
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 320

Adopting Multitasking in Your App

Dave Myszewski, Charles Srisuwananukorn
iOS Performance

1



Introduction

• Multitasking provides services 
that work on behalf of apps

• Apps do not need to run
all the time

• Good for the performance
• Good for battery life

2



Supported on All iOS Devices

3



What You’ll Learn

• App lifecycle
• Best practices
• Multitasking services

4



App Lifecycle

5



Foreground

Background

Inactive

UIApplicationDelegate Callbacks
Launch and active/inactive

Active

Not Running

Suspended

Running

application:
didFinishLaunchingWithOptions:

applicationDidBecomeActive:

applicationWillResignActive:

6



Not Running

Background

Foreground

Inactive

Active

Suspended

Running

UIApplicationDelegate Callbacks
Switching from an app

applicationWillResignActive:

applicationDidEnterBackground:

X
7



Not Running

Foreground

Background

Inactive

Active

Suspended

Running

UIApplicationDelegate Callbacks
Switching to an app

applicationDidBecomeActive:

applicationWillEnterForeground:

8



Not Running

Background

Foreground

Inactive

Active

Suspended

Running

UIApplicationDelegate Callbacks
Device lock

applicationWillResignActive:

applicationDidEnterBackground:

9



Lifecycle Notifications

UIApplicationDelegate Callback

application:didFinishLaunchingWithOptions:

applicationWillTerminate:

applicationDidBecomeActive:

applicationWillResignActive:

applicationDidEnterBackground:

applicationWillEnterForeground:

Notification

UIApplicationDidFinishLaunchingNotification

UIApplicationWillTerminateNotification

UIApplicationDidBecomeActiveNotification

UIApplicationWillResignActiveNotification

UIApplicationDidEnterBackgroundNotification

UIApplicationWillEnterForegroundNotification

10



Running in the Background

• Multitasking services provide three ways to run in the background
■ Continue your current task
■ Run on external triggers
■ Run on targeted networking events

11



Foreground

Background

Inactive

Active

Suspended

Not running

Task Completion

Home button 
pressed

Upload 
completed

Running

Application lifecycle

12



Foreground

Background

Inactive

Active

Suspended

Not running

Background Audio

Home button 
pressed

Music 
paused

Running

Application lifecycle

13



Foreground

Background

Inactive

Active

Suspended

Running

Not running

Background Audio

Handling 
event

Play button 
pressed

Audio 
started

Remote control

14



Best Practices

15



Best Practices

• System resources
■ Memory
■ OpenGL

• Gracefully resuming from the background
■ Preserving state
■ Networking
■ System notifications

16



17



• Apps share system resources
■ CPU
■ I/O
■ Memory
■ GPU
■ Network

Best Practices

18



Best Practices

• System prioritizes some resources 
for the foreground app
■ CPU
■ I/O

19



Best Practices

• Some resources are off limits
■ GPU (OpenGL)

20



Best Practices

• Other resources, your app can 
help manage
■ Memory

21



Memory

• Apps share a limited amount 
of memory

• iOS ensures that the device has the 
memory it needs
■ Sends running apps 
memory warnings

■ Terminates apps

22



Memory
Memory warnings

• iOS sends notifications to running apps to free memory
• Only sends warnings when freeing memory is crucial
• Suspended apps do not receive memory warnings

23



Memory

• Your app should free memory 
on entering the background

• OS and frameworks free some 
memory going to the background

• Apps using less than 16 MB of dirty 
memory are written to disk

• Balance memory footprint and 
speed to resume

Foreground

Background

Inactive

Active

Suspended

Running

Not Running

24



Memory
View backing stores

25



Memory
View backing stores

UIView

26



Memory
View backing stores

CALayer

UIView

27



View backing stores
Memory

• Every UIView has a CALayer
• UIViews that draw themselves 
have bitmap backing stores

• iOS may reclaim backing stores 
while app is in the background

• If reclaimed, iOS calls the view’s 
-drawRect: for content

CALayer

UIView

28



UIImage cache
Memory

• UIKit caches images loaded with 
-[UIImage imageNamed:]

• Cache is purged on entering the 
background

29



Disk caches
Memory

• Many frameworks cache 
data in memory
■ SQLite
■ Core Data
■ NSCache

• Caches are emptied on 
entering the background

30



UIImageViews
Memory

• UIImageViews also have CALayer
• CALayer uses the image directly
• Images are not automatically 
reclaimed

• Detach large images from the view 
hierarchy on suspend

• Unload offscreen UIImageViews
• But beware of decompression 
on resume

CALayer

UIImageView

31



Memory
Caches

• Flush application caches
• But not if resuming takes as long relaunching from scratch
• Consider using NSCache and NSPurgeableData

32



Memory
NSCache and NSPurgeableData

• NSCache
■ Caches objects in memory
■ Evicts objects as necessary
■ Evicts objects when entering the background

• NSPurgeableData objects in an NSCache are not evicted
■ Instead they become reclaimable when not in use

33



Memory
Memory-mapped files

01001100110100111000101001101100

34



Memory
Memory-mapped files

10001010

11010011

01101100

01001100

35



Memory
Memory-mapped files

• Map files into memory instead of 
reading them if possible
+[NSData 
dataWithContentsOfMappedFile:]

• iOS reclaims pages from mapped 
read-only files automatically

10001010

11010011

01001100

36



Memory
Summary

• Free memory when you receive a memory warning
• Remove UIImageViews from the view hierarchy unless 
decompression is a problem

• Use NSCache and memory-mapped files when appropriate
• Balance memory footprint and speed to resume

37



Demo

38



OpenGL

• iOS terminates apps that use 
OpenGL in the background

• Stop animation timer when 
entering the background

Background

Foreground

Inactive

Suspended

Running

Not Running

Active

39



OpenGL

Exception Type:  EXC_CRASH (SIGABRT)

...

Thread 0 Crashed:
0   libsystem_kernel.dylib       0x33b35a1c __pthread_kill

1   libsystem_c.dylib            0x30bac3b4 pthread_kill

2   libsystem_c.dylib            0x30ba4bf8 abort

3   IMGSGX535GLDriver            0x355229ae glrReturnNotPermittedKillClient

...

7   OpenGLES                     0x354ade4e glFinish

...

40



OpenGL
Starting and stopping animation

- (void)startAnimation {

  if (!animating) {

    CADisplayLink *aDisplayLink = 

      [[UIScreen mainScreen] displayLinkWithTarget:self 

                                          selector:@selector(drawFrame)];

    [aDisplayLink setFrameInterval:animationFrameInterval];

    [aDisplayLink addToRunLoop:[NSRunLoop currentRunLoop]

                       forMode:NSDefaultRunLoopMode];

    self.displayLink = aDisplayLink;

    animating = YES;

  }

}

41



OpenGL
Starting and stopping animation

- (void)stopAnimation {

    if (animating) {

        [self.displayLink invalidate];

        self.displayLink = nil;

        animating = NO;

    }

}

42



OpenGL
Starting and stopping animation

- (void)awakeFromNib {

  NSNotificationCenter *center = [[NSNotificationCenter defaultCenter];

  ...

  [center addObserver:self

             selector:@selector(applicationWillResignActive:)

                 name:UIApplicationWillResignActiveNotification

               object:nil];

  ...

}

43



OpenGL
Starting and stopping animation

- (void)applicationWillResignActive:(NSNotification *)notification {

    if ([self isViewLoaded] && self.view.window) {

        [self stopAnimation];

    }

}

44



OpenGL
Starting and stopping animation

- (void)awakeFromNib {

  NSNotificationCenter *center = [[NSNotificationCenter defaultCenter];

  ...

  [center addObserver:self 

             selector:@selector(applicationDidBecomeActive:)

                 name:UIApplicationDidBecomeActiveNotification

               object:nil];

  ...

}

45



OpenGL
Starting and stopping animation

- (void)applicationDidBecomeActive:(NSNotification *)notification {

    if ([self isViewLoaded] && self.view.window) {

        [self startAnimation];

    }

}

46



OpenGL
Starting and stopping animation

- (void)awakeFromNib {

  NSNotificationCenter *center = [[NSNotificationCenter defaultCenter];

  ...

  [center addObserver:self 

             selector:@selector(applicationWillTerminate:)

                 name:UIApplicationWillTerminateNotification

               object:nil];

  ...

}

47



OpenGL
Starting and stopping animation

- (void)applicationWillTerminate:(NSNotification *)notification {

  if ([self isViewLoaded] && self.view.window) {

    [self stopAnimation];

  }

}

48



Best Practices

• System resources
■ Memory
■ OpenGL

• Gracefully resuming from the background
■ Preserving state
■ Networking
■ System notifications

49



Preserving State
Common state

• Return to exactly where you left off
• Save common UI state

■ Selected tab bar
■ Scroll position

50



Preserving State
App-specific content

• User input, like the last number entered in Calculator
• For networking apps, save the last search query

■ Ideal: Save enough state to return to exact content
■ Fallback: Reissue query

51



Preserving State
Games

• Turn-by-turn games should save after each turn
• Games with substantial, frequent state updates save periodically

■ When the application enters the background
■ Between levels, rooms

52



Networking
Sockets and suspension

• Sockets may disconnect while suspended
■ Be prepared for errors on resume

• Suspended apps cannot accept incoming connections
■ Close listening sockets before suspend
■ Reopen listening sockets on resume

53



Networking
Bonjour

• Bonjour operations may be cancelled while app suspended
• Restart Bonjour services if necessary on resume

54



System Notifications

• System change notifications not delivered to suspended app
• System coalesces and queues notifications
• Delivered when app resumes

55



Settings and Locale Changes

• Preferences and locale may be changed in Settings app

Event

Preference changed in Settings

Language or locale change

Notification

NSUserDefaultsDidChangeNotification

NSCurrentLocaleDidChangeNotification

56



Notifications Delivered on Resume

Event

Accessory connected

Accessory disconnected

Device orientation change

Time changes significantly

Battery level change

Battery state change

Proximity state change

Protected file status change

External display connected

External display disconnected

Screen display mode change

Preference changed in Settings

Language or locale change

Notification

EAAccessoryDidConnectNotification

EAAccessoryDidDisconnectNotification

UIDeviceOrientationDidChangeNotification

UIApplicationSignificantTimeChangeNotification

UIDeviceBatteryLevelDidChangeNotification

UIDeviceBatteryStateDidChangeNotification

UIDeviceProximityStateDidChangeNotification

UIApplicationProtectedDataWillBecomeUnavailable

UIApplicationProtectedDataDidBecomeUnavailable

UIScreenDidConnectNotification

UIScreenDidDisconnectNotification

UIScreenModeDidChangeNotification

NSUserDefaultsDidChangeNotification

NSCurrentLocaleDidChangeNotification

57



Multitasking Services

58



Task Completion
Best practices

• Use it!  Users expect it
• Finish as quickly as possible
• If you can’t finish in time:

■ End your background task in your expiration handler
■ Store what you can to resume where you left off

59



Background Audio

• Audio system provides 
many audio services
■ Prioritizing audio
■ Mixing and ducking
■ Headsets
■ External speakers
■ Display remote (new to iOS 5)

60



Background Audio
Audio interruptions

• Handle audio interruptions
• During an interruption

■ Audio system silences interrupted application
■ Update UI appropriately
■ Resume after the interruption

61



Background Audio
Audio interruptions

• In beginInterruption
■ Stop downloading the stream
■ Update UI

■ Play/Pause button
■ Play time

■ Stop visualizations

62



Background Audio
Audio interruptions

• In endInterruptionWithFlags:
■ Resume audio if AVAudioSessionInterruptionFlags_ShouldResume is set
■ Audio should resume for phone calls
■ Audio should not resume if iPod interrupts

63



Location Tracking

• Significant location changes
■ Sends a notification after changing cell towers

• Region monitoring
■ Sends a notification upon entering and exiting regions of interest

64



Significant location changes

Location 
changed

Location 
changed

Location 
changed

Location Tracking

65



Location Tracking
Region monitoring

Entered 
region

66



Location Tracking

Significant Location Changes Region Monitoring

Uses less power than standard 
location services

Resumes suspended applications

Launches terminated applications

Notifications are not coalesced

Supported on iPhone 4

Supported on iPhone 3GS

67



Newsstand

• Multitasking requirements in Info.plist
• Add newsstand-content to UIBackgroundModes
• Add UINewsstandApp key

• Push notifications allow once/day content downloads

68



Newsstand

• Minimize resource downloads
• Consumes disk space
• Items automatically evicted when space is needed
• Battery life

• Minimize number of downloads

Best practices

69



Summary

• Multitasking in iOS provides services that do work on your behalf
• Respond to memory warnings
• Minimize background memory usage
• Resume back to where you were when you suspended
• Balance memory footprint in the background with speed to resume

70



Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
iPhone Application Programming Guide
http://developer.apple.com/iphone

Apple Developer Forums
http://devforums.apple.com

More Information

71



iOS Performance in Depth Presidio
Thursday 4:30PM

iOS Performance and Power Optimization with Instruments Presidio
Wednesday 4:30PM

Related Sessions

Building Newsstand Apps Russian Hill
Thursday 11:30AM

72



73


