
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Magical and Revolutionary Desktop Security

Session 203

Introducing App Sandbox

Ivan Krstić
Core OS Security Samurai

1

A Brief History Lesson

2

Yesterday

• Took 30 years to reach 100K viruses
in 2004

• In 2008, known malware count
surpassed a million

• Today, tens of thousands of unique
malware samples a day

• Mac users mostly spared

3

Data Theft

• In 2005, practically no known data-theft malware spread by email
• By 2007, started seeing over 5000 samples in the wild
• Cumulative annual growth rate of 620%

4

No One Is Keeping Attacks at Bay

• CSIS Commission on Cybersecurity for the 44th Presidency
• 2007: DoD, State, DHS, Commerce, and NASA all suffered “major
intrusions” by “unknown foreign entities”

• Unclassified email of secretary of state compromised

5

No One Is Keeping Attacks at Bay

• State lost terabytes of information
• DHS: Break-ins in several divisions, including TSA
• NASA: Email restrictions before launches, launcher
designs compromised

6

What Is Going On?

• People do not need a physics degree to drive a car safely
• Yet people seem to need a CS degree to safely use a computer

7

Modern Car Safety

• Mandatory standardized crash
testing performed by the
government

• Redundant sensors and computers
• Damage containment
• When all else fails, there are
seat belts and airbags

8

Modern Computer Security

• Defender must protect everything
at all times; attacker must breach
one protection at any time

• Emphasis on damage prevention
(ASLR, NX, anti-virus), not
containment

• Where is the seat belt for your
computer?

• One thing goes wrong, game over

9

The Unfortunate Assumption

• All programs should execute with the full privileges
of the executing user, or…

• Security should exist between different users, but not
different programs

10

The Unfortunate Assumption is 40 years old

International packet-switched network The web

Ritchie, Thompson: The program is the user TCP/IP WAN

Tracing the Family Tree

1971 1978 1983 1991

11

Untrusted Code?

• 1971: No conceivable way for code
to appear on a machine

• Physically put all code there via
tape or punched card

• Today: Untrusted code on every
visited website

12

Sticks and Stones

• The Unfortunate Assumption
predates personal computing

• Need damage containment,
regardless of cause

• Not just for malicious attacks
■ Unintentional coding errors
■ Misbehavior

13

Making a Better Wheel

• In the last 20 years, we learned what does not work
• The Unfortunate Assumption does not work
• Neither does security UI
• “If you’re explaining, you’re losing”
• If you have to show words to the user, there is no security

14

• Security dialogs are a black box;
clicking Permit or Allow
maximizes the likelihood of
getting work done

• Pavlovian conditioning to
ignore security

What Users See

15

Security UI

• When is the last time your
airbag asked you for permission
to deploy?

• “We’d like to detonate the
nitroguanidine charge.
Accept or Deny?”

• “The identity of the rhombohedral
sodium azide could not be
verified. Retry or Abort?”

16

What Does Work?

• Principle of Least Privilege
• PDP-11/70 had no segmented
memory. a.out!

• Eventually: Kernel/user separation,
later user/process separation
within userland

• Desktop OSes caught up with Mac
OS X and Windows NT

17

What Does Work?

• x86 CPU rings, protected memory, user separation, process separation
• Each iteration reduced privilege
• But the reduction stopped at processes

18

Processes and Privileges

• A user’s programs today run with that user’s full privileges
• No way to deliver fine-grained privileges to parts of a process (sub-PID)
• One part of a program needs privileges, all of the program has it
• Certainly true in C—arbitrary pointers

19

A Tale of Modern Times

20

Today

• The Internet brought many
apps, many vendors

• Trivial to download apps
• Computers are always on
a network

• Security challenge: Isolate
data between programs

21

Mac OS X Challenge

• Filesystem-centric user experience
• Apps have always run with full user privileges
• Developers can not express intended app behavior
• OS can’t construct a last line of defense

22

Status Quo

• WatchGrassGrow.app can read all
your email and send it to Croatia

• Did I mention I’m Croatian?

23

Software Reality

• Complex systems will always have vulnerabilities
■ Complexity is never decreasing

• Single buffer overflow can ruin your user’s day
■ Not just in your code, but in all your frameworks and libraries

• No limit on exploit damage

24

Complexity: An Aside

1977 1981 2005 2010

1
Function
controller

GM Oldsmobile
Toronado

~50
kLOC per car

GM

1.7
mLOC

USAF F-22 Raptor

5.7
mLOC

USAF F-35 JSF

25

The Punchline
Complexity

• Modern cars: 30-100 ECUs, ~100
mLOC total

26

The Situation Is Untenable

• String of high-profile breaches and compromises recently
across a number of companies

• Personal information exposed, financial and identity fraud
• Theft of company property, danger to national security
• Users are hurting

■ Time
■ Money
■ Sense of comfort and enjoyment of technology

27

A Better Model

28

iOS Sandbox

• Apps cannot touch other apps
• Apps cannot touch the system
• Limits damage of exploits,
mistakes

• Trivial app uninstall
• Key iOS security element

29

Sandbox
Implementation

• Almost fully low-level SPI
• Gates filesystem access, network access, signals, Mach and IOKit
lookups, etc.

• Kernel access control mechanism based on MAC framework
• Strong daemon adoption in Mac OS X

30

Sandbox and Desktop GUIs

• Requires static knowledge of required resources
• Enforces restrictions—does not make it easier to separate privilege
• Inappropriate for desktop apps

31

App Sandbox

32

App Sandbox

• Secure GUI apps for Mac OS X
• Support Mac App Store
• Limit exploit exposure
• Control filesystem, network access
• Can not steal, corrupt, or delete user data
• Sandbox for enforcement, deep changes throughout the OS

33

App Sandbox
 Design Goals

• Drive security policy by user intent
• Damage containment when all else has failed
• Make it easy for developers to prevent confused deputies and
better separate privilege

• No perfect security, but significantly elevates the bar

34

Mac App Store Restrictions

Prohibition Policy App Sandbox

Filesystem sprawl ! !

Installing other apps ! !

Root privileges ! !

Kernel extensions ! !

Undocumented functionality ! !

35

Key Ideas

• Developer expresses what an app is supposed to be able to do
• Each app runs in its own container

■ Bound to code identity

• User controls access to documents
■ Access does not persist across application relaunch
■ Special cases (recent items, drag and drop) work automatically

36

Key Components

Entitlements1.

Containers2.

Kernel Enforcement3.

Powerbox4.

XPC Services5.

37

Entitlements

• What apps can do is determined by the developer-specified
entitlements in the code signature

• Just a property list, editable in Xcode
• Simple, easy to understand
• Very different than Android permission model

■ Less than 15 total entitlements in Lion

38

Entitlements

• Filesystem
■ User-selected files, Downloads folder

• Network client, server
• Devices

■ Camera, microphone, printing, USB bus

• Personal information
■ Address book, calendars, location

• Assets
■ Music, movies, pictures

39

Key Components

Entitlements1.

Containers2.

Kernel Enforcement3.

Powerbox4.

XPC Services5.

40

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

App
open(“/Users/krstic/Library/foo”)NSHomeDirectory()

“/Users/krstic/Library/Containers/App”

41

Key Components

Entitlements1.

Containers2.

Kernel Enforcement3.

Powerbox4.

XPC Services5.

42

Kernel Enforcement

• Same mechanism as iOS
• Only container and certain system locations accessibly by default
• No direct access to the user home directory

43

Key Components

Entitlements1.

Containers2.

Kernel Enforcement3.

Powerbox4.

XPC Services5.

44

Powerbox

• Cocoa NSOpenPanel/NSSavePanel
• Clear declaration of user intent
• Should drive security policy
• Trusted mediator called Powerbox

45

App

~/Documents

NSOpenPanel

Powerbox

AppKit

AppKit

46

Key Components

Entitlements1.

Containers2.

Kernel Enforcement3.

Powerbox4.

XPC Services5.

47

XPC Services

• Extremely easy app and framework privilege separation
• Services have their own entitlements
• No fork/exec—process lifecycle managed by XPC
• Only accessible to their main app

48

Adium
Putting It All Together

49

Adium

• Popular open source IM client
• Full-featured
• 250 source files, 75,000 lines
of code

50

Adium: Process

• Prepare entitlements
• Code sign program
• Run and verify App Sandbox status
• Look for violations

51

Adium: Entitlements

com.apple.security.app-sandbox
com.apple.security.personal-information.addressbook
com.apple.security.files.user-selected.read-write
com.apple.security.network.server

52

Adium: Choosing Entitlements

53

Adium: Run and Verify

Activity Monitor

54

Adium: Violations

Console

55

Adium: Violation Report

Adium(2071) deny network-outbound 239.255.255.250:1900

Backtrace:
0 libsystem_kernel.dylib
 0x00007fff8d8f __sendto + 10

1 libpurple
 0x000000010e1d purple_upnp_discover_send_broadcast + 171

[...]

56

Adium: Fix, Iterate

• We forgot to add the network.client entitlement
• Check the box in Xcode, rebuild, rerun

57

Adium: Exploitation

• The attacker only has access to documents that the user exchanged
with buddies during this Adium run

• No ability to access or modify other apps or documents
• Need another vulnerability for a successful exploit

58

Summary

59

App Sandbox

• New damage containment mechanism in Lion
• Last line of defense against exploitation and coding errors
• Not an anti-virus system; does not target intentionally
malicious software

• Drives policy by user intent
• See “Code Signing and Application Sandboxing Guide”
• Sample code available

60

App Sandbox: Availability

• Adoption very strongly encouraged for all Mac OS X applications
• Required for Mac App Store apps

App Sandbox and the Mac App Store Nob Hill
Tuesday 3:15PM

Sandbox Lab Core OS Lab B
Wednesday 9:00AM

61

Summary

• iOS Sandbox—14 billion app
downloads with confidence

• Delight users with carefree apps
on Mac OS X

• Restore sense of childlike wonder

62

63

