Latent Semantic Mapping

Exposing the Meaning behind Words and Documents

Session 136

Matthias Neeracher, Dr. Sc. Techn.

Senior Software Engineer

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session Overview

- What is LSM?
- How does it work?
- Using LSM
- Case studies
- Your application here
- Q&A

What Is Latent Semantic Mapping?

A technology to analyze text documents according to their meaning and classify them by topic

...allow me to demonstrate

Demo A simple LSM example

Some LSM Applications

- Junk mail filter
 - Assess whether mail message is legitimate or spam
- Parental controls
 - Assess whether web page contains explicit words or other objectionable material
- Kana to Kanji conversion
 - Use topic of a document to disambiguate between ambiguous characters
- Localization
 - Use underlying topic of discourse to aid in string translation

How Does It Work?

Jerome Bellegarda, Ph.D.

Apple Distinguished Scientist

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

It Is All in the Name!

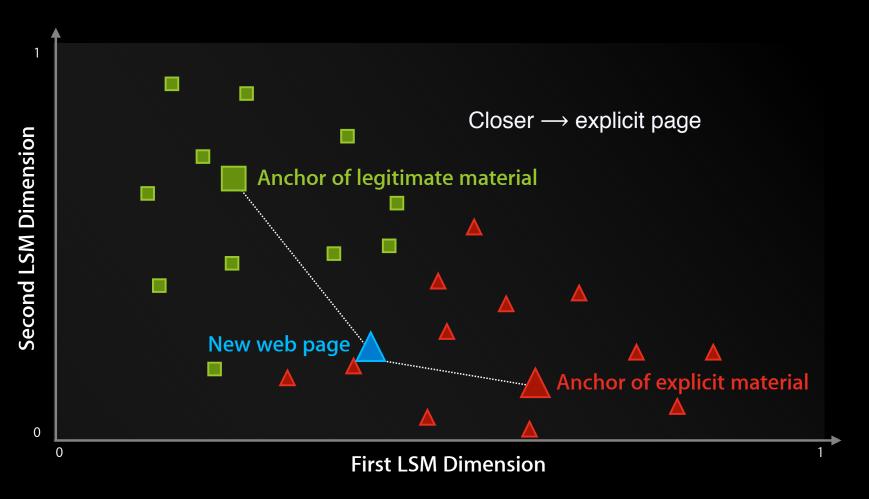
- "Mapping"
 - Represent words and documents as points in multidimensional space
 - From discrete to continuous entities
- "Semantic"
 - Mapping aimed at uncovering global fabric of language
 - Based on overall content/meaning of documents
- "Latent"
 - Meaning not obtained from a dictionary, but inferred directly from data
 - Based on word co-occurrences, automatically handle synonyms and multiple senses

Latent

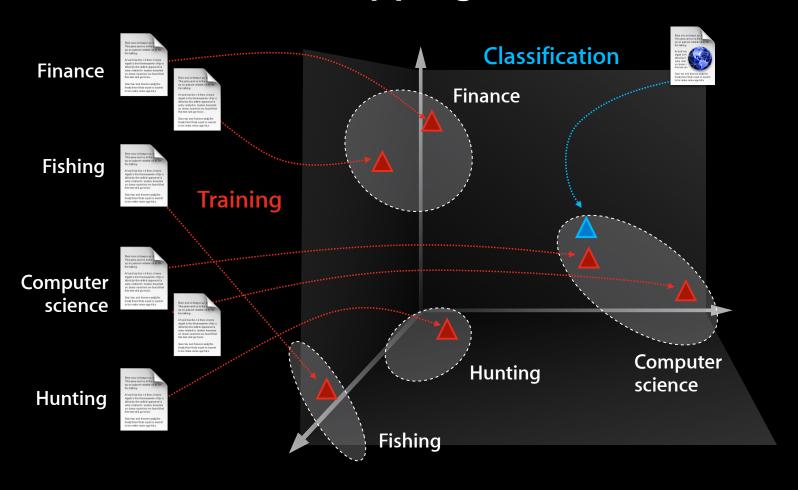
- Word co-occurrences
 - Words A and B present in the same document
 - Words A and C present in doc 1, words B and C present in doc 2
 - Words A and B "close" in LSM space
- Discover synonyms
 - "car" vs. "automobile"
 - "bank" vs. "financial institution"
- Discover multiple senses
 - "bank" + "rate" (→ finance)
 - "bank" + "river" (→ fishing)

Semantic

- Example: parental controls
 - Assess whether web page is free of objectionable material
 - Separate "sex toys" from "sex education" (using underlying meaning)
 - Can leverage closeness in LSM space
 - "sex" + "toys" (→ probably objectionable)
 - "sex" + "education" (→ probably ok)
- LSM Implementation
 - Use two categories (one for explicit material, one for legitimate material)
 - Define two semantic anchors in LSM space
 - Evaluate each incoming web page against these two anchors

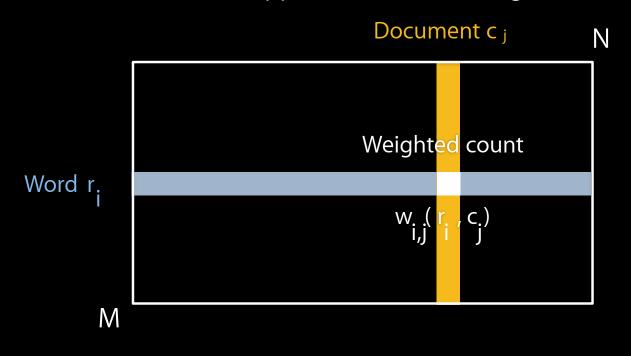


Mapping



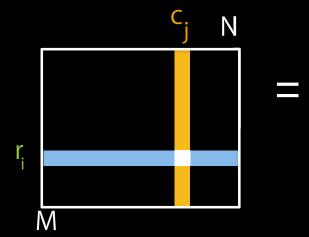
It Is Not (All) Magic! Basic info

- How often does each word appear in each document?
- How often does each word appear in entire training data?

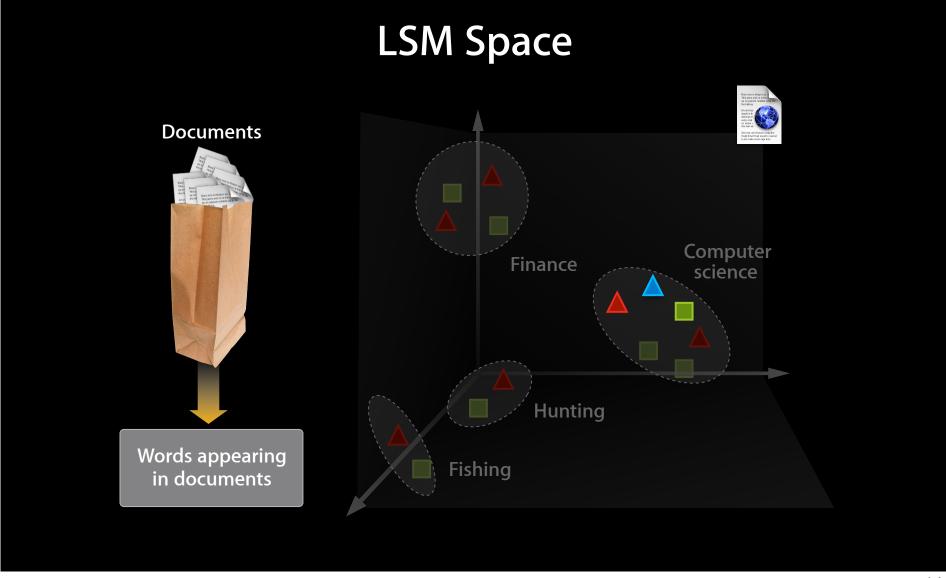


Singular Value Decomposition (SVD)

$$W_{(M\times N)} =$$



R: Number of dimensions retained



Caveats

- Intrinsic descriptive power
 - Shallow sense of "semantic" (tied to co-occurrences)
 - No actual "natural language understanding"
 - Word order is ignored ("bag of words" modeling)
 - Local constraints need to be added explicitly
- Critical importance of training data
 - Ambiguity: "river bank" and "Bank of Cupertino" in same doc?
 - Writing style: Wall Street Journal vs. Associated Press
- Offline training cost (in some apps)
 - SVD can take a long time with large matrices

Clustering

- Problem of ill-defined categories
 - In Kana to Kanji conversion, topic information is used to disambiguate between ambiguous characters
 - Analogous to "the tale of a princess" vs. "the tail of a peacock"
 - But Japanese corpus contains over 300,000 documents
 - How to best extract and leverage topic information?

Clustering (Cont.)

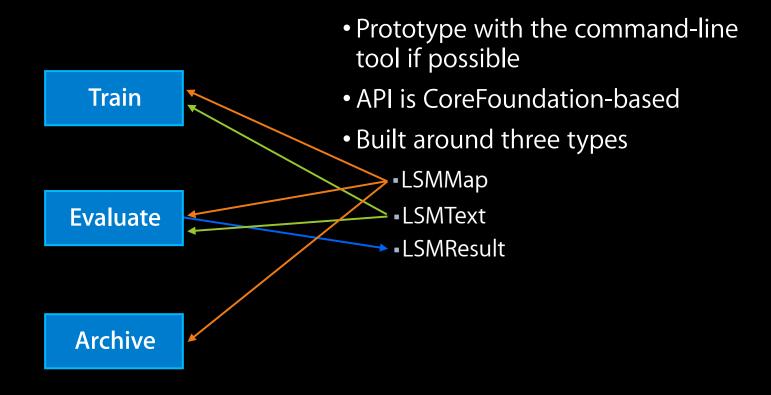
- Two solutions
 - Manual assignment of documents into topics (categories)
 - LSM clustering
 - Initial LSM space where each document is a separate category
 - Data-driven clustering to reduce number of categories
 - (Optionally) new LSM space using clustered data

Two Implementations

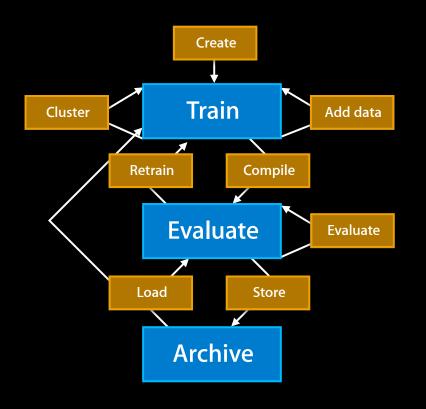
- K-means clustering
 - Pick initial cluster centroids ("seeds")
 - Compute distances to these centroids
 - Adjust centroids accordingly and iterate
 - Caveat: sensitive to initial cluster assignment
- Agglomerative clustering
 - Compute all pair-wise distances between points
 - Merge closest pair, replace by its centroid
 - Adjust affected distances and iterate
 - Caveat: prohibitive for large data sets

Using the LSM API

Basics of LSM Programming



Using LSM Maps



LSMMapCreate

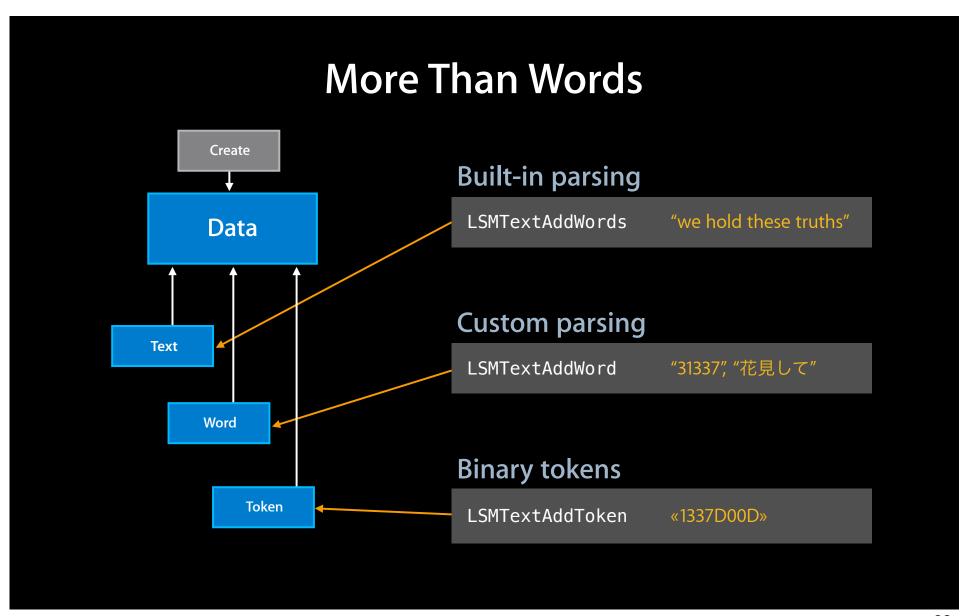
LSMMapAddCategory LSMMapAddText

LSMMapCompile LSMMapStartTraining

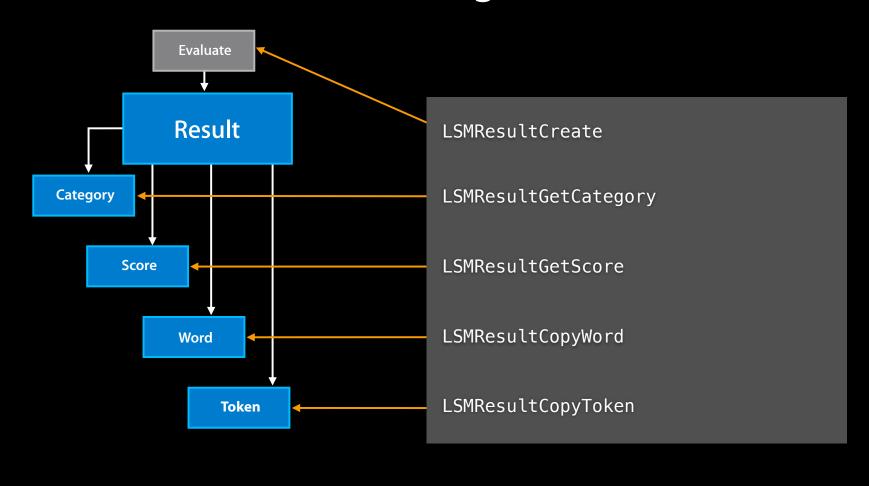
LSMResultCreate

LSMMapWriteToURL LSMMapCreateFromURL

LSMMapCreateClusters LSMMapApplyClusters



Evaluating a Text



Case Studies

Case Study: Junk Mail Filtering

- Two categories: legitimate/junk
- Biased toward legitimate

```
LSMResultGetCategory(res, 0) == kJunk
&& LSMResultGetScore(res, 0) > kJunkThreshold
```

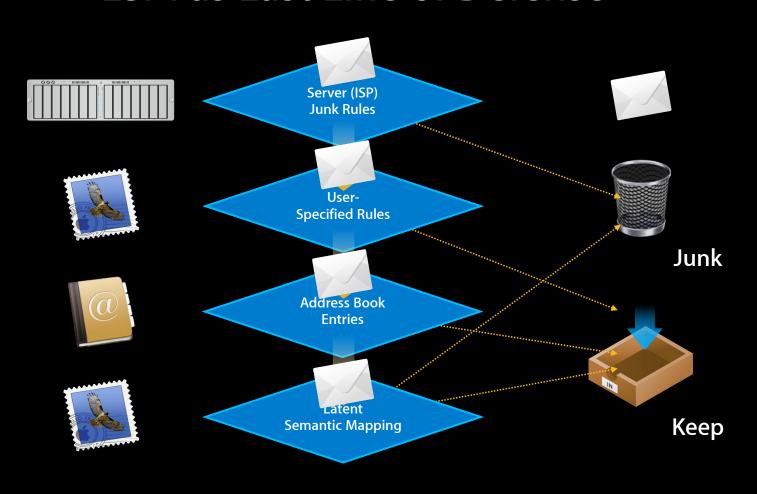
• Parsing can be difficult: m.o.n.e.y, víåg®ä

```
LSMTextAddWords(text, words, NULL, kLSMTextApplySpamHeuristics);
```

Map contains all sorts of offensive words

```
LSMMapCreate(kCFAllocatorDefault, kLSMMapHashText);
```

LSM as Last Line of Defense



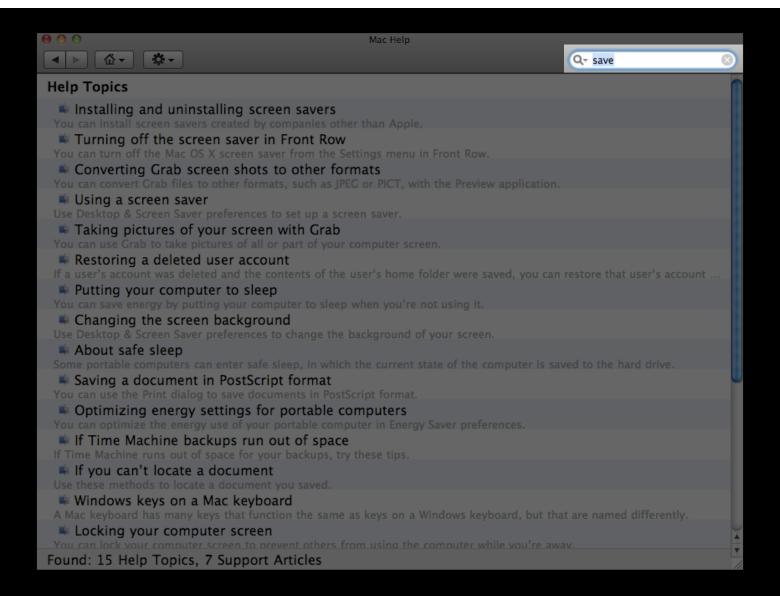
Case Study: Help

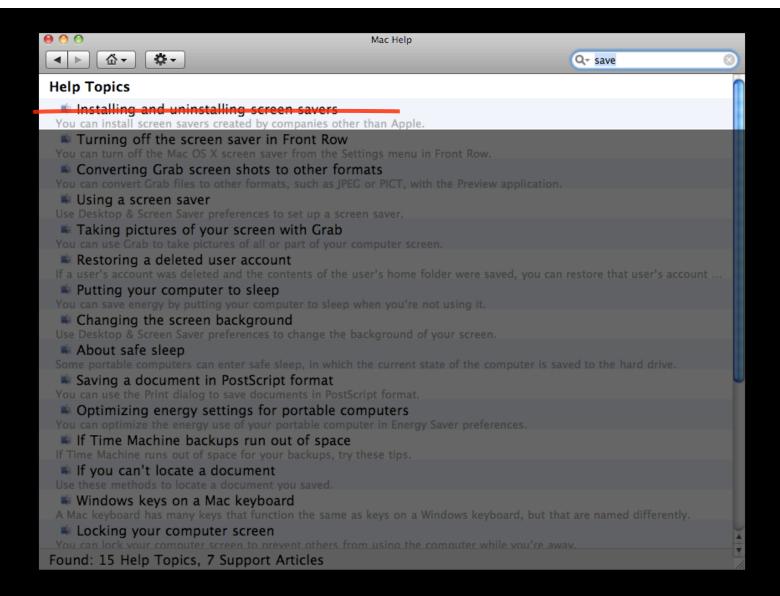
Kim Silverman, Ph.D. Principal Research Scientist

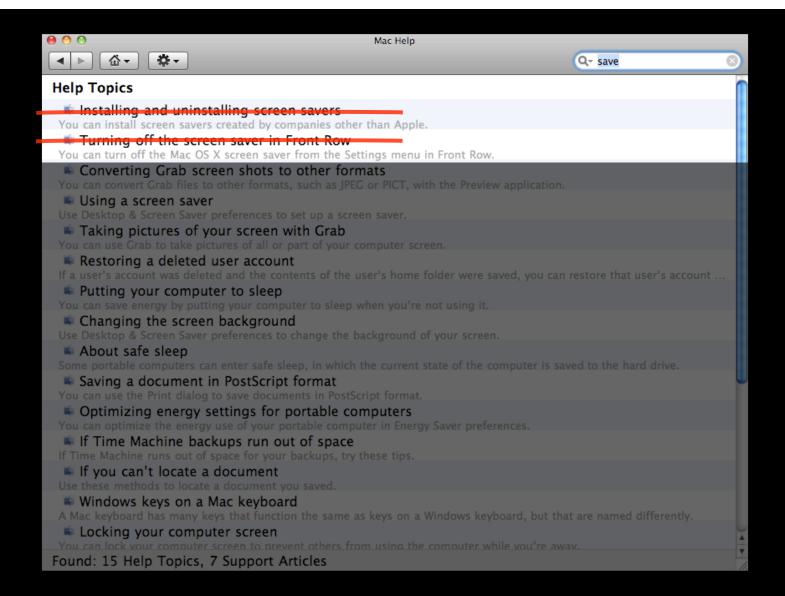
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

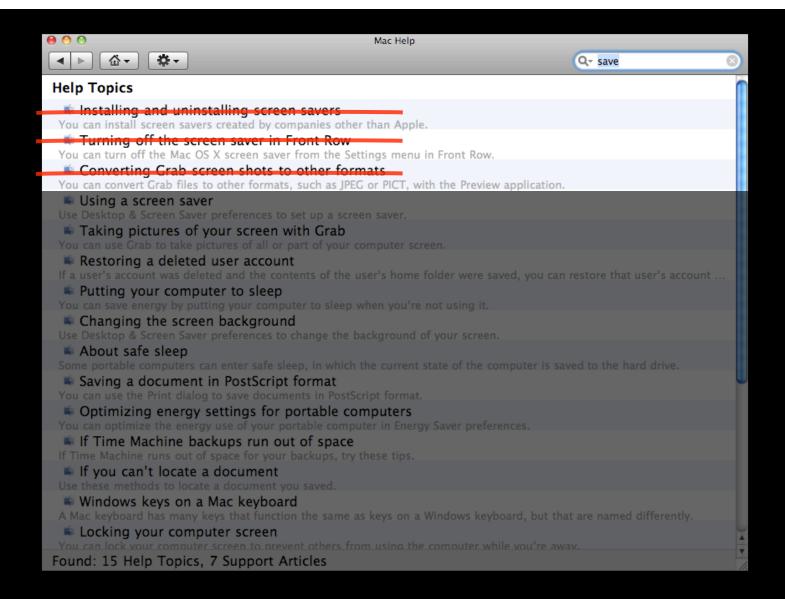
Problem

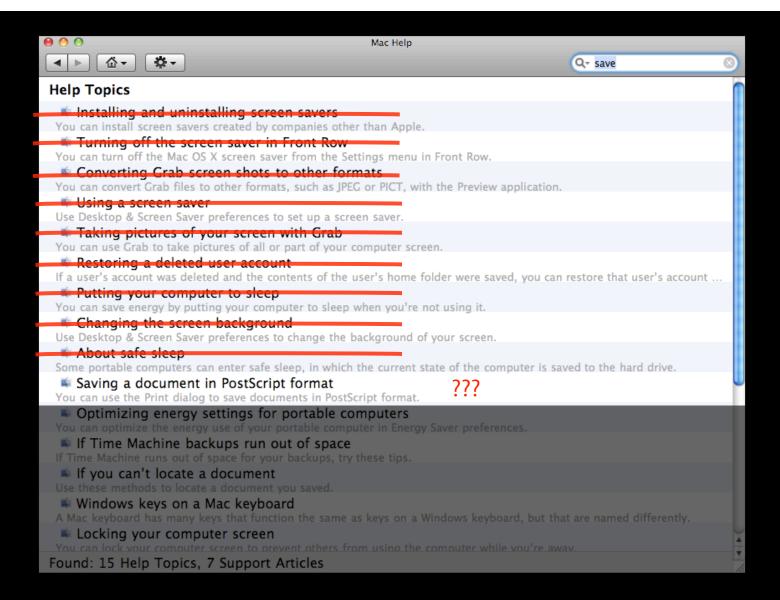
• Unsatisfying results when people type queries to help







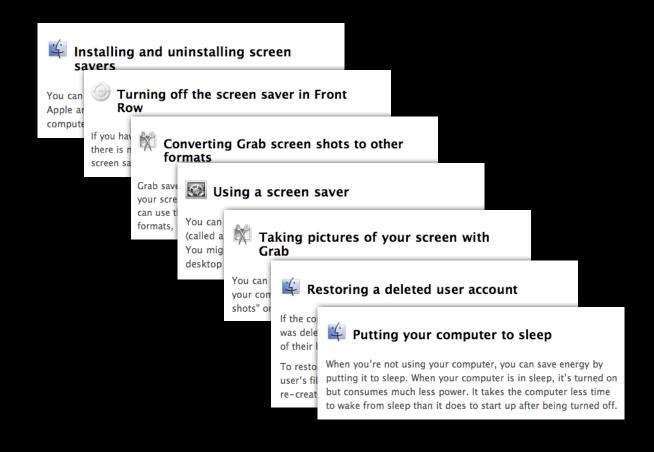




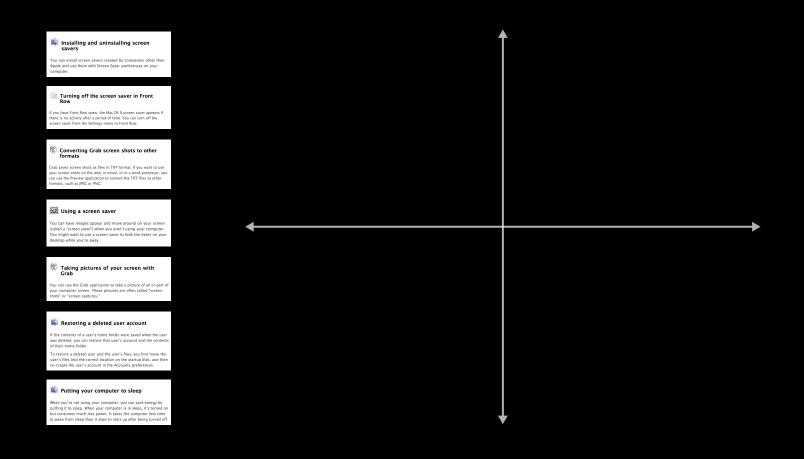
Current Approach

- Look for documents that contain words in the query
- Use hand-inserted synonyms for common typos, different forms of words, etc.

Latent Semantic Mapping

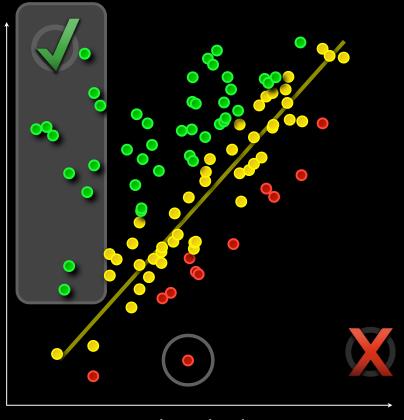


Latent Semantic Mapping



Latent Semantic Mapping

100 Queries



LSM Search Relevance

- LSM better
- About the same Keyword better

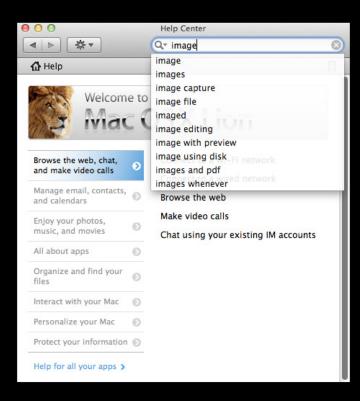
Keyword Search Relevance

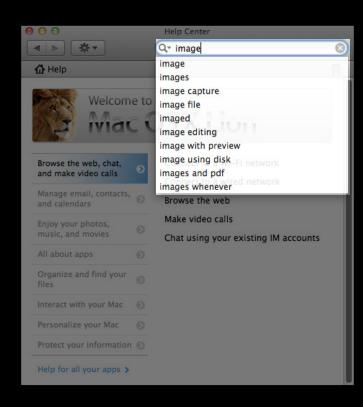
How to Improve LSM Results

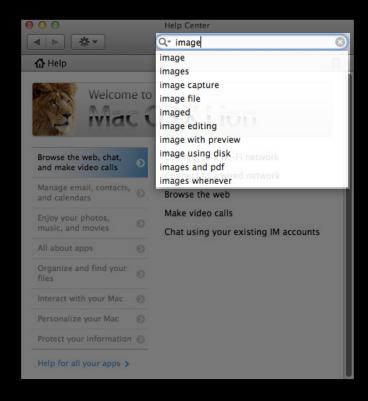
Preprocessor Preprocessor Results

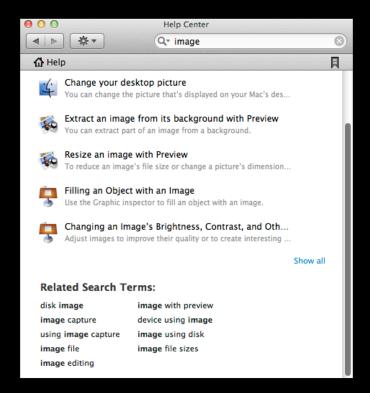
Preprocessing Text

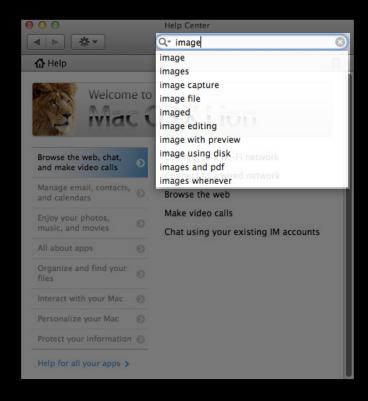
- Use n-grams
 - Word pairs, word triplets
 - e.g., "double click" vs. "key click"
- Remove unwanted/irrelevant text
 - HTML tags
 - "click here", "return to contents"
- Stemming
 - "save" -> saves, saved, saving
 - But not "saver"

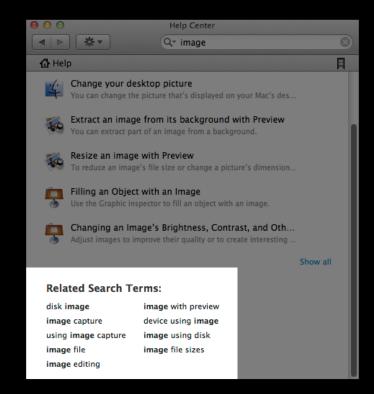












Filter nearest n-grams

Clean up your workspace

Set up your workspace

Filter nearest n-grams

Clean up your workspace

Set up your workspace

Making LSM Work for You

What Can LSM Categorize for Me?

- Bookmarks
- RSS feeds
- Books/CDs/DVDs (by fetching reviews/abstracts)
- Wines and cheeses
- DNA sequences

•

Guidelines—**General**

- Can LSM handle the task?
 - Problem is syntactic in nature
 - "Find dates, times, email addresses, etc."

"Sort documents by topic"

- Are the categories distinct enough?
 - Economy vs. business
 - Economy vs. entertainment

Guidelines—Testing

- Validation data
 - Partition training data into 10 random chunks
 - Train on first nine chunks, test on last (held out)
 - Repeat sequentially (round-robin) and average results

Guidelines—Testing (Cont.)

- What if outcome looks strange?
 - Try again with (short) stopword list
 - Words appearing roughly equally in all categories ("the", "in")
 - Try experimenting with number of dimensions
 - Default is number of categories, but for natural language problems use between 100 and 300

Guidelines—Training

- Quality of training data
 - Representative of full breadth of domain
 - As balanced as possible in each category

Guidelines—Training (Cont.)

- Quantity of training data
 - Large enough to cover variability
 - Rule of thumb for large vocabulary applications
 - Preferably > 30,000 unique words
 - Larger as more categories are added
 - Larger still if data changes over time (for example, news)

Final Recommendation

Integrate LSM with other source(s) of knowledge

- LSM tends to complement other techniques
 - It often can improve the robustness of the overall system
- Example 1: Junk Mail filter
 - Complements (instead of replacing) white lists, black lists, and handwritten rules
- Example 2: Kana to Kanji
 - Conversion uses LSM as an additional source of information to be exploited in final decision

Go Forth and Map Some Text!

For More Information...

More Information

Bill Dudney

Application Frameworks Evangelist dudney@apple.com

Mailing List

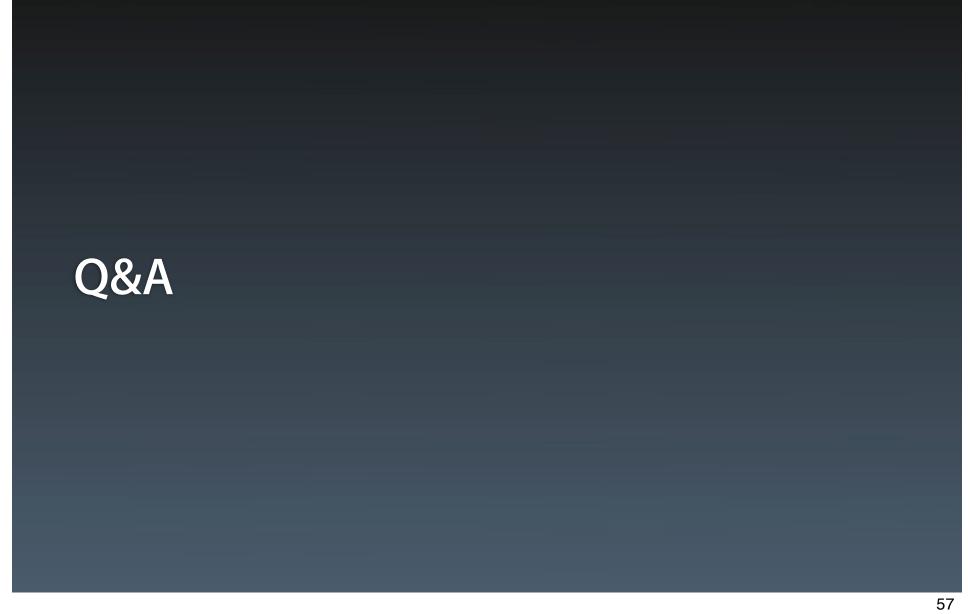
Latent Semantic Mapping Mailing List http://lists.apple.com/mailman/listinfo/latentsemanticmapping

Documentation

Latent Semantic Mapping Reference http://developer.apple.com/documentation/TextFonts/Reference/LatentSemanticMapping/index.html

Apple Developer Forums

http://devforums.apple.com



É WWDC2011