
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 310
Steve Lewallen
Performance Tools Engineering Manager

What’s New
in Instruments

1

Today’s Agenda

Workflow Strategies System
Trace

Network
Analysis ARCProfiling

API

2

Workflow Improvements
From recording to data mining

Workflow Strategies Network
Analysis ARCSystem

Trace
Profiling

API

3

Record Options

4

Refining recording behavior

Start Delay
Add delay between
hitting record and
record starting

Record Options

5

Refining recording behavior

Time Limit
Set a maximum
recording length

Record Options

6

Refining recording behavior

Deferred Mode
Toggle between
“immediate” and
deferred mode

Record Options

7

Refining recording behavior

Deferred Mode
Set deferred mode
as the defaults for
all new recordings

Record Options

8

Refining recording behavior

Toggle Recording
Start/Stop recording of
front-most trace document

Instruments may be
in background

Record Options

9

Refining recording behavior

Toggle Hardware Threading
Turns hyper-threading on or
off for supported systems

Record Options

10

Refining recording behavior

Active Processor Cores
Reduce the number of
active cores on the
Mac OS X system

Record Options

11

Track Gestures

12

Working with high-resolution traces
Track Gestures

13

Track Gestures
Working with high-resolution traces

14

Zoom In
Shift + Mouse Drag

15

Zoom In
Shift + Mouse Drag

16

Zoom Out
Control + Mouse Drag

17

Zoom Out
Control + Mouse Drag

18

control z+command+

Snap Track to Fit
Control + Command + Z

19

Snap Track to Fit
Control + Command + Z

20

Select Time Range
Option + Mouse Drag

21

Select Time Range
Option + Mouse Drag

22

Call Tree Data Mining

23

Data Focusing
Focus call tree to isolate factors

Charge ‘scaleImage’ to callers
Prune ‘scaleImage’ and subtrees
Charge ‘MiPMap’ to callers
Flatten ‘MiPMap’ to boundary frames

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

Reveal in Xcode

24

Charge ‘scaleImage’ to callers
Prune ‘scaleImage’ and subtrees
Charge ‘MiPMap’ to callers
Flatten ‘MiPMap’ to boundary frames

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

Reveal in Xcode

Focus on entire tree beneath selected symbol
Used to eliminate noise in call tree

Data Focusing
Focus call tree to isolate relevant subtrees

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

25

Focus on all calls made by symbol
Used to identify all calls made by symbol

Data Focusing
Focus call tree to isolate relevant subtrees

Charge ‘scaleImage’ to callers
Prune ‘scaleImage’ and subtrees
Charge ‘MiPMap’ to callers
Flatten ‘MiPMap’ to boundary frames

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

Reveal in Xcode

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

26

Focus on all callers of selected symbol
Useful to identify who all calls the selected symbol

Data Focusing
Focus call tree to isolate relevant subtrees

Charge ‘scaleImage’ to callers
Prune ‘scaleImage’ and subtrees
Charge ‘MiPMap’ to callers
Flatten ‘MiPMap’ to boundary frames

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

Reveal in Xcode

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

27

Focus on all callers into the selected library
Useful to see who all uses a given library

Data Focusing
Focus call tree to isolate relevant subtrees

Charge ‘scaleImage’ to callers
Prune ‘scaleImage’ and subtrees
Charge ‘MiPMap’ to callers
Flatten ‘MiPMap’ to boundary frames

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

Reveal in Xcode

Focus on subtree
Focus on calls made by ‘scaleImage’
Focus on callers of ‘scaleImage’
Focus on callers of ‘MiPMap’

28

Find data without filter out surrounding context

Find
Perform find in all table
and outline detail views

Find in Detail Views

29

Discontinuous selection with shallow or deep copy

Copy Discontinuous Selection
Select any combination of
lines in detail view

Stack Copy

30

Discontinuous selection with shallow or deep copy

Paste
Text copied includes
all columns and
outline indentation

Stack Copy User Interface

31

Navigate by hottest to coolest hits
Navigation of Source Annotations

32

Navigation of Source Annotations
Navigate by hottest to coolest hits

33

Navigate by hottest to coolest hits
Navigation of Source Annotations

34

Workflow Strategies Network
Analysis ARCSystem

Trace
Profiling

API

Strategies

35

What Is a “Strategy?”

A method to categorize, display, and highlight data gathered
from multiple instruments along a common axis

36

Strategies
The “Instruments” strategy

37

Strategies
The “Instruments” strategy

38

Strategies
The “Instruments” strategy

In
st

ru
m

en
ts

on
 Y

 a
xi

s

Time on X axis

39

Strategies
The “CPU” strategy

Co
re

s
on

 Y
 a

xi
s

Time on X axis

40

Strategies
The “Threads” strategy

Th
re

ad
s

on
 Y

 a
xi

s

Time on X axis

41

What Are the Elements
of a Strategy?

42

Elements of a Strategy

Strategy Chooser
Controls which
strategy to display

43

Elements of a Strategy

Highlight Controls
Controls highlighting
of data in track and
detail views

44

Elements of a Strategy

Track View
Displays data
relevant to strategy

45

Elements of a Strategy Legend
Displays a key legend
for the selected strategy

46

CPU Strategy In-Depth

47

Why Use the CPU Strategy?

• Determine frequency and duration that your code is on CPU
• Identify what keeps your threads off CPU

■ Poor concurrency
■ Lock contention

■ Busy system
■ Multiple processes contending for CPU

48

Poor Concurrency
Lock contention

Running Code
Samples taken
while on CPU

49

Poor Concurrency
Lock contention

50

Lock contention
Poor Concurrency

Idle Processor
Gaps indicating no
activity on CPU

51

Idealized Concurrency
Lock contention eliminated with full CPU utilization

Concurrency
Samples on multiple
CPUs at the same time

52

Concurrency in the Real World
Lock contention eliminated with shared CPU utilization

Multi-process
Utilization
Samples from multiple
processes interleaved

53

Concurrency in the Real World
Lock contention eliminated with shared CPU utilization

Multiprocess
Utilization
Samples from multiple
processes interleaved

54

Detecting concurrency with time profiler
CPU Strategy Demo

Daniel Delwood
Performance Tools Engineer

55

Workflow Strategies Network
Analysis ARCSystem

Trace
Profiling

API

Programmatically control data recording
Performance Analysis API

56

DTPerformanceSession Framework

• Target self or other processes (existing or launched)
• Time Profiler, System Trace, Leaks, Allocations (with zombies support),
Activity Monitor, flags support

• View result in Instruments
■ ‘DTPS’ file has limited lifespan

■ Symbol data will be out of date once binary is rebuilt
■ Opening in Instruments converts to Trace Document and saves symbol data

• Location
/Library/Developer/4.0/Instruments/Frameworks/DTPerformanceSession.framework

Only on
Mac OS

57

Why Use DTPerformanceSession?

• Profile specific operations in your own code
• Automatically flag important events
• Profile your own performance regression tests

58

Using DTPerformanceSession API
Setup session

DTPerformanceSessionCreate(NULL,

! ! CFStringCreateWithFormat(NULL, NULL, CFSTR("%d"), getpid()),

! ! NULL, NULL);

DTPerformanceSessionAddInstrument(session,

! ! CFSTR(DTPerformanceSession_TimeProfiler), NULL, NULL, NULL);"

59

Using DTPerformanceSession API
Add calls to start/stop profilers

DTPerformanceSessionStart(session, NULL, NULL);

DTPerformanceSessionStop(session, NULL, NULL);

60

Using DTPerformanceSession API
Insert sign posts

DTSendSignalFlag("All masterImages updated", DT_POINT_SIGNAL, true);

or…

DTSendSignalFlag("Master Images Update", DT_START_SIGNAL, true);

DTSendSignalFlag("Master Images Update", DT_END_SIGNAL, true);

61

Using DTPerformanceSession API
Save session

DTPerformanceSessionSave(session, CFSTR("/tmp/WWDC2011"), NULL);

CFRelease(session);

62

Viewing Results
Open DTPS file in Instruments

63

iProfiler
Built with DTPerformanceSession framework

iprofiler(1) BSD General Commands Manual iprofiler(1)

NAME
 iprofiler, version 1.0

USAGE
 iprofiler [-l] [-L] [-legacy] [-T duration] [-I sampling interval] [-d path] [-o basename]

 [-activitymonitor] [-allocations] [-leaks] [-systemtrace] [-timeprofiler] [-kernelstacks
 | -userandkernelstacks] [-allthreadstates] [-a process/pid | executable [args...]]

DESCRIPTION
 Measure an application's performance without launching Instruments.app and then visualize

the measurements at a later time in Instruments.app. The performance data gets saved in a
.dtps bundle that can be opened in Instruments.app via "Open existing file...". iprofiler
supports these instruments: Time Profiler, System Trace, Activity Monitor, Allocations,
and Leaks. Any combination of these instruments can be run simultaneously. iprofiler
supports attaching to a currently-running process, launching a process that will only run
during the measurement, or profiling all currently-running processes (by not specifying
process/pid or executable).

 Options are :

 -l Lists all supported instruments

 -L Lists all supported instruments, with a description

 -legacy Executes the legacy Instruments command-line interface found at /usr/bin/
instruments. This is a non-lightweight command-line interface that launches Instruments.app.

 -T duration
 Runs the profile for "duration" seconds. If this is not specified, it measures for
5 seconds. Duration can be specified in seconds (e.g. 1s or 1), milliseconds (1000ms)
 or nanoseconds (1000ns)

 -I sampling interval
 Measures performance every "sampling interval" milliseconds. If this is not
specified, it uses Instruments.app's default sampling interval. Sampling interval can be
 specified in milliseconds (e.g. 1000ms or 1000), seconds (1s) or nanoseconds
(1000ns)

64

Workflow Strategies Network
Analysis ARCSystem

Trace
Profiling

API

System Trace
Comprehensive system analysis

65

What Is System Trace?

• NEW in iOS 5!
• Comprehensive analysis of system behavior

■ Thread scheduling
■ Virtual memory
■ System calls

• Available in Mac OS X since Instruments 4.0

66

“Instruments” strategy

Scheduling
Records thread context
switches and tenures

System Trace

67

“Instruments” strategy

System Calls
Records system calls
and their duration

System Trace

68

“Instruments” strategy

VM Operations
Records virtual memory
fault events

System Trace

69

“Threads” strategy

Threads
System calls, VM faults,
and thread states

System Trace

70

“Threads” strategy

Thread Context Switches
Arrows indicate threads
scheduled onto cores

System Trace

71

Thread context switches
System Trace

Thread Tenure Thread Tenure

Context Switch

Context Switch

Context SwitchContext Switch

Context Switch

Thread Tenure

Thread Tenure Thread Tenure

Thread A

Thread B

== Single Core

72

Virtual Memory Events
Icons indicate cache hits,
zero fills, page-ins, etc.

System Trace
“Threads” strategy

73

Guard Page
File Backed Page-in
Anonymous Memory Page-in
Page-out

 Copy On Write
 Zero Fill
 Page-in
 Page Cache Hit
 Non-Zero Fill

Virtual memory events
System Trace

74

Virtual Memory Events Explained
Memory is managed in segments called “Pages”

Virtual Memory

Virtual Memory

PagePagePagePagePagePagePage

75

Virtual Memory Events Explained
Virtual Pages become real Pages by “Page faults”

Virtual Memory

Virtual Memory

PagePagePagePagePagePagePage

76

Virtual Memory

Virtual Memory

Virtual Memory Events Explained
Pages can be shared

PagePagePagePagePagePagePage

SharedShared

SharedSharedSharedShared

77

PagePagePagePagePagePage

Virtual Memory

Virtual Memory

Virtual Memory Events Explained
What happens when someone writes to a shared page?

SharedShared

SharedSharedSharedShared

78

PagePagePagePagePagePage

Virtual Memory

Virtual Memory

Virtual Memory Events Explained
A copy is made of the shared page

SharedShared

SharedShared

79

PagePagePagePagePage

Virtual Memory

Virtual Memory

Virtual Memory Events Explained
The write completes, thus a “Copy On Write” page fault

SharedShared

SharedShared

80

PagePagePagePagePage

Virtual Memory

Virtual Memory

Virtual Memory Events Explained
Pages no longer used are returned to the VM system

SharedShared

SharedShared

81

PagePagePagePagePage

Virtual Memory

Virtual Memory Events Explained
What happens when that memory is reused?

Clearly, this would be a problem!

82

PagePagePagePagePage

Virtual Memory

Virtual Memory Events Explained
The system performs a “Zero Fill” page fault

0000000000000
0000000000000
0000000000000

83

System Calls
Telephones indicate
calls from user space
into the kernel

System Trace
“Threads” strategy

84

System calls
System Trace

System Call

Thread

System Call

85

“Threads” strategy

Thread States
Colored bars indicate
thread state

System Trace

86

Thread states
System Trace

Runnable Preempted

Context Switch

Context Switch

Supervisor Running SupervisorThread

87

System Trace Demo

Daniel Delwood
Performance Tools Engineer

88

Workflow Strategies Network
Analysis ARC

Network Instrumentation

System
Trace

Profiling
API

Track data flow and radio usage

89

Data flow statistics
Network Connections

90

Network Connections Instrument

• Measures data volume
■ TCP/IP and UDP/IP
■ Performance metrics

• Debug latency
• Identify lost packets and
re-transmission of data

91

Network Connections Instrument
New in iOS 5

92

Network Activity Instrument

• Identify radio traffic in and out
■ Wi-Fi
■ Cellular

• Correlate power use with radio use

93

Network Activity
New in iOS 5

94

Workflow Strategies Network
Analysis ARC

ARC Instrumentation

System
Trace

Profiling
API

95

Leak cycle detection
ARC Instrumentation

96

Automatic Reference Counting (ARC)
What’s automatic about it?

• No more writing -retain/-release/-autorelease
• Enforces previous “convention”
• Eliminates many simple bugs
• Allows you to think about object relationships

97

Automatic Reference Counting (ARC)
What’s not automatic about it?

• It’s not a garbage collector
• Runs alongside manual reference counting (MRC) code
• Cannot break retain cycles
• Cannot prevent leaks

98

Automatic Reference Counting (ARC)
But Instruments can help!

• Leaks instrument identifies
■ “Allocated memory that can no longer be reached”

■ No more pointers to it from the active heap

99

Automatic Reference Counting (ARC)
But Instruments can help!

• Leaks instrument identifies
■ “Allocated memory that can no longer be reached”

■ No more pointers to it from the active heap
■ Cycle detection

Global Data

Active HeapStacks Leaks

100

Using Automatic Reference Counting

Using Manual Reference Counting

Starting at the right spot
Fixing Leaks with ARC

101

Fixing Leaks with ARC
Starting at the right spot

Strong references Manual references

102

Leak Cycle
Leak Cycle

Fixing Leaks with ARC
Starting at the right spot

103

Leak Cycle

Starting at the right spot

1. Fix the cycles

Leak Cycle

Fixing Leaks with ARC

104

Fixing Leaks with ARC
Starting at the right spot

1. Fix the cycles
2. Fix remaining manual reference counting leaks

Release ivar properly

105

ARC Demo

Daniel Delwood
Performance Tools Engineer

106

In Conclusion

• Tackle concurrency issues with the CPU strategy
• Examine the efficiency of your application via System Trace
• Leverage the new DTPerformanceSession framework
• Eliminate your leaked reference cycles with ARC instrumentation

107

More Information

Michael Jurewitz
Developer Tools & Performance Evangelist
jurewitz@apple.com

Instruments Documentation
Instruments User Guide (Xcode documentation)
Instruments New Features User Guide

Apple Developer Forums
http://devforums.apple.com

108

iOS Performance and Power Optimization with Instruments Presidio
Wednesday 4:30PM

iOS Performance in Depth Presidio
Thursday 4:30PM

Related Sessions

Objective-C Advancements In-Depth Mission
Friday 11:30AM

109

Mac OS X Performance Lab Developer Tools Lab B
Thursday 9:00AM

iOS App Performance Lab Developer Tools Lab A
Thursday 9:00AM

Labs

Objective-C and Automatic Reference Counting Lab Developer Tools Lab B
Thursday 2:00PM

110

111

