Core OS Networking

Key Principles

Session 200

Brett R. HalleSenior Director, CoreOS

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

How Did We Get Here?

Core OS Networking

Applications

Foundation

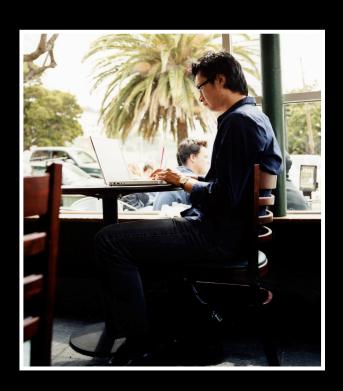
CFNetwork

UNIX

Darwin Foundation

← We are here

New for Lion and iOS 5


IPv6—Not Exactly New, But...

It appears we have run out of IPv4 addresses

- Original support for IPv6 back in Mac OS 10.1
 - iOS added support in iOS 4
- A lot of updates, fixes, and enhancements
 - RFC 5006—Router Advertisement for DNS
 - DHCPv6, stateful and stateless
 - Temporary addresses for privacy
 - CFSocketStream picks best path (IPv4 vs. IPv6) automatically
 - IETF Advanced Sockets API
 - All ready for v6 day

Captive Networks

- What is a captive network?
 - "Walled garden" for Wi-Fi Hotspots
 - e.g., Starbucks, etc.
- Supports WISPr and other authentication methods
- OS detects and remembers captive networks
- Support now in Lion

SSL VPN

- Support added in iOS 4
- Cisco, Juniper, and F5 clients
- OS-level plumbing
 - Now on Lion
- Vendor-specific feature sets
- Clients available via the App Store

Other Networking Enhancements

- IGMPv3, Multicast Group Management Protocol
- Packet Filter (PF)
 - IPFW no longer being enhanced or supported by the community
- Traffic throttling
 - Background processes on iOS 5
 - Low priority traffic on Lion

Other Networking Enhancements

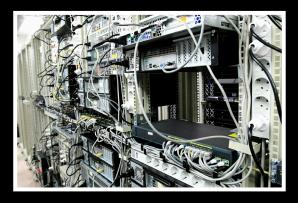
- Profile-based configuration for VPN and 802.1X on Lion
 - Same profile can be used for Lion and iOS
- 802.1X autodetect/autoconnect for wired Ethernet on Lion
- Scoped interfaces (multihomed)
 - DNS, routing, proxies
- Improved Back to My Mac connectivity, NAT handling

Tools

- nettop
- Network Link Conditioner
- Remote packet capture for iOS

Core OS Networking—In Depth

Pacific Heights Wednesday 11:30AM


Today's Challenge

- 425,000+ apps
- Significant percentage are network-enabled
- Mobility is not the exception, it is the norm

Networking Used to Be Static...

- System administrators configured everything
- Total control of your local networking environment

Nothing Is Static Anymore

- Network configuration is completely dynamic and can be assumed to change
- At any time and for virtually any reason
 - Signal strength
 - Cell availability
 - Wi-Fi availability
 - Public and private Wi-Fi environments
 - VPN connectivity

"Any sufficiently advanced technology is indistinguishable from magic."

Arthur C. Clark

Networking Key Principles

Write to the Highest Level APIs That You Can

Foundation

CFNetwork

Darwin Foundation

- Future-proof your app
- Allow the framework to deal with IPv4/IPv6 address families
- Do not depend on transport-level details...they might change
- You will automatically get the benefits of framework and infrastructure improvements
- However, one size does not fit all

Do Not Assume Network Is Free

- 3G and/or Wi-Fi may be fee-based
 - Usage may be charged by time or data
- 3G may be roaming
- Power is not free either

The Network Is a Limited Resource

- Transmit only what you need to
- Consider compressing data
- Cluster small packets
- Cache intelligently
- Consider performance
 - Bandwidth vs. latency

Beware of Buffer Bloat

- Oversized buffers can increase latency
- Cascading oversized buffers are seriously impacting our networking experience
 - See: http://www.bufferbloat.net
- iOS 5 and Lion will automatically calculate optimal sizes for best performance

Robustly Deal with Network Errors

- Connections will go down
- Packets will get dropped
- Timeouts will occur
- Respond to backgrounding intelligently
 - Close things down that you can
- Hide problems if possible
- Test using the Network Link Conditioner
- Nothing beats real-world testing

Networking Is Asynchronous by Definition

- Do not put synchronous calls on main thread
 - Your app will get shot
- Event-driven APIs give a better experience
 - (e.g., Bonjour, Foundation APIs using RunLoop event sources, etc.)
- UI should reflect this reality

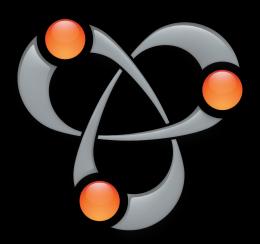
Link Quality Is Completely Variable

- Wi-Fi
- 3G
- Layered networks (Wi-Fi on cellular or worse)
- Expect changes in:
 - Speed
 - Latency
 - Packet loss

Deal with No-Network Conditions

- Network will not always be available
- Might go away at any time
- Your app should behave intelligently, gracefully
- Consider an offline mode
 - Cached content
 - Limited access
- No annoying alerts

Assume Network Is Insecure


- May be using public Wi-Fi, Hotspots, etc.
 - Might even be using spoofed network
- Do not transmit user information in the clear
- Use end-to-end security, Transport Level Security (TLS), whenever possible

Be IPv4/6 Agnostic

- Use CFNetwork and higher, when possible
- Do not assume address types or sizes
- Be prepared for multiple DNS address resolution responses
- Check open source and older code for IPv6 compatibility
- Test on an IPv6-only network

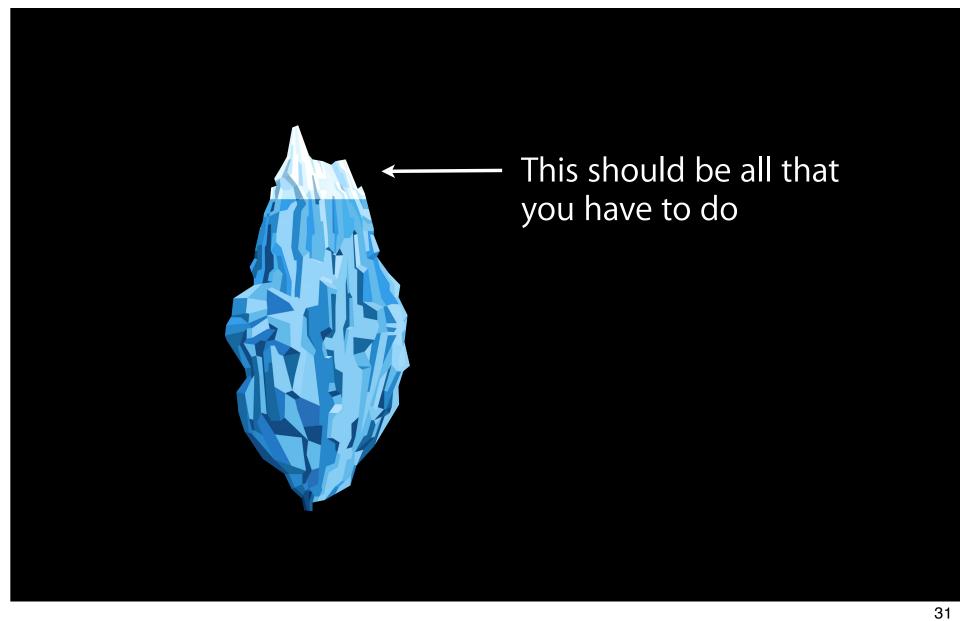
Use Bonjour to Advertise and Find Services

- It is a dynamic world; nobody remembers IP addresses
- Can you remember your IPv6 address?

(2001:0200:0000:8002:0203:47ff:fea5:3085)

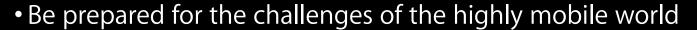
- Bonjour provides service advertisement, browsing, and resolving APIs
- Peer to peer
- On Mac OS, Bonjour also provides sleep proxy support

Power Is as Important as Performance



- Portability means batteries
- Use of the network powers up the radio(s)
 - Bursts are better than trickles
- Use push notifications
- Sleep proxy support helps on Snow Leopard and Lion
- Reachability APIs can help

Assume Change at Any Time



- Anything can and will change
 - Available interfaces
 - Signal strength and quality
- Do not leave connections open longer than necessary
- Use Reachability APIs

Summary

- It is all about networking...
 - Networked apps add huge value for your customers
 - They expect a "connected" experience

- Write your app assuming nothing is static
- Anything and everything about the network will change
- Test. Test. Test.

Help keep the illusion of magic...

More Information

Paul Danbold

Evangelist danbold@apple.com

Documentation

Networking http://developer.apple.com/networking

Apple Developer Forums http://devforums.apple.com

Related Sessions

Core OS Networking—In Depth	Pacific Heights Wednesday 11:30AM
Bonjour Network Discovery and Connectivity	Pacific Heights Thursday 11:30AM

Labs

Network Lab	Core OS Lab A Tuesday 11:30AM
Network Lab	Core OS Lab A Wednesday 2:00PM
Network Lab	Core OS Lab A Thursday 4:30PM

ÉWWDC2011