Introducing XPC

Divide and conquer

Session 206

Damien Sorresso
Architectural Artisan

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Introducing XPC

On the agenda

* |IPC background

* Designing with XPC
* Using the XPC APlIs
* Examples

Interprocess Communication

IPC (According to Wikipedia)

Inter-process communication (IPC) is a set of
techniques for the exchange of data among multiple
threads in one or more processes.

Interprocess Communication
Why use IPC?

Bomb quit uné

Click Reopen to ope again. This report will be sent to
Apple automatically.

Comments

Show Detai

Fault Isolation

Interprocess Communication
Why use IPC?

System Preferences is trying to unlock Users &
Groups preferences. Type an administrator’s
"‘.«ﬁ\‘i name and password to allow this.

3 = % U]

Name: durandal

Password:

Cancel | | Unlock |

Privilege Separation

Interprocess Communication

POSIX Mach Foundation

kill(2) mach_msg() NSConnection
signal(3) MIG NSProxy
read(2) + write(2) NSPort
shmat(2) CFMessagePort
socket(2) CFMachPort

pipe(2)

IPC Over Time

Still miserable

launchd!
IPC Misery Index

(%]
X
c
>
>
S
]
2
=

Interprocess Communication

1970s and 1980s launchd XPC

v 4 Setup pipeline J On-demand J Automated bootstrapping

J send bytes J Structured messages

Designing for XPC

Model-View-Controller (with a twist)

Model-View-Controller

* Design pattern to encourage modularity
* Three basic pieces of app functionality separate

Data model Ul presentation “Business logic”

e

Model-View-Controller

* Encourages modularization at source code level
* Can even be used to modularize at project level (plug-ins)
* But still only applies to one address space

Designing for XPC
Applying MVC concepts

* |solate various data model pieces into own address spaces
* Apply principle of least privileges to each piece

* OS enforces strict separation of each

* Fundamental redefinition of an app

Designing for XPC

Designing for XPC

Example: QuickTime Player

* Decodes video in sandboxed XPC service

* Uses I0OSurface to avoid unnecessary copies

* Crashes in service do not affect QuickTime Player
* Little to no harm if service is exploited

Designing for XPC

Example: Preview

» Sandboxed app

* Uses XPCService to get access to files referenced by PDFs
- One service parses PDF for file references
- Other gives Preview access to files
- Parser does not have filesystem access

* Preview only has access to those files it needs
* Minimizes impact of exploits

Using XPC

Using XPC et | New,

Services

* Part of your app
* No installation necessary

* Process lifecycle controlled by XPC

XPC Services
In-depth

* Identified by CFBundleldentifier

* Live in Contents/XPCServices

* Purely on-demand and stateless

« Automatic activity tracking and idle-exit

* Only way to separate privileges in App Sandbox
* Code signing required

XPC Services

Bundle structure

. XPCServices

com.mycompany.PhotoUploader.uploader.xpc

com.mycompany.PhotoUploader.unzipper.xpc

XPC Services

Bundle structure

. com.mycompany.PhotoUploader.unzipper.xpc

com.mycompany.PhotoUploader.unzipper

Info.plist

- Resources

XPC Services

Default environment

* Restrictive default environment
* Equivalent to background agents (LsutEtenent)
* Uses GCD run loop (call to dispatch_main())

* Does not share host app’s Keychain access or credentials

XPC Service Info.plist

XPCService dictionary

Key

Value

Description

RunLoop

JoinExistingSession

EnvironmentVariables

String

Boolean

Dictionary

“dispatch_main” (default)
“NSRunLoop”

If true, joins host app’s session

Key/value pairs for
environment variables

The XPC API

Object API Transport API

Using XPC
The XPC API

* Object and transport layers unified
* Transport layer understands object layer and vice-versa

* Serialization is an implementation detail

XPC Objects

* Property list-style objects

- Mutable containers

- Immutable leaves
* Optimized for packing and unpacking
* Retainable/releasable

| XPC Objects

‘ Collections

v/ Array

v”/ Dictionary

| XPC Objects

Pure Data

¥ Null

v”/ Boolean

wi/ Unsigned Integer

|
|
v’/ Signed Integer

\i/ Double

I XPC Objects
Out-of-Line

v'/ File Descriptor
v”/ Shared Memory
v/ |OSurface

XPC Objects

Convenient Container API

* Setters and getters for primitive types

* Allow quick construction/decomposition of messages

* No type-checking needed

| XPC Objects

Accessor Defaults

Boolean false
Signed Integer

Unsigned Integer
Double

Date

Data

String

UuID

File Descriptor

XPC Objects

#include <xpc/xpc.h>
Xpc_object_t dictionary, X, VY;
dictionary = xpc_dictionary_create(NULL, NULL, 0);

X = xpc_int64_create(640);
y = xpc_int64_create(480);

xpc_dictionary_set_value(dictionary, “X", Xx);
xpc_dictionary_set_value(dictionary, “Y”, vy);

xpc_release(x);
xpc_release(y);

XPC Objects

Xpc_object_t dictionary;
dictionary = xpc_dictionary_create(NULL, NULL, 0);

xpc_dictionary_set_int64(dictionary, “X”, 640);
xpc_dictionary_set_int64(dictionary, “Y”, 480);

int6ed4_t x, vy, z;

= xpc_dictionary_get_int64(dictionary, “X");
= xpc_dictionary_get_int64(dictionary, “Y");
= xpc_dictionary_get_int64(dictionary, “Z");
assert(z == 0);

XPC Connections

*Virtual—launched on-demand when message is sent
* Bi-directional—allow sending and receiving messages
* Asynchronous/non-blocking—FIFO message delivery

XPC Connections

XPC Connections

XPC Connections
Client-side

* Create connection using service CFBundleldentifier

xpc_connection_t ¢ = xpc_connection_create(“com.apple.service”, NULL);
xpc_connection_set_event_handler(c, ~(xpc_object_t event) {

// Always set an event handler. More on this later.
});

xpc_connection_resume(c);

// Messages are always dictionaries.

xpc_dictionary_t message = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_uint64(message, “X”, 640);
xpc_connection_send_message(c, message);

xpc_release(message)

* Each call to xpc_connection create() creates a new peer

* Each peer is distinct

XPC Connections
Client-side

* Message sends are non-blocking

« XPC runtime maintains queue of messages to send
* Use barriers to know when a message is sent

Xpc_connection_send_message(c, message);
xpc_connection_send_barrier(c, ~{
// Block is invoked on connection’s target queue
// when ‘message’ has been sent.
1)

xpc_release(message)

XPC Connections
Service-side

* Service calls xpc_main() with event handler argument

* Event handler receives new peer connections

static void
new_connection_handler(xpc_connection_t peer)
{
xpc_connection_set_event_handler(peer, ~(xpc_object_t event) {
peer_event_handler(peer, event);
F);
xpc_connection_resume(xpc_retain(peer));

}

int

main(int argc, const char xargvl[])

{
xpc_main(new_connection_handler);
exit (EXIT_FAILURE);

XPC Connections
Service-side (continued)

static void
peer_event_handler(xpc_connection_t peer, xpc_object_t event)
{
if (xpc_get_type(event) == XPC_TYPE_DICTIONARY) A{
// Decompose and handle message.
} else {
if (event == XPC_ERROR_CONNECTION_INVALID) A
// Error indicates the peer has closed the connection.
// Tear down any associated data structures.
} else {
// Error indicates that service will terminate soon.
// Flush all buffers, finish all work, etc.
s

xpc_release(peer);

XPC Connections
Request-reply

* One-to-one mapping of message to reply block
* Independent of connection’s event handler

xpc_connection_send_message_with_reply(c, message, q, ~(xpc_object_t reply) {
if (xpc_get_type(event) == XPC_TYPE_DICTIONARY) A{
// Deconstruct and handle reply.
} else {
// Error indicates the service will not reply to the
// message. Tear down any data structures associated with
// waiting for the reply.

XPC Connections
Request-reply (server side)

* Recognizing that a message expects reply is expressed in protocol
* Sending a reply is same as sending normal message

static void
peer_event_handler(xpc_object_t event)
{
xpc_connection_t remote = NULL;
if (xpc_get_type(event) == XPC_TYPE_DICTIONARY) A{
remote = xpc_dictionary_get_remote_connection(event);

xpc_object_t reply = xpc_dictionary_create_reply(event);
xpc_dictionary_set_bool(reply, “reply”, true);

xpc_connection_send_message(remote, reply);
xpc_release(reply);

XPC Connections
Errors

XPC_ERROR_CONNECTION_INTERRUPTED

- Re-sync state to other end if needed
XPC_ERROR_CONNECTION_INVALID

- Connection no longer useable
XPC_ERROR_TERMINATION_IMMINENT

- Prepare to exit cleanly

XPC Connections
Errors in-depth

Error

Connection

Indicates

XPC_ERROR_CONNECTION_INTERRUPTED

XPC_ERROR_CONNECTION_INVALID

XPC_ERROR_TERMINATION_IMMINENT

Peer from
xpc_connection_create()

Peer received from
xpc_main() handler

Peer received from
xpc_main() handler

Remote end closed connection
Connection still usable
(Blip in pipeline)

Remote end closed connection
Connection unusable

Process needs to exit
Work still must be finished
Flush all buffers

XPC and launchd

Working together to create an on-demand world

XPC and launchd

launchd services

« XPC can be used to talk to launchd jobs

 lUse xpc_connection_create_mach_service()

* MachServices must be advertised in launchd.plist

* Cannot dynamically register services
* Must manually set up listener
* More complex error cases

XPC and launchd

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.apple.xpc.example</string>
<key>Program</key>
<string>/usr/libexec/example</string>
<key>MachServices</key>
<dict>
<key>com.apple.xpc.example</key>
<true/>
</dict>
<key>EnableTransactions</key>
<true/>
</dict>
</plist>

XPC Services

launchd services (client-side)

xpc_connection_t listener =
xpc_connection_create_mach_service(“com.apple.xpc.example”, NULL, 0);

xpc_connection_set_event_handler(listener, ~(xpc_object_t event) {
// Same semantics as a connection created through
// Xpc_connection_create().

1)

xpc_connection_resume(listener);

// Can now send messages.

XPC Services

launchd services (server-side)

xpc_connection_t listener =
xpc_connection_create_mach_service(“com.apple.xpc.example”, NULL,
XPC_CONNECTION_MACH_SERVICE_LISTENER);

xpc_connection_set_event_handler(listener, ~(xpc_object_t event) {
// New connections arrive here. You may safely cast to
// xpc_connection_t. You will never receive messages here.
// The semantics of this handler are similar to those of
// of the one given to xpc_main().
new_peer_event_handler((xpc_connection_t)event);

r);

xpc_connection_resume(listener);

XPC Events

Messages from the system

» Alternate sources of demand

* Arbitrary userspace and kernel events

* Elegant event delivery API

* Enumerate interested events in launchd.plist

XPC Events
|OKit

<key>LaunchEvents</key>
<dict>
<key>com.apple.iokit.matching</key>
<dict>
<key>com.apple.device—attach</key>
<dict>
<key>idProduct</key>
<integer>2794</integer>
<key>idVendor</key>
<integer>725</integer>
<key>I0ProviderClass</key>
<string>I0USBDevice</string>
<key>I0OMatchStream</key>
<true/>
</dict>
</dict>
</dict>

XPC Events
BSD Notifications

<key>LaunchEvents</key>
<dict>
<key>com.apple.notifyd.matching</key>
<dict>
<key>com.apple. interesting-notification</key>
<dict>
<key>Notification</key>
<string>com.apple. interesting-notification</string>
</dict>
</dict>
</dict>

XPC Events

Consuming events

* Events received as XPC objects through handler
*If not running, job will be launched on-demand
* Will continue to receive events while running

xpc_set_event_stream_handler(“com.apple.iokit.matching”, q, ~(xpc_object_t event) {
// Every event has the key XPC_EVENT_KEY_NAME set to a string that
// 1s the name you gave the event in your launchd.plist.
const char xname = xpc_dictionary_get_string(event, XPC_EVENT_KEY_NAME) ;

// I0Kit events have the IORegistryEntryNumber as a payload.
uint64_t id = xpc_dictionary_get_uint64(event, “IOMatchLaunchServiceID”);

// Reconstruct the node you were interested in here using the IOKit
// APIs,

XPC Events

Consuming events

* Different event streams have different payloads
* Currently support IOKit and BSD Notifications
* More event streams will be added as time goes on

Related Sessions

Introducing App Sandbox

Nob Hill
Tuesday, 2:00PM

Blocks and Grand Central Dispatch in Practice

Pacific Heights
Wednesday, 10:15AM

Mastering Grand Central Dispatch

Pacific Heights
Thursday, 10:15AM

Launch-on-Demand (WWDC2010)

Available on iTunes

Core OS Lab B
Wednesday, 4:30PM

Documentation

*xpc(3)
* /usr/include/xpc
 devforums.apple.com

& WWDC2011

