Core OS Networking In-depth

Session 205

Anil Vempati

Manager, Core OS Networking

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session Overview

- IPv6
 - IPv6 at a glance
 - Improvements in iOS 5 and Mac OS X Lion
- Changes under the hood
 - Same APIs, different behavior
 - Backgrounded connections
- Tools
 - For network simulation and troubleshooting

IPv6 in iOS and Mac OS X

James Woodyatt
Engineer, Core OS Networking

"So, I said, 'Thirty-two bits. It is enough for an experiment.' The problem is, the experiment never ended."

Vinton G. Cerf, Internet Patrician

Current Events in the Industry

No free IPv4 addresses left

- Today is World IPv6 Day
- ISP dual-stack trials
- Home gateways and other gear

IPv6 at a Glance

Major Changes

Not many, but there are some...

- Universal routing realm
- Internet Control Message Protocol, version 6 (ICMPv6)

IPv6 Addresses Improved architecture

- Hierarchical allocation model
- Well-defined scopes

IPv6 Addresses

Hierarchical Allocation Model

IPv6 Addresses

Well-defined scopes

Link-local unicast fe80::/10
struct sockaddr_in6 s6;
s6.sin6_addr = MY_HOST_ADDRESS;
s6.sin6_port = MY_PORT;
s6.sin6_scope_id = if_nametoindex("en0");

Global unicast

Public routed 2000::/3
Unique-local fc00::/7
IPv4-transitional 64:ff9b::/96, ffff::/96, 2002::/16, 2001::/32

Multicast ff00::/8

Control Messages ICMP → ICMPv6

- ARP, IPCP → Neighbor Discovery
- DHCP → Router Discovery + DHCPv6
- Path MTU discovery
 - IPv4: nonstandard, TCP-only
 - IPv6: standard, for all transports

Facts for Developers

Same challenges, new wrinkles

- Automatic network renumbering
- Normal for interfaces to have multiple addresses
- Middleboxes (firewalls, proxies, and NAT)

"For a successful technology, reality must take precedence over public relations, for nature cannot be fooled."

Richard Feynman, Rogers' Commission Report (on the Challenger disaster)

iOS and Mac OS X

History of IPv6 in iOS and Mac OS X

- Appeared in iOS 3.2 and Mac OS X 10.1
- Not visible in Settings on iOS
- Improved in iOS 4.1
 - Configure DNS servers with router advertisements RFC 5006
 - Stateless DHCPv6 client RFC 3736
- Improved in iOS 4.3 and coming in Mac OS X 10.7
 - Temporary addresses for privacy RFC 3041
 - Stateful DHCPv6 client RFC 3315

New in iOS 5 and Mac OS X 10.7 Upgrades

- TAHI conformance and full application readiness
- Improved address selection policy RFC 3484bis
- Concurrent TCP connections in CFNetwork
- IETF Advanced Sockets API RFC 3542
- Temporary addresses used by default in Lion RFC 4941

Advanced Socket API RFC 3542

- Not fully source code compatible with older API RFC 2292
- Affected RFC 2292 options: IPV6_PKTINFO, IPV6_HOPLIMIT, IPV6_NEXTHOP, IPV6_HOPOPTS, IPV6_DSTOPTS, IPV6_RTHDR
- You may need to choose the socket API you are using

```
#define __APPLE_USE_RFC_3542
```

• For the older API...

#define __APPLE_USE_RFC_2292

Temporary Addresses RFC 4941

- Preferred for outbound flows by default
 - Use IPV6_PREFER_TEMPADDR socket option to override
- Returned in getifaddrs(3) results
 - Marked with ND6_IFF_TEMPORARY flag
 - Other flags you may see: ND6_IFF_TENTATIVE, ND6_IFF_DEPRECATED

Next Steps

- Get ready for IPv6
 - Light up your home network
 - Upgrade your IPv4-only apps
- Things to remember
 - Transition is happening now
 - Success = ordinary users never know
 - High-level APIs make it easy

Changes Under the Hood Old interfaces, new tricks

Josh GraessleyEngineer, Core OS Networking

Changes Under the Hood

Old interfaces, new tricks

Applications

Foundation

CFNetwork

Darwin Foundation

← We are here

Changes Under the Hood

- Address selection
- Connect-by-Name
- Statistics
- Throttling
- TCP buffer sizing

Changes Under the Hood

Dynamic environment

- Today
 - IPv4 primary
 - Edge Cases
 - IPv6 tunnels
 - IPv6 broken routes
 - DNS AAAA (IPv6 records) broken
- Eventually
 - IPv6 only
 - IPv4 legacy

Address Selection

- Same API getaddrinfo
- New rules
 - Routing statistics
 - Policy table— RFC 3484bis

Connect-by-Name The old way

- Two steps
 - 1. Hostname to addresses

getaddrinfo

- 2. Addresses to connection
 - Create socket
 - Set options
 - Connect
 - Repeat on failure
- CFSocketStream abstraction

Connect-by-Name

The new way

- Same API
 - CFSocketStream
- New behavior
 - Separate DNS
 - IPv4 (A)
 - IPv6 (AAAA)
 - Sort destinations
 - Start best destination
 - Start next best after short timer
 - Repeat until established
 - Clean up incomplete connections

Connect-by-Name APIs

- CFSocketStream and above
 - WebKit
 - NSURLConnection
 - CFHTTPStream
 - And so on...

Network Statistics

- In-Kernel statistics
 - TCP sockets
 - UDP sockets
 - Routes
- Clients
 - Connect-by-Name
 - nettop

Network Throttling

- Goals
 - User-initiated operations fast
 - Zero-to-low sacrificed throughput
- Conditions
 - Background application sockets
 - Non-user-initiated iOS services
 - Foreground networking application

Background Network Throttling Techniques

- Transmit—TCP congestion window
 - Normal—shrink on packet loss
 - Throttled—shrink on packet loss or latency
- Receive—TCP advertised receive window
 - Normal—open as data is read
 - Throttled—interpacket delay variation based

Background Process

- Throttled
 - Short period after backgrounding
 - Only if foreground app uses networking (UIRequiresPersistentWiFi)
- Suspend
 - Sockets shutdown
 - Bonjour records unregister
- Resume
 - All socket operations fail
 - Close socket—try again

TCP Automatic Socket Buffer Sizing

- Autosizing
 - Requires TCP timestamps
 - Optimal size
 - Minimal waste
- Do not set
 - Send buffer size so_SNDBUF
 - Receive buffer size so_RCVBUF

Take-Away

- Use CoreFoundation/Foundation network APIs
 - Highest-layer API
- Network Apps use UIRequiresPersistentWiFi
- Handle network errors
- Let system pick socket buffer size
- Eliminate blocking operations on main thread

Tools Simulation and troubleshooting

Vincent LubetEngineer, Core OS Networking

Network Link Conditioner

Network Link Conditioner

- Tool to emulate realistic network conditions on your Mac
 - Presets for 3G, Edge, Wi-Fi, DSL...
- Tune your networking code from the start
- NLC works for all applications running on the Mac
 - Includes iOS apps running in the iOS Simulator

What NLC Can Do

- Affects all IPv4 traffic on the Mac
- Limits bandwidth
- Adds delay
- Adds packet loss
- Adds DNS delay
- Separate uplink and downlink settings
 - Support custom configurations

Network Link Conditioner Take-Away

- Test networking code early and often in realistic conditions
 - Avoid to discover pitfalls late in development cycle
- Follow best networking programming practices
 - Use asynchronous operations instead of blocking
 - Large I/O are best for bulk data transfer
 - Pipeline transactions

Remote Packet Capture

Remote Packet Capture

- Captures network traffic off an iOS device
 - Wi-Fi and cellular data
 - IPv4 and IPv6 traffic
- Helps diagnose all kinds of networking issues
- An OS X virtual network interface represents the networking stack of the iOS device
- Works with any tool that uses BPF or libpcap on OS X
 - tcpdump, Wireshark...

Remote Packet Capture Howto

Mac with iOS 5 SDK

iOS 5 device

Remote Packet Capture Cheat Sheet

Create the remote virtual interface

```
rvictl -s <UDID>
```

- ifconfig to check the remote virtual interface name
- ifconfig

```
rvi0: flags=3005<UP,DEBUG,LINK0,LINK1> mtu 0
```

Run tcpdump

```
tcpdump -n -i rvi0
```

• When done, delete the remote virtual interface

```
rvictl -x <UDID>
```


Summary

- IPv6
 - Transition is under way! Test your apps with IPv6
- Changes under the hood
 - Connect-by-Name
 - Network statistics with nettop
 - Handling of backgrounded connections
- Tools
 - Network Link Conditioner
 - Remote Packet Capture

More Information

Paul Danbold

Evangelist danbold@apple.com

Documentation

Networking http://developer.apple.com/library/mac/navigation http://developer.apple.com/library/ios/navigation

Apple Developer Forums http://devforums.apple.com

Related Sessions

Core OS Networking, Key Principles	Marina Tuesday 9:00AM
Bonjour Network Discovery and Connectivity	Pacific Heights Thursday 11:30AM

Labs

Network Lab	Core OS Lab A Tuesday 11:30AM
	Core OS Lab A Wednesday 2:00PM
MOTWORK Lan	Core OS Lab A Thursday 4:30PM

É WWDC2011