
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

I’m going to tell you, and I won’t kill you

Session 212

Next-Generation
Cryptographic Services

Jon Callas
Security Privateer

1

Introduction

• Learn about exciting changes to Apple’s cryptographic architecture
• First major reworking of crypto in a decade

2

What You Will Learn

• Changes to existing APIs
• New Transform API
• How to use Apple’s Transform library
• How to create your own custom Transforms

3

Common Data Security Architecture
CDSA

4

CDSA Is Deprecated

• It is a creature of its time
• That time is the late 1990s
• It is a thinly used, Open Group standard

■ All of the costs, few of the benefits

• Only a Mac OS API, not iOS

5

Deprecated Does Not Mean Canceled

• CDSA is still available
• Start migrating away now
• Some parts of Security Framework have layering
issues with CDSA
■ Those parts are deprecated, too

6

Requirements for a Replacement
Design for the decades ahead

• Less code
• Faster code
• Concurrent code
• Flexible programming

■ Crypto includes ciphers, compression, XML, networking,
REST, LDAP, databases…

7

New Crypto Architecture

• Low-level (pointer, length)
• Basic core algorithms
• Foundation for FIPS 140
validation

• Traditional crypto toolkit
programming

• Documentation in man pages
■ man CC_crypto

Security Framework Core Foundation

CommonCrypto C-language

Transforms Core Foundation
Only on
Mac OS

8

New CommonCrypto Architecture

• Starts from Snow Leopard’s CommonCrypto
• Recoded internals

■ Both Mac OS, iOS
■ NIST algorithm certificates for iOS

• Automatic selection of optimized implementation
• Raw algorithms, minimal protocol

9

Security Framework

Security Framework Core Foundation

CommonCrypto C-language

Transforms Core Foundation

• Based on Core Foundation
data types

• All APIs that used CDSA types
are deprecated

• New APIs replace the
deprecated ones
■ CDSA data types migrated
or removed

10

Transforms

Security Framework Core Foundation

CommonCrypto C-language

Transforms Core Foundation

• Built on Grand Central Dispatch
■ GCD is work-oriented
with queues

■ Transforms are
dataflow-oriented

• Model is data pipeline, not
threads or queues
■ Act like a generic function in
many helpful ways

• General-purpose concurrency
mechanism

11

Gotchas

• Transforms are only in Lion, not iOS
• CommonCrypto is in both Lion and iOS

• Not (yet) a full CDSA-replacement
■ We are working on the missing pieces

■ Certificate handling details

Tell us what you need at bugreporter.apple.com

12

What Are Transforms?

• Processing anything with a sequence of data changes
• Each small change is chained together
• Each change works in parallel
• Not just for crypto

■ Process RSS feeds into a mashup
■ Sequence of code optimizers

Only on
Mac OS

13

Transforms

14

Transforms

15

Analogies

16

Like UNIX Pipelines

• Oriented toward data chunks, not bytes
• Routines rather than processes
• Multiple connections are trivial

17

Like AudioUnits

• Concurrent
• Not isochronous nor real time

18

Like Quartz Composer

• General data processing, not just images
• Not a visual programming model

19

What Are Transforms?

• Data-driven interface to GCD
• CoreFoundation-level design

■ Provides needed data structures
■ Toll-Free Bridging to Cocoa

• Not a kernel interface

20

Example

21

Layout

Transform 1 Transform 2

Article Attribute

Key Media

INPUT OUTPUT

22

Operation

Transform 1 Transform 2
INPUT OUTPUT

Data

Data Data

23

Transform Machinery

24

Features

• Externalizable with re-internalizing
■ Transform sets can be saved and restored

• Data interface through Core Foundation types
■ Core Foundation is toll-free bridged to NS equivalents in Cocoa
■ All Transforms easily used in Objective C or C

• Routines (blocks), not processes

25

More Features

• Attributes + Connections make data flow between transforms
• Data to a connected attribute is like a pipe
• Automatic I/O flow between all transforms

26

Attributes and Flow Control

• Each attribute has an input queue
■ Transforms stall when sending to an attribute with a full queue

• A transform can pushback a value onto an attribute
■ Single pushback value per attribute

• Attributes are asynchronous, serialized in a transform

27

Special Attributes
INPUT, OUTPUT, LABEL, ABORT, DEBUG

• INPUT and OUTPUT are conventional data flow
• LABEL is the transform’s name
• Setting ABORT signals an error
• DEBUG logs information

28

Attribute Data

• Most strictly, they are all CFTypeRefs
• Most commonly, they are CFData

■ A transform library can make its own restrictions that make sense

• An attribute can have multiple destinations

29

Let Us Solve a Problem
Send binary data on the web

• The Internet likes seven-bit-clean data
• Typically this means binary becomes base-64

30

CFDataRef dataToEncode;
CFErrorRef error = NULL;

SecTransformRef encodingRef = SecEncodeTransformCreate(
 kSecBase64Encoding,&error);
! ! ! !
SecTransformSetAttribute(encodingRef,
 kSecTransformInputAttributeName,
! ! ! ! dataToEncode, &error);

CFDataRef resultData = SecTransformExecute(encodingRef, &error);

Encode some data with base-64
Code Example

CFDataRef dataToEncode;
CFErrorRef error = NULL;

SecTransformSetAttribute(encodingRef,
 kSecTransformInputAttributeName,
! ! ! ! dataToEncode, &error);

CFDataRef resultData = SecTransformExecute(encodingRef, &error);

SecTransformRef encodingRef = SecEncodeTransformCreate(
 kSecBase64Encoding,&error);

31

SecKeyRef key;
CFDataRef dataToEncryptAndEncode;
SecTransformRef encryptionRef = SecEncryptTransformCreate(keyRef, &error);
SecTransformRef encodingRef = SecEncodeTransformCreate(kSecBase64Encoding,
 &error);
SecGroupTransformRef group = SecTransformCreateGroupTransform();

SecTransformConnectTransforms(
! ! ! ! encryptionRef, kSecTransformOutputAttributeName,
! ! ! ! encodingRef, kSecTransformInputAttributeName, group,
 &error);
! ! ! !
SecTransformSetAttribute(encryptionRef, kSecTransformInputAttributeName,
! ! ! ! dataToEncryptAndEncode, &error);

SecTransformExecuteAsync(group, ^(data, error, isFinal){});

Encrypt and base-64
A More Complex Example…

SecTransformExecuteAsync(group, ^(data, error, isFinal){});

CFDataRef dataToEncryptAndEncode;
SecKeyRef key;

SecTransformRef encryptionRef = SecEncryptTransformCreate(keyRef, &error);
SecTransformRef encodingRef = SecEncodeTransformCreate(kSecBase64Encoding,
 &error);
SecGroupTransformRef group = SecTransformCreateGroupTransform();

SecTransformConnectTransforms(
! ! ! ! encryptionRef, kSecTransformOutputAttributeName,
! ! ! ! encodingRef, kSecTransformInputAttributeName, group,
 &error);

SecTransformSetAttribute(encryptionRef, kSecTransformInputAttributeName,
! ! ! ! dataToEncryptAndEncode, &error);

32

Lion’s Transform Library

• Basic cryptography
■ Encrypt/decrypt, sign/verify, hashes, key wrapping, string-to-key

• Encoding
■ Base-32, base-64, Zlib compression

• Miscellaneous
■ File reading

33

Custom Transforms

34

Sample Code in Headers
Complete example Custom Transform

• In the header for <Security/SecCustomTransform.h>
• Creates a custom transform for the Caesar cipher

35

Operation and Lifecycle

• Transforms run via a series of lifecycle events
• Each event executes a block
• Each event can be overridden with a new block
• No overrides = null transform

■ Creating a new transform starts with the null transform and tailors it

36

Advanced Override Use

• Overrides are not just once
• You can re-override with new handlers
• Useful for selecting implementations, etc.
• Very high-level operations can be very fast

37

Attribute Set Notification

• This event can happen for
■ All attributes
■ A named attribute

• A specific handler occludes the generic

38

Process Data

• A shortcut for handling the process between INPUT and OUTPUT
• Process Data is called with the datum that was sent to INPUT
• Its return value is sent to OUTPUT and to the next transform’s INPUT
• NULL is sent when there is no more data

■ Return NULL when you want to close things down

39

Lifecycle Functions

• Execute Starting
■ Called just before the INPUT stream starts

• Finalize
■ Called just before release

40

Code Size Comparison

41

Speed Comparison

43

44

45

Transforms vs. CDSA smackdown
Results of the Comparison

46

10.1%
Transform vs. CDSA

Lines of Code

47

7.1!
Transform vs. CDSA
Performance Gain

48

Summary

• Originally a way to speed up crypto
• Became general concurrent programming
• Builds on the shoulders of GCD and CF
• Order-of-magnitude improvements in code size and speed

49

OpenSSL

50

We Are Deprecating OpenSSL Dylibs
Why?

• Not designed for upward compatible binary release
• Lack of stable ABI means a dylib per OpenSSL release
• We need a FIPS 140 platform

51

Migration Strategy
Why?

• You write apps for Mac OS or iOS
• You like our new technology

■ Automatic algorithm optimizations
■ Concurrency
■ Small code

• You want to inherit our evaluations
• We are taking this path ourselves

Please tell us what you need at bugreporter.apple.com

52

Migration Strategy
What to do

• CommonCrypto for most basic algorithms
■ Most like OpenSSL
■ Still missing asymmetric, etc.

• Transforms and Security Framework in apps
■ Concurrent, scalable

• Secure Transport
■ Our SSL/TLS library
■ Comes for free in CFNetwork, NSURL*

Please tell us what you need at bugreporter.apple.com

53

Remaining with OpenSSL
Why?

• You are doing a Unix application
• You use something that uses OpenSSL
• It is the devil you know

54

Remaining with OpenSSL
What to do

• Get OpenSSL from MacPorts.org
■ Most recent version, 1.0.0d is there
■ Statically link the libraries
■ Include anything else in your bundle

• This is what the OpenSSL team recommends
■ Static linking is the binary model
■ It prevents dylib version skew

55

Wrap-up

• CDSA and OpenSSL dylibs are being deprecated
■ Help us provide replacements

• CommonCrypto is low-level
• Transforms are CF-level

■ Originally created for cryptography
■ Became general-purpose concurrent programming
■ Builds on the shoulders of GCD and CF
■ Order-of-magnitude improvements in code size and speed

56

Security Overview Nob Hill
Tuesday 11:30AM

Related Sessions

57

Security Lab Core OS Lab B
Friday 11:30AM

Labs

58

59

