
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 312

iOS Performance and Power 
Optimization with Instruments

Tim Lee
iOS Performance

1



Introduction

• Performance and power are important!
• Key aspect of App Store reviews
• You have the tools and skills to improve performance
• Today: cover common cases and strategies

2



What You’ll Learn

• How to measure performance and power scenarios
• How to improve key scenarios

■ Speedy interaction
■ Slim memory footprint
■ Use network and battery efficiently

3



Measuring Performance

4



Measuring Performance
Strategy

• Don’t guess
• Take measurements
• It has to feel right

5



Measuring Performance
Focus on scenarios

• Measure a single interaction
• Change code
• Measure again

6



Measuring Performance
Strategy

• Test with realistic data sets
• Test on the slowest device you plan to support

7



Measuring Performance
Tools

• Instruments
• Logging
■ NSLog(@”That took %g seconds\n”, timeWeWaited);
■ Log to file
■ Control with #define, environment variables, or user preferences

• Simulator (for memory only)
• Side-by-Side

8



Speed and responsiveness
Improving Performance

9



Speed and Responsiveness
Importance

• Slow performance will cause OS to abort your app
■ Maintain system responsiveness
■ Beware the system “watchdog”

• Launch and resume are particularly important
• Smooth scrolling

Watchdog Checks Maximum Time

Launch 20 sec

Resume 10 sec

Suspend 10 sec

Quit 6 sec

Complete 
operation 10 min

10



Optimizing for Speed
Strategies

• Do less work
• Do work later
• Do work faster

■ Focus on slowest paths
■ Use placeholders until the work is done
■ Do slow work in the background

11



Slim memory footprint
Improving Performance

12



Slim Memory
Jetsam and memory warnings

• “Jetsam”
■ Watches memory pressure
■ Instant lightweight termination of applications

• Larger suspended apps are first
• Memory warnings are your chance to save yourself

13



Slim Memory
Areas to focus on

• Spikes 
• Leaks
• Abandoned memory

14



Slim Memory
Spikes

• Definition: individual brief allocations all present simultaneously
• Processing large quantities of data

■ Break into independent batches

• Autoreleased objects
■ Reduce object lifetimes

15



Slim Memory
Autorelease

• “Used to avoid worrying about retain/release”

16



Slim Memory
Autorelease

• “Used to avoid worrying about retain/release”
• Way for frameworks to manage object ownership

17



Slim Memory
Retain/Release

• App asks for an object (alloc/init)
• App is responsible for releasing it

App Object

Later...

ReleaseRetain 

18



Slim Memory
Autorelease

• App asks a framework for an object
• Framework doesn’t know when app is done with the object
• Leaves it to AutoreleasePool to release

App Object AutoreleasePoolFramework

[NSArray array]

Later...

Release

19



Slim Memory
Autorelease

• Can lead to memory spikes
• ARC alleviates this problem
• Use nested autorelease pools to fix

Object

Framework

Later...

Object

Object

Object Object Object

App AutoreleasePool

20



Slim Memory
Leaks

• Definition: allocated memory that is inaccessible
• Leaks instrument 

■ Examines the heap for leaked memory
■ Identifies moment of allocation

■ Problem is usually lack of release, but this provides context

• Common mistakes
■ Unbalanced retain/release
■ Forget to release property’s original value

• ARC largely removes this problem (if project uses it)

21



Slim Memory
Abandoned memory

• Definition: left over; accessible, but will never be used again
• Allocations Instrument offers “heapshot”
• Two snapshots in time
• Look at (unexpected) differences
• ARC doesn’t help here

22



Time Profiler, Allocations, Leaks Instruments
Demo

23



Speed and Responsiveness
Review

• System watchdog will terminate slow apps

• Do less, do later, do faster

• Do slow operations in the background

• Optimize time-consuming activities

• Only load what you need at launch

24



Slim Memory
Review

• Spikes, Leaks, Abandonments
• Jetsam will terminate your app

■ Memory warnings are your last chance

• Instruments: Leaks, Allocations, VMTracker
• Add extra autorelease pools to avoid spikes
• Use ARC

25



iOS Networking and Power 
Optimizations

Chad Woolf
Performance Tools Engineer

26



Performance Optimization

• Not just about speed
• Efficiency
• Faster code is a benefit

27



Networking and Power
Optimizations

Power

Networking

28



Optimizations
Networking and power

       Reducing Network Traffic

       Bursting

       CoreLocation Accuracy

       Sleep/Wake

       Dynamic Frame Rates

29



Reducing Network Traffic

30



Reducing Networking Traffic
Opportunity

• Reduces network congestion
• Saves customers money
• Saves energy (battery life)

31



Measuring Traffic

32



Network Connections Instrument

• Measure data volume
• TCP/IP and UDP/IP
• Performance metrics

33



Network connections
Demo

34



Caching Content
Optimization technique

• Redundant downloads are bad
• Use URL Loading System in Foundation

■ HTTP aware
•NSURLCache

■ Memory
■ Persistence in iOS 5

35



Compression
Optimization technique

• Start with compact formats
• Compress when possible
• Reduce large images

36



Resumable Transfers
Optimization technique

• Connections break often
• Restarting redundant
• Resuming is better

■ HTTP Range: 100000-

37



Download Profiling
Optimization technique

• Watch how your customers use your app
• Don’t download more than they’re likely to consume
• Add logging and send statistics

38



Reduce Traffic
Summary

• Measure first
• Cache content
• Compress content
• Use resumable transfers
• Download only what’s likely to be used

39



Bursting

40



Bursting
Opportunity

• Transmit/receive all at once
• Don’t use the network in between
• Saves on energy consumption

41



Opportunity

• Sending and receiving consumes significant energy
• Radio power stays high for up to 10 seconds
• The next packet resets the timer

Bursting

Power 

Time 

Data
Transfer 

42



Bursting
Measuring

• Energy Diagnostics template in Instruments
■ Energy
■ CPU
■ Power states

• Network Activity instrument
■ New in iOS 5

• Energy usage sampled more frequently

43



Energy Diagnostics and Bursting
Demo

44



Bursting
Optimization techniques

• Accumulate outgoing data
• Delay transmission
• Exceptions

■ Real-time streaming
■ Real-time multiplayer gaming

45



CoreLocation Accuracy

46



CoreLocation
Opportunity

• Several levels of accuracy
• Higher accuracy requires more energy
• Choose the most suitable accuracy

47



CoreLocation
Measuring

• Use the Energy Diagnostics template
• GPS “on” means more energy

48



CoreLocation
Optimization technique

• Use least amount of accuracy—default is kCLLocationAccuracyBest
■ GPS:         kCLLocationAccuracyBest, BestForNavigation
■ GPS:         kCLLocationAccuracyNearestTenMeters
■ Wi-Fi:        kCLLocationAccuracyHundredMeters
■ Cell/Wi-Fi:    kCLLocationAccuracyKilometer, ThreeKilometers

CLLocationManager *locationManager = [[CLLocationManager alloc] init];

locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;

[locationManager startUpdatingLocation];

[locationManager stopUpdatingLocation];

49



Sleep/Wake

50



Sleep/Wake
Opportunity

• Battery life depends on sleep
• Don’t keep the device awake
• Don’t wake the device unnecessarily

51



Sleep/Wake
Measuring

• Use the Energy Diagnostics template
• Watching for periodic wakes

52



Sleep/Wake
Case study

• Normal
■ ~300 hours standby

• Woken every 30s 
■ ~30 hours standby

53



Sleep/Wake
Optimization techniques

• Use push notifications carefully
• Don’t wake if the user isn’t responding
• Let the device sleep as long as possible

54



Dynamic Frame Rates

55



Dynamic Frame Rates
Opportunity

• Smoothest animations are 60 fps
• Some scenes require less
• Reduce when quality isn’t impacted

56



Dynamic Frame Rates
Measuring

• Use Energy Diagnostics template
• Use Core Animation template
• Look for high Foreground App and Graphics activity
• Watch the Energy Usage instrument

57



Dynamic Frame Rates
Case study

58



Dynamic Frame Rates
Optimization technique

• Draw only what’s new
• Experiment
• Reduce your CPU and GPU activity

59



Wrapping Up

60



Review

• Measure
■ Instruments
■ iTunes Connect reports

• Goal: Lean Apps
• Performance is about efficiency

61



Michael Jurewitz
Developer Tools Evangelist
jurewitz@apple.com

Documentation
Instruments User Guide
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

More Information

62



Introducing Automatic Reference Counting Presidio
Tuesday 4:30PM

What’s New in Instruments Marina
Wednesday 2:00PM

Related Sessions

iOS Performance In-Depth Presidio
Thursday 4:30PM

63



iOS App Performance Lab Developer Tools Lab A
Thursday 9:00AM

Related Labs

64



65


