
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 127

Design Patterns to
Simplify Mac Accessibility

James Dempsey
Software Engineer, Cocoa Frameworks

1

Agenda

Overview

Lion Update

Design Patterns

2

3

Graphical User Interface

4

VoiceOver

5

6

7

8

9

10

• Provide everyone a great user experience
• Automated user interface scripting

■ Internal testing
■ Power users
■ Development tools

• Section 508: Sales into government and education accounts

Accessibility Benefits

Provide everyone a great user experience

11

Provide everyone a great user experience

12

VoiceOver Your ApplicationFramework
and Tools

13

Lion Update

14

Lion Technologies

• New user features accessible
• New framework features give you more for free
• New Accessibility Inspector

15

Versions

16

Autocorrect and Look Up

17

Full Screen

18

Sandboxing

19

Sandboxing

20

Sandboxing

21

Sandboxing

22

Overlay Scrollers

23

Popovers

24

View-based Table Views

• Use for complex table cells
• Connect the textField outlet to the
primary text field
■ NSTableCellView has built-in outlet
■ Add outlet to custom views used
as table cell views

• Use the table row insert / move /
remove methods where appropriate

25

Identifiers

• NSUserInterfaceItemIdentification protocol
-(NSString *) identifier

- (void) setIdentifier:(NSString *)id

• Implemented by NSWindow, NSView, NSCell and others
• Set in Interface Builder or in code
• Reported to accessibility clients as AXIdentifier
• Particularly useful for automated UI testing

26

Accessibility Inspector

• Redesigned, simplified user interface
• Retained functionality of previous version
• Added new navigation features

27

Accessibility Inspector
Demo

28

Lion Technologies

• New user features accessible
• New framework features give you more for free
• New Accessibility Inspector
• Check AppKit release notes for more details

29

Design Patterns to
Simplify Mac Accessibility

30

Design Patterns
For simplifying Mac accessibility

• Implied versus explicit information
• Approaches for building a custom view
• Accessibility client needs drive requirements
• Requirements drive a short list of things to consider

31

Print

32

Attribute Name Attribute Value

AXRole “AXButton”

AXRoleDescription “button”

AXParent window UI element

AXWindow window UI element

AXTopLevelUIElement window UI element

AXEnabled YES

AXFocused NO

AXTitle “Print”

AXPosition (1084, 227)

AXSize 32 x 23

Actions
AXPress

Print

33

A Simple Custom View

34

A Simple Custom View
Click to select

35

A Simple Custom View
Click to select

36

A Simple Custom View
Handles full keyboard navigation

37

A Simple Custom View
Handles full keyboard navigation

38

View handles everything
Approach 1

• Drawing
■ Draw background, then draw
each square

• Event handling
■ Calculate which color was hit
based on the mouse location

SimpleView

39

Objects used for substructure
Approach 2

• Drawing
■ Subelements know their
own bounds

■ Draw background, then tell
each swatch to draw itself

• Event Handling
■ Hit test each color swatch object

SimpleView

ColorSwatch

ColorSwatch

40

ColorSwatchView

Compose three custom views
Approach 3

• Many things already handled
■ Hit testing
■ Keyboard focus
■ Basic accessibility support

ColorSwatchView

SimpleView

41

NSSegmentedCell

Use framework classes where possible
Approach 4

• The custom view is essentially
reinventing NSSegmentedControl

• Easiest path to accessible
user interfaces

NSSegmentedControl

GreenGreenRedRed

42

Comparing Approaches

Approach 2
Objects used for substructure

SimpleView

ColorSwatch

ColorSwatch

Approach 1
View handles everything

SimpleView

ColorSwatchView

ColorSwatchView

SimpleView

Approach 3
Compose three custom views

NSSegmentedCell

NSSegmentedControl

Approach 4
Use framework class

43

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXUIElementRef
“AXApplication”

Apps Vend a Hierarchy of UI Elements
Each node in tree represents a UI element

44

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXUIElementRef
“AXApplication”

Apps Vend a Hierarchy of UI Elements
A node can support attributes, actions, and notifications

45

(NSAccessibility)

(NSAccessibility)

(NSAccessibility)

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

NSWindow

NSButtonCell

AXUIElementRef
“AXApplication”

NSApplication

Each Node Represents an Object
Each object implements the NSAccessibility protocol

46

NSAccessibility Protocol

- (NSArray *)accessibilityAttributeNames;

- (id)accessibilityAttributeValue:(NSString *)attribute;

- (BOOL)accessibilityIsAttributeSettable:(NSString *)attribute;

- (void)accessibilitySetValue:(id)value
 forAttribute:(NSString *)attribute;

- (NSArray *)accessibilityParameterizedAttributeNames;

- (void)accessibilityAttributeValue:(id)attribute
 forParameter:(id)parameter;

47

NSAccessibility Protocol

- (NSArray *)accessibilityActionNames;

- (NSString *)accessibilityActionDescription:(NSString *)action;

- (void) accessibilityPerformAction:(NSString *)action;

- (id)accessibilityHitTest:(NSPoint)point;

- (id)accessibilityFocusedUIElement;

- (BOOL)accessibilityIsIgnored;

NSAccessibilityPostNotification(id element, NSString *notification)

48

AXUIElementRef
“AXApplication”

Clients Can Access Root of Tree
Top-down navigation via AXChildren attribute

NSApplication

49

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXApplication”

AXChildren

Clients Can Access Root of Tree
Top-down navigation via AXChildren attribute

NSWindow

NSApplication

50

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

NSWindow

NSButtonCell

AXChildren

AXUIElementRef
“AXApplication”

NSApplication

AXChildren

Clients Can Access Root of Tree
Top-down navigation via AXChildren attribute

51

Things to Keep in Mind

• Every element needs a backing object

• Every element needs to know its children

52

Approach 1
View handles everything

SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

Faux UI Element

Faux UI Element

53

Approach 2
Objects used for substructure

SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

ColorSwatch

ColorSwatch

54

Backing Object Design Choices

• Approach 1
■ Use ‘faux’ UI element objects
■ Create and return autoreleased objects to respond to accessibility
requests

■ These objects are often ‘dumb’, relying on parent or ancestor for key
pieces of information

• Approach 2
■ Accessibility structure matches subelement object structure

55

Clients Can Access by Hit Testing
Bottom-up navigation via AXParent attribute

AXUIElementRef
“AXButton”

NSButtonCell

56

Clients Can Access by Hit Testing
Bottom-up navigation via AXParent attribute

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXParent

NSWindow

NSButtonCell

57

Clients Can Access By Hit Testing
Bottom-up navigation via AXParent attribute

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXParent

AXUIElementRef
“AXApplication”

AXParent

NSWindow

NSButtonCell

NSApplication

58

Clients Can Access Size and Position
Returned in screen coorindates

AXPosition (1084, 227)

AXSize 32 x 23

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXParent

AXUIElementRef
“AXApplication”

AXParent

NSApplication

NSWindow

NSButtonCell

59

Things to Keep in Mind

• Every element needs a backing object

• Every element needs to know its children

• Every element needs to know its screen bounds
and its parent

60

SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

Faux UI Element

Faux UI Element

parent

parent

Approach 1
View handles everything

61

SimpleViewAXUIElementRef

AXUIElementRef

AXUIElementRef

ColorSwatch

ColorSwatch

parent

parent

Approach 2
Objects used for substructure

62

Geometry Design Choices

• Approach 1
■ Factor subelement bounds into a method

- (NSRect)boundsOfSubelement:(NSInteger)partNumber

• Approach 2
■ Subelements know their own bounds

• Use the same mechanism for:
■ View drawing
■ Hit testing
■ Accessibility reporting of size and position
■ Accessibility hit testing

63

References Up The Hierarchy
Need to know parent and containing view

• These requirements exist regardless of approach taken
• An accessibility parent is always required

■ Designs sometimes do not include a parent backpointer

• Bounds are reported in screen coordinates
■ A UI element’s containing view is needed to convert local bounds

64

Clients Rely on Keyboard Focus
By notification and querying the application

NSTextFieldCell

AXUIElementRef
“AXApplication”

NSWindow

NSApplication

NSTextFieldCell

AXUIElementRef
“AXTextField

AXUIElementRef
“AXTextField”

AXUIElementRef
“AXWindow”

65

NSTextFieldCell

Clients Rely on Keyboard Focus
By notification and querying the application

AXUIElementRef
“AXApplication”

NSWindow

NSApplication

NSTextFieldCell

AXUIElementRef
“AXTextField

AXUIElementRef
“AXTextField”

AXUIElementRef
“AXWindow”

66

Things to Keep in Mind

• Every element needs a backing object
• Every element needs to know its children and its parent
• Every element needs to know its rectangle
• Keyboard focus is incredibly important

67

Changes in Focus

• For views, focus follows the first responder automatically
• Focus for subelements of a view is done in your code

■ Send notification that focused UI element has changed
■ Send zoom rectangle update notification

• Best to have a single control point where focus change happens

68

Clients Can Interact with Your App
Performing actions and setting attribute values

AXUIElementRef
“AXWindow”

AXUIElementRef
“AXButton”

AXUIElementRef
“AXApplication”

NSApplication

Perform Action: AXPress

NSWindow

NSButtonCell

69

Things to Keep in Mind

• Every element needs a backing object
• Every element needs to know its children and its parent
• Every element needs to know its rectangle
• Keyboard focus is incredibly important
• Not all interaction has an NSEvent

70

Handling Actions and Setting Attributes

• Factor things like triggering behavior and changing selection
into general methods

• Call the general methods from both event handling methods
and accessibility actions and attribute setters

71

Review

• When possible use standard controls and views
• Keep a handful of things in mind when building custom views

■ Every element needs a backing object
■ Every element needs to know its children and its parent
■ Every element needs to know its rectangle
■ Keyboard focus is incredibly important
■ Not all interaction has an NSEvent

72

Resources

• Sample code
■ ImageMap
■ Dicey
■ Sketch+Accessibility

• Documentation
■ Accessibility Roles and Attributes Reference
■ Accessibility Programming Guidelines for Cocoa

73

Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Documentation
Mac OS X Dev Center
http://developer.apple.com/devcenter/mac

Apple Developer Forums
http://devforums.apple.com

More Information

74

View Based NSTableView Basic to Advanced Nob Hill
Thursday 10:15AM

What’s New in Cocoa Presidio
Tuesday 10:15AM

Related Sessions

75

Accessibility Lab App Frameworks Lab D
Thursday 4:30-6:00PM

Labs

76

77

