Inside the Accelerate Framework
for iOS

Big performance on small devices

Session 209

Steve Canon
Senior Engineer

These are confidential sessions—please refrain from streaming, blogging, or taking pictures




Accelerate.framework
What is it?

* “One-stop shopping” for high-performance computational libraries




Accelerate.framework in iOS 4

« vDSP—digital signal processing library
* BLAS—basic linear algebra subroutines
* LAPACK—linear algebra package




Accelerate.framework in Mac OS X

« vDSP—digital signal processing library

* BLAS—basic linear algebra subroutines

* LAPACK—linear algebra package
 vimage—vector image processing framework
* vForce—vector math library




Accelerate.framework in iOS 5

« vDSP—digital signal processing library

* BLAS—basic linear algebra subroutines

* LAPACK—linear algebra package
 vimage—vector image processing framework
* vForce—vector math library




Session Goals

* Introduce new-to-iOS components of Accelerate.framework
* Review improvements made to existing components in iOS 5

* Help you identify places in your code where you could use the
Accelerate.framework




vimage

New in iIOS 5




vimage

* vectorized Image Processing Framework
* Introduced in OS X 10.3




6 out of 7

Top grossing apps in the
Mac App Store use vimage




vimage Example
Convolution

* One of the most important (and most complex) operations in vimage

* The core of many common image functions




vimage Example
Convolution

* Weighted average of nearby pixels

- Blur
- Sharpen
- Edge detection

Weights:




vimage Example
Convolution

* You could write your own

for (i=0; i<imageHeight; i++) {
for (j=0; j<imageWidth; j++) {
int accumulator = 0;
for (ik=0; jk<kernelHeight; ik++) {
for (jk=0; jk<kernelWidth; jk++) {
accumulator += kernell[k][1] x*
src[i+ik-kernelHeight/2] [j+jk-kernelWidth/2];

}

dst[i] [j] = accumulator;




vimage Example
Convolution

* You could write your own
* But you should not
- Does not handle the edges of the image properly

- Does not handle integer overflow properly
- Really slow

* A good convolution requires hundreds of lines of code (or more)




vimage Example
Convolution

* Use vimage instead

#include <Accelerate/Accelerate.h>

vImageErr error = vImageConvolve_ARGB8888(source, dest, NULL, @, O,
kernel, kernelHeight,
kernelWidth, divisor, NULL,
flags );




vimage Performance
7x7 convolution on a 1024x768 image, iPad 2

Bigger is better

good scalar code I 0.52

Performance in Mpixels/second




vimage Energy Consumption
7x7 convolution on a 1024x768 image, iPad 2

Smaller is better

vimage l 0.92

)

Energy Consumed in mJ




vimage
Operations

* Convolution
* Geometry

* Transform

* Morphology
* Histogram

* Alpha

* Conversion




vimage Operations
Convolution

* Weighted average of nearby pixels

* Optional bias
* Can use different weights per color channel
* Multiple edging options

- Background color

- Edge extend

- Truncate kernel

- “Do nothing”




vimage Operations
Geometry

* Rotate

* Shear

* Reduce and Enlarge
* Affine Warp

* Reflect




vimage Operations
Geometry

* Rotate

* Shear

* Reduce and Enlarge
* Affine Warp

* Reflect




vimage Operations
Geometry

* Rotate

* Shear

* Reduce and Enlarge
* Affine Warp

* Reflect




vimage Operations
Geometry

* Rotate

* Shear

* Reduce and Enlarge
* Affine Warp

* Reflect




vimage Operations
Geometry

* Rotate

* Shear

* Reduce and Enlarge
* Affine Warp

* Reflect




, brightness

saturation

7

Color space conversion

Hue
= Color twist

(Vp)
-
O
=
(
S
@
Q.
O
@
O)
(S
E
>

c
o
=
©
S
—
e
n
c
]
—
T

* Polynomial and rational

* Matrix multiplication
evaluation

* Gamma correction




vimage Operations
Morphology

* Erode and Dilate
* Min and Max




vimage Operations
Histogram




vimage Operations
Alpha Compositing

* Premultiplied alpha
* Non-premultiplied

* Mixed

* Unpremultiplication
* Premultiplication

* Clip to Alpha




vimage
Data types

* Core formats

- 4 channel, 8-bits per channel (UNORMS)
- 4 channel, 32-bits per channel (floating-point)




vimage Data Layouts

* Interleaved
- ARGB, RGBA, BGRA, etc.




vimage Data Layouts

* Interleaved
* Planar




vimage Operations
Conversion between core formats

* Planar < Interleaved
* 8-Bit < Float
* Swap channel orders e.g. RGBA < BGRA




vimage Operations
Conversions between core formats and other formats

* RGB565

* ARGB1555

* 16-bit floating-point (“half float”)
* 16-bit unsigned integer

* 16-bit signed integer
* RGB888

* RGBFFF

* RGBX8888

* XRGB8888

« XBGR888S...




vimage Data Requirements

* Minimal alignment requirements
- Float data requires 4-byte alignment

* Data is not containerized

typedef struct {
void xdata;
vImagePixelCount height;
vIimagePixelCount width;
size_t rowBytes;

} vImage_Buffer;

*vImage can operate on your image data in place




vimage Features
Vectorized for best performance

* Each function uses the best implementation for your hardware

- On OS X we take advantage of SSE3, SSSE3, SSE4.1 when possible
- On iOS we take advantage of NEON
- We use hardware half < float conversions on A5




vimage Features
Designed for low latency operation

* Does not use JIT (all code is precompiled)

*You can provide temp buffers to avoid hidden malloc/zero-fill; use
kvImageGetTempBuffersize flag to determine size

ssize_t tempSize vImageMax_ARGB8888(&src, &dest, NULL,

’

myFlags | kvImageGetTempBufferSize);
void xtempBuffer = malloc(tempSize);
for (i=0; i<filterCount; i++)
vImageMax_ARGB8888(&src, &dst, tempBuffer, ... , myFlags);
free(tempBuffer);




vimage Features
Threaded using GCD

* Transparently take advantage of multiple processors

* Threading can be disabled using the kvinagebonotTile flag, so it
does not conflict with your tiling model

* APIs support your tiling model even in the presence of edging




VvForce

New in iIOS 5

Luke Chang

Engineer




Satisfy Your Computational Need

* Elementary math functions for arrays
* Introduced in Mac OS X 10.4, now on iOS 5.0




vForce in Action
Filling a buffer with sine wave using a for loop

float buffer[lengthl];
float indices[length];

for (int i = 0; i < length; i++)
{

buffer[i] = sinf(indices[i]);




vForce in Action P\I
Filling a buffer with sine wave using vForce

#include <Accelerate/Accelerate.h>

float buffer[lengthl];
float indices[length];

vvsinf(buffer, indices, &length);




Better Performance
Sines computed per us on iPad 2 (iOS 5)

Bigger is better




Less Energy

nJ consumed per sine on iPad 2 (iOS 5)

Smaller is better

vForce l 25.6

|




What Is Available?

* Commonly used transcendental functions

- Power, sine, cosine, logarithm, exponential, etc.
* Rounding functions

- Ceiling, floor, truncation, nearest integer
* Lots of other stuff

- Square root, remainder, etc.




vForce Performance
Results computed per ps on iPad 2 (iOS 5)

truncf
logf
expf
powf
sinf
sincosf

0

I vForce
B forloop




vForce in Detail

* Support both float and double
* Correct edge case handling
* Minimal alignment requirements




How Did We Do It?

* vForce single precision is vectorized using NEON
* vForce exploits software pipelining and loop unrolling




LAPACK and BLAS

Improved in iOS 5

Steve Canon
Senior Engineer




LAPACK and BLAS

* Improved performance in iOS 5

* Takes advantage of the A5 processor for great
double-precision performance




LAPACK and BLAS
LINPACK benchmark

* How fast can you solve a system of linear equations?

* Actually 3 different benchmarks
- 100 equations, using the reference implementation
- 1000 equations, using your tuned implementation

= “No holds barred”




LAPACK and BLAS
LINPACK benchmark performance in Mflops

iPadiPadibgsirfgréancel ecde

“Brand A”




LAPACK and BLAS
LINPACK benchmark performance in Mflops

Bigger is better

iPad 2 using Accelerate 1503

“Brand A”




LAPACK and BLAS
LINPACK benchmark

*iPad 2 would have been one of the 500 fastest
supercomputers in the world in 1994!




LAPACK and BLAS

* Great performance without writing a lot of code

#include <Accelerate/Accelerate.h>

dgetrf_(&n, &n, a, &n, ipiv, &info);
dgetrs_("N", &n, &one, a, &n, ipiv, b, &n, &info);

* Same code works great on the Mac




LAPACK and BLAS
MacBook Pro LINPACK performance in Mflops

Bigger is better

Accelerate

Reference Code

10000 20000 30000 40000




LAPACK and BLAS
Mac Pro LINPACK performance in Mflops

Bigger is better

Accelerate

Reference Code

100000




Summary

* Easier than writing your own code
* Great performance on diverse hardware
* Low energy usage




More Information

Paul Danbold

Core OS Technologies Evangelist
danbold@apple.com

George Warner

DTS Sr. Support Scientist
geowar@apple.com

Documentation

vimage Programming Guide
http://developer.apple.com/library/mac/#documentation/Performance/Conceptual/vimage/

Introduction/Introduction.html

Apple Developer Forums
http://devforums.apple.com




Labs

Accelerate Framework Lab e T LY







& WWDC201




