Mastering Grand Central Dispatch

Session 210

Daniel Steffen
Core OS

These are confidential sessions—please refrain from streaming, blogging, or taking pictures




Grand Central Dispatch

* Introduced in Mac OS X Snow
Leopard and iOS 4

* Core technology for asynchrony
and concurrency

*ldentical APl and functionality
across platforms and hardware




Grand Central Dispatch

Overview

* Brief introduction to GCD
* What is new in GCD on Mac OS X Lion and iOS 5
» Advanced usage of GCD API




Introduction to GCD

Blocks and Queues




Blocks

Encapsulate units of work

id obj = [Example new];

int arg = 5;

later(”{
[obj doSomething:argl;
});

arg = 6;
[obj doSomething:argl;

[obj releasel;




Queues
Serialization

* Lightweight list of blocks

* Enqueue and dequeue are FIFO
* Serial queues execute blocks one at a time




Queues
Concurrency

» Concurrent queues execute multiple blocks at the same time
* Concurrently executed blocks may complete out of order
* Queues execute concurrently with respect to other queues




Serial Queues

A{...}I\I

A{...}I\I




Concurrent Queue




Queues
API

* Submitting blocks to queues
dispatch_async(queue, ~{ /* Block *x/ });
dispatch_sync(queue, ~{ /% Block x/ });

* Submitting blocks later
dispatch_after(when, queue, ~{ /x Block x/ });

* Concurrently executing one block many times
dispatch_apply(iterations, queue, ~(size_t i){ /* Block x/ });




Queues
API

* Suspending and resuming execution
dispatch_suspend(queue);

dispatch_resume(queue);

* Managing queue lifetime

dispatch_retain(queue);

dispatch_release(queue);




Queues
Pitfalls

* Intended for flow control, not as general-purpose data structures
* Once a block is submitted to a queue, it will execute

* Be careful with synchronous API




Queues
Types

* Global queue
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
* Main queue

dispatch_get_main_queue();

* Serial queue
dispatch_queue_create(“com.company.app.task”, DISPATCH_QUEUE_SERIAL);




Concurrent Queues




Concurrent Queues New,

* Execute multiple blocks at the same time
dispatch_queue_create(“com.company.app.task”, DISPATCH_QUEUE_CONCURRENT);

* Can be suspended and resumed like serial queues
* Support barrier blocks




Concurrent Queues New,

Barrier Block

* Will not run until all blocks submitted earlier have completed

* Blocks submitted later will not run until barrier block has completed

* Submitting barrier blocks to concurrent queues

dispatch_barrier_async(concurrent_queue, ~{ /% Barrier x/ });

dispatch_barrier_sync(concurrent_queue, ~{ /% Barrier x/ });




Concurrent Queue




Concurrent Queues

Implement efficient reader/writer schemes

* Many concurrent readers or a single writer (barrier)

dispatch_sync(concurrent_queue, ~{ /* Read %/ });

dispatch_barrier_async(concurrent_queue, ~{ /% Write x/ });
* Readers enqueued while write is in progress
* Writer enqueued while reads are in progress




Concurrent Queues
Implement efficient reader/writer schemes

(id)objectAtIndex: (NSUInteger)index {
__block id obj;
dispatch_sync(self.concurrent_queue, ~{
obj = [self.array objectAtIndex:index];
});

return obj;

(void)insertObject: (id)obj atIndex: (NSUInteger)index {
dispatch_barrier_async(self.concurrent_queue, ~{
[self.array insertObject:obj atIndex:index];

});




Target Queues




Target Queues

* Where the dequeue operation for a queue is executed
* Global queues are at the bottom of target queue hierarchy
* Determine scheduling and dequeue priority




Background
Priority
Queue

Concurrent
Queue

Low
Priority
Queue

Serial
Queue

Default
Priority
Queue

High
Priority

Serial
Queue




Target Queues New_

Background priority

« Additional global queue priority

dispatch_get_global_queue (DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);
* Worker threads with lowest scheduling priority
* Throttled I/O




Target Queues
Hierarchy

* Setting target queue is an asynchronous barrier operation

dispatch_set_target_queue(queue, target);
* Arbitrarily deep hierarchies are supported
* Loops are undefined




Target Queues
ldioms

* Setting target queue to a serial queue synchronizes with that queue
* No implicit ordering between queues




Background
Priority
Queue

Low Default
Priority Priority
Queue

Serial
Queue

Concurrent
Queue

High
Priority
Queue

Serial
Queue




Target Queues
Make a concurrent queue serial

* Promote reader-writer lock to exclusive lock
* Set target queue to a serial queue

* Everything in hierarchy above a serial queue becomes serial




Target Queues
Serialize callbacks to a caller-supplied queue

* Caller’s queue might be concurrent . :
* Setup serial queue targeting the Quede
caller-supplied queue

* Submit callbacks to this serial queue

Serial
Queue




Target Queues
Jumping the queue

* Enqueueing at the front of a serial queue?

* High priority item needs to jump ahead of already enqueued items
* Combine queue suspension with target queues




Target Queues
Jumping the queue

low dispatch_queue_create(“low”, DISPATCH_QUEUE_SERIAL);
high dispatch_queue_create(“high”, DISPATCH_QUEUE_SERIAL);
dispatch_set_target_queue(low, high);

dispatch_async(low, ~{ /* Low priority block *x/ });
dispatch_async(low, ~{ /* Low priority block *x/ });

dispatch_suspend(low);
dispatch_async(high, ~{
/* High priority block */
dispatch_resume(low);

});




Jumping the Queue

A{...}I\I




Queue-Specific Data




Queue-Specific Data New,

* Per-queue key-value storage

dispatch_queue_set_specific(queue, &key, value, destructor);

value = dispatch_queue_get_specific(queue, &key);
* Keys are compared as pointers
* Destructor called when value unset or at queue destruction




Queue-Specific Data

* Current value for key
value = dispatch_get_specific(&key);

* Aware of target queue hierarchy

- Value for target queue if current queue has no value set




Value 1

Value 2




Dispatch Data




Dispatch Data New_

* Container object for multiple discontiguous memory buffers
 Container and represented buffers are immutable
* Avoids copying buffers as much as possible




Dispatch Data

Creation

* From app-owned buffer
dispatch_data_t data = dispatch_data_create(buffer, size,

queue, ~{ /x destructor *x/ });

Dispatch Data

Dispatch Data




Dispatch Data

Destructors

* Copy buffer
DISPATCH_DATA_DESTRUCTOR_DEFAULT

* Malloc'd buffer

DISPATCH_DATA_DESTRUCTOR_FREE
= ™ free(buffer); }

* Custom
~{ CFRelease(cfdata); }




Dispatch Data

Creation

 Concatenation of data objects

concat = dispatch_data_create_concat(datal, data2);

N\

Concatenation




Dispatch Data

Creation

* Subrange of data object

subrange = dispatch_data_create_subrange(data, offset, length);

\

Subrange




Dispatch Data

* Total size of represented buffers

size = dispatch_data_get_size(data);

* Singleton object for zero-sized buffer
dispatch_data_t dispatch_data_empty;




Dispatch Data

Buffer access

* Copy buffers into single contiguous map

map = dispatch_data_create_map(data, &buffer, &size);




Dispatch Data

Buffer access

*No copy if buffer is already contiguous

map = dispatch_data_create_map(data, &buffer, &size);




Dispatch Data

Buffer access

* Find contiguous buffer at location

region = dispatch_data_copy_region(data, location, &offset);




Dispatch Data

Buffer traversal

* Serially apply a block to each contiguous buffer
dispatch_data_apply(data, ~(dispatch_data_t region, size_t offset,

const void xbuffer, size t size){ /% Iterator %/ });




Dispatch Data

Buffer traversal

dispatch_data_t data = acquire_data(), header;
__block size_t position = SIZE_MAX;

dispatch_data_apply(data, ~(dispatch_data_t region, size_t offset,
const void xbuffer, size t size){
void xlocation = memchr(buffer, 0xla, size); /*x find ~Z x/
if (location) position = offset + (location - buffer);

return (bool)!location;

});

header = dispatch_data_create_subrange(data, 0, position);

dispatch_release(data);




Dispatch I/O




Dispatch I/0 New_

Goals

* Asynchronous I/O from file descriptors and paths
* Extend GCD patterns to POSIX-level file and network I/0
* Optimize I/O process-wide across subsystems




Dispatch I/O

Optimizations

* Non-blocking network 1/0
* Concurrent I/0 to different physical devices
* Pipelining of 1/0 requests to single device




Dispatch 1/0 New,,

Optimized throughput with advisory reads

HH@%

= =
il

Dispatch I/0
— read()

-
-
Q.

<
(@)
>
o
S

e

|_

256k 16384k

Filesize
iPad 2 (16 GB) reading 640 files




Dispatch I/O

Advantages

* Avoid threads blocked in 1/0 syscalls
* Manage I/0O buffers with dispatch data objects
* Incremental processing of partial data




Dispatch I/O

Channels

* Encapsulate 1/0 policy on file descriptor or path
* Track file descriptor ownership

* Specify access type at creation

DISPATCH_I0_STREAM
DISPATCH_IO_RANDOM




Dispatch I/0 New_

Stream-access channels

*|/O operations start at (and advance) file pointer position
* Asynchronous I/O operations are performed serially
* Reads may be performed concurrently with writes




Dispatch I/0 New_

Random-access channels

*|/O operations start at specified offset to initial file pointer position
* Asynchronous |/O operations are performed concurrently
* File descriptor must be seekable




Dispatch 1/0 New,,

Channel creation

* With file descriptor

dispatch_io_create(type, fd, queue, ~(..){ /% Cleanup x/ });
* With path

dispatch_io_create_with_path(type, path, oflag, mode, queue,

~(.){ /% Cleanup *x/ });

* With channel

dispatch_io_create_with_io(type, channel, queue, ~(..){ /* Cleanup */ });




Dispatch I/0 New_

Channel cleanup

* File descriptor is under system control until cleanup handler is called

- Must not modify file descriptor directly during this time
* Occurs once all pending 1/0O operations have completed and
channel has been released or closed

~(int error){
if (error) { /% Handle error %/ }

close(fd);




Dispatch 1/0 New,

|/O operations

* Asynchronous read at file pointer or offset
dispatch_io_read(channel, offset, length, queue, ~(..){ /% Handler x/ });

* Asynchronous write at file pointer or offset

dispatch_io_write(channel, offset, data, queue, ~(..){ /x Handler %/ });




Dispatch 1/0 New_
/0 handlers

* Incremental processing
- Must retain data if needed after handler returns
* Read operations are passed data read since last handler invocation

* Write operations are passed data not yet written

~(bool done, dispatch_data_t data, int error){
if (data) { /x Process partial data */ }
if (error) { /% Handle error x/ }

if (done) { /* Complete processing %/ }




Dispatch 1/0 New,,

Barrier operations

* Executes once pending I/O operations have completed
* Exclusive access to file descriptor
* Non-destructive modifications of file descriptor allowed

dispatch_io_barrier(channel, ~{
int fd = dispatch_io_get_descriptor(channel);
if (fsync(fd) == -1) {

handle_error(errno);




Dispatch I/0 New_

Closing channels

* Close to new operations but let existing operations complete

dispatch_io_close(channel, 0);

* Close and interrupt existing operations
dispatch_io_close(channel, DISPATCH_IO_STOP);




Dispatch 1/O

Transliteration

dispatch_io_t in, out;
dispatch_queue_t q = dispatch_get_global_queue(
DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

in = dispatch_io_create(DISPATCH_IO_RANDOM, fd, g, ~(int err){
if (err) handle_error(err);
close(fd);
F);
out = dispatch_io_create_with_path(DISPATCH_IO_STREAM,
path, O_WRONLY|O_CREAT, 0600, q, ~(int err)<{
if (err) handle_error(err);

});




Dispatch 1/0 New._

Transliteration

dispatch_io_read(in, @, SIZE_MAX, q,
~(bool done, dispatch_data_t data, int err){
if (data) {
dispatch_data_t tdata = transliterate(data);
dispatch_io_write(out, 0, tdata, q,
~(bool wdone, dispatch_data_t wdata, int werr){
if (werr) handle_error(werr); });
dispatch_release(tdata);
b
if (done) dispatch_release(out);
if (err) handle_error(err); });

dispatch_release(in);




Summary

* Target queues

* Concurrent queues
* Queue-specific data
* Dispatch data

* Dispatch I/O




More Information

Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
Concurrency Programming Guide
http://developer.apple.com

Open Source
Mac OS Forge > libdispatch
http://libdispatch.macosforge.org

Apple Developer Forums
http://devforums.apple.com




Related Sessions

Blocks and Grand Central Dispatch in Practice

Pacific Heights
Wednesday 10:15AM

Introducing XPC

Russian Hill
Wednesday 11:30AM

Introducing Blocks and Grand Central Dispatch on iPhone

WWDC10
ITES

Simplifying iPhone App Development with Grand Central Dispatch

WWDC10
IES




Labs

Grand Central Dispatch Lab O ey ey




& WWDC201




