
Approach 4

• The custom view is essentially 
reinventing NSSegmentedControl

• Easiest path to accessible 
user interfaces

NSSegmentedControl

GreenGreenRedRed

42



Comparing Approaches

Approach 2
Objects used for substructure

SimpleView

ColorSwatch

ColorSwatch

Approach 1
View handles everything

SimpleView

ColorSwatchView

ColorSwatchView

SimpleView

Approach 3
Compose three custom views

NSSegmentedCell

NSSegmentedControl

Approach 4
Use framework class
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AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXUIElementRef
“AXApplication”

Apps Vend a Hierarchy of UI Elements
Each node in tree represents a UI element
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AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXUIElementRef
“AXApplication”

Apps Vend a Hierarchy of UI Elements
A node can support attributes, actions, and notifications 
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(NSAccessibility)

(NSAccessibility)

(NSAccessibility)

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

NSWindow

NSButtonCell

AXUIElementRef
“AXApplication”

NSApplication

Each Node Represents an Object
Each object implements the NSAccessibility protocol
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NSAccessibility Protocol

- (NSArray *)accessibilityAttributeNames;

- (id)accessibilityAttributeValue:(NSString *)attribute;

- (BOOL)accessibilityIsAttributeSettable:(NSString *)attribute;

- (void)accessibilitySetValue:(id)value
                 forAttribute:(NSString *)attribute;

- (NSArray *)accessibilityParameterizedAttributeNames;

- (void)accessibilityAttributeValue:(id)attribute
                 forParameter:(id)parameter;
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NSAccessibility Protocol

- (NSArray *)accessibilityActionNames;

- (NSString *)accessibilityActionDescription:(NSString *)action;

- (void) accessibilityPerformAction:(NSString *)action;

- (id)accessibilityHitTest:(NSPoint)point;

- (id)accessibilityFocusedUIElement;

- (BOOL)accessibilityIsIgnored;

NSAccessibilityPostNotification(id element, NSString *notification)
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AXUIElementRef
“AXApplication”

Clients Can Access Root of Tree
Top-down navigation via AXChildren attribute

NSApplication
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AXUIElementRef
“AXWindow”

AXUIElementRef
“AXApplication”

AXChildren

Clients Can Access Root of Tree
Top-down navigation via AXChildren attribute

NSWindow

NSApplication
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AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

NSWindow

NSButtonCell

AXChildren

AXUIElementRef
“AXApplication”

NSApplication

AXChildren

Clients Can Access Root of Tree
Top-down navigation via AXChildren attribute
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Things to Keep in Mind

• Every element needs a backing object

• Every element needs to know its children
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Approach 1
View handles everything

SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

Faux UI Element

Faux UI Element
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Approach 2
Objects used for substructure

SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

ColorSwatch

ColorSwatch
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Backing Object Design Choices

• Approach 1
■ Use ‘faux’ UI element objects
■ Create and return autoreleased objects to respond to accessibility 
requests

■ These objects are often ‘dumb’, relying on parent or ancestor for key 
pieces of information

• Approach 2
■ Accessibility structure matches subelement object structure
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Clients Can Access by Hit Testing
Bottom-up navigation via AXParent attribute

AXUIElementRef
“AXButton”

NSButtonCell
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Clients Can Access by Hit Testing
Bottom-up navigation via AXParent attribute

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXParent

NSWindow

NSButtonCell
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Clients Can Access By Hit Testing
Bottom-up navigation via AXParent attribute

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXParent

AXUIElementRef
“AXApplication”

AXParent

NSWindow

NSButtonCell

NSApplication
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Clients Can Access Size and Position
Returned in screen coorindates

AXPosition (1084, 227)

AXSize 32 x 23

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXParent

AXUIElementRef
“AXApplication”

AXParent

NSApplication

NSWindow

NSButtonCell
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Things to Keep in Mind

• Every element needs a backing object

• Every element needs to know its children

• Every element needs to know its screen bounds
and its parent
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SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

Faux UI Element

Faux UI Element

parent

parent

Approach 1
View handles everything
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SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

ColorSwatch

ColorSwatch

parent

parent

Approach 2
Objects used for substructure
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Geometry Design Choices

• Approach 1
■ Factor subelement bounds into a method

- (NSRect)boundsOfSubelement:(NSInteger)partNumber

• Approach 2
■ Subelements know their own bounds

• Use the same mechanism for:
■ View drawing
■ Hit testing
■ Accessibility reporting of size and position
■ Accessibility hit testing
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References Up The Hierarchy
Need to know parent and containing view

• These requirements exist regardless of approach taken
• An accessibility parent is always required

■ Designs sometimes do not include a parent backpointer

• Bounds are reported in screen coordinates
■ A UI element’s containing view is needed to convert local bounds
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Clients Rely on Keyboard Focus
By notification and querying the application

NSTextFieldCell

AXUIElementRef
“AXApplication”

NSWindow

NSApplication

NSTextFieldCell

AXUIElementRef
“AXTextField

AXUIElementRef
“AXTextField”

AXUIElementRef
“AXWindow”
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NSTextFieldCell

Clients Rely on Keyboard Focus
By notification and querying the application

AXUIElementRef
“AXApplication”

NSWindow

NSApplication

NSTextFieldCell

AXUIElementRef
“AXTextField

AXUIElementRef
“AXTextField”

AXUIElementRef
“AXWindow”
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Things to Keep in Mind

• Every element needs a backing object
• Every element needs to know its children and its parent
• Every element needs to know its rectangle
• Keyboard focus is incredibly important
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Changes in Focus

• For views, focus follows the first responder automatically
• Focus for subelements of a view is done in your code

■ Send notification that focused UI element has changed
■ Send zoom rectangle update notification

• Best to have a single control point where focus change happens
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Clients Can Interact with Your App
Performing actions and setting attribute values

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXUIElementRef
“AXApplication”

NSApplication

Perform Action: AXPress

NSWindow

NSButtonCell
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Things to Keep in Mind

• Every element needs a backing object
• Every element needs to know its children and its parent
• Every element needs to know its rectangle
• Keyboard focus is incredibly important
• Not all interaction has an NSEvent
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Handling Actions and Setting Attributes

• Factor things like triggering behavior and changing selection 
into general methods

• Call the general methods from both event handling methods 
and accessibility actions and attribute setters

71



Review

• When possible use standard controls and views
• Keep a handful of things in mind when building custom views

■ Every element needs a backing object
■ Every element needs to know its children and its parent
■ Every element needs to know its rectangle
■ Keyboard focus is incredibly important
■ Not all interaction has an NSEvent
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Resources

• Sample code
■ ImageMap
■ Dicey
■ Sketch+Accessibility

• Documentation
■ Accessibility Roles and Attributes Reference
■ Accessibility Programming Guidelines for Cocoa
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Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Documentation
Mac OS X Dev Center
http://developer.apple.com/devcenter/mac

Apple Developer Forums
http://devforums.apple.com

More Information
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View Based NSTableView Basic to Advanced Nob Hill
Thursday 10:15AM

What’s New in Cocoa Presidio
Tuesday 10:15AM

Related Sessions
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Accessibility Lab App Frameworks Lab D
Thursday 4:30-6:00PM

Labs
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