Audio Development for Games

Session 404

Kapil Krishnamurthy

James McCartney
Core Audio Engineering

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Agenda

* A’simple” game
- AVAudioPlayer
* Understanding your audio assets
* A“complex” game
- Spatial audio and OpenAL
* AudioSession

A “simple” game

* Background score

* Sound effects

* Basic control: volume, pan, looping
* Recommended API: AVAudioPlayer

AVAudioPlayer

» caf, m4a, mp3, aif, wav, au, snd, aac
* Play, pause, seek, stop
* Multiple sounds?
- Use multiple AVAudioPlayer objects
*Volume, panning, looping

AVAudioPlayer

Creating a player

* Create from a file URL

// Create the player from local file
NSURL *xurl = ...
AVAudioPlayer xplayer = [[AVAudioPlayer alloc] initWithContentsOfURL:url

withError:&errorl];

AVAudioPlayer

Setting properties for playback

* Control of volume, panning, looping, playback position

player.volume = 1.0; // 100% of current system volume

player.pan = -1.0; // pan to left side

player.numberOfLoops = 3; // play once, repeat 3 times

player.currentTime = 5.0; // playback position starts 5 seconds from start of file
player.delegate = myDelegate; // delegate

* Other properties
» Duration (read-only)
- Number of channels (read-only)
- Play state (read-only)

AVAudioPlayer

Playback controls

player prepareToPlay]; — * Gets ready to play the sound

player playl; = Allocates buffers

[

[. .
[player pausel; = Performs priming
[

olayer stopl: * Helps responsiveness of -play:

AVAudioPlayer

Playback controls

player prepareToPlay];
player playl;

[
[
[player pausel;
[

player stopl;

* Starts playing the sound

* Resumes playing if paused
or stopped

* Note:

* Set currentTime property to
0 to reset playback position

AVAudioPlayer

Playback controls

player prepareToPlay];
player playl;

[
[
[player pausel;
[

player stopl;

* Pauses playback
* Player remains prepared to play
= Resources are still allocated

* Call“play” to resume from where
it left off

AVAudioPlayer

Playback controls

player prepareToPlay];
player playl;

[
[
[player pausel;
[

player stopl;

* Stops playback
* Player is no longer “prepared”

= Resources are disposed
= To resume:

- Need to “prepare” again

AVAudioPlayer

Current Time

* Current Time sets the time in seconds

* Pause and Stop leave play head at current position
* Set Current Time to 0 to reset play head

AVAudioPlayer

Delegate methods

* When certain events happen, your delegate gets called
- e.g., the player finished playing

—(void)audioPlayerDidFinishPlaying: (AVAudioPlayer x)player
successfully: (BOOL)flag

* Others

- An interruption began
- An interruption ended (“with flags”)
- There was a decode error

AVAudioPlayer

Prepare sound for playback

—(void)prepareAudioPlayer: (NSURL *x)url withError: (NSError xx)error

// Create the player
AVAudioPlayer xplayer = [AVAudioPlayer alloc] initWithContentsOfURL:url
withError:error];

// Set properties
player.delegate = myDelegate;

// Get ready to play the sound
[player prepareToPlay 1;
}

AVAudioPlayer

Prepare sound for playback

—(void)prepareAudioPlayer: (NSURL *x)url withError: (NSError xx)error

// Create the player
AVAudioPlayer xplayer = [AVAudioPlayer alloc] initWithContentsOfURL:url
withError:error];

// Set properties
player.delegate = myDelegate;

// Get ready to play the sound
[player prepareToPlay 1;

AVAudioPlayer

Prepare sound for playback

—(void)prepareAudioPlayer: (NSURL *x)url withError: (NSError xx)error

// Create the player
AVAudioPlayer xplayer = [AVAudioPlayer alloc] initWithContentsOfURL:url
withError:error];

// Set properties
player.delegate = myDelegate;

// Get ready to play the sound
[player prepareToPlay];

Tuning Your Assets

Tuning Your Assets
Overview

* Create assets at the same sample rate

- Multiple sample rate conversions are expensive

Tuning Your Assets
Overview

* Create assets at the same sample rate

- Multiple sample rate conversions are expensive
* AAC vs. MP3

- Better quality at same asset size
- Similar quality with smaller asset size
- Cheaper to decode

Tuning Your Assets
Sample rate conversions

AVAudioPlayers Output HW

8k

Tuning Your Assets
Sample rate conversions

AVAudioPlayers Output HW

8k

Tuning Your Assets
Sample rate conversions

AVAudioPlayers Output HW

Tuning Your Assets
Sample rate conversions

AVAudioPlayers Output HW

Tuning Your Assets
Sample rate conversions

AVAudioPlayers Output HW

Tuning Your Assets
Picking a sample rate

* Pick the highest sample rate needed to capture fidelity of the sounds in
your game

Tuning Your Assets
Picking a sample rate

* Pick the highest sample rate needed to capture fidelity of the sounds in
your game

* AAC decoding is inexpensive

Audio Format Tools
afconvert

* Desktop command-line tool

* Converts between data formats, file formats, and sample rates

> afconvert sourcePCM.aif destAAC.m4a -f 'm4af' -d ‘aac '

Audio Format Tools
afinfo

* Tool that displays file metadata

> afinfo destAAC.m4a

File: destAAC.m4a

File type ID: m4af

Data format: 1 ch, 44100 Hz, 'aac ' (0x00000000) @ bits/channel, 0
bytes/packet, 1024 frames/packet, 0 bytes/frame

Channel layout: Mono

estimated duration: 0.915692 sec

audio bytes: 9749

audio packets: 42

audio 40382 valid frames + 2112 priming + 514 remainder = 43008
bit rate: 79972 bits per second

packet size upper bound: 313

audio data file offset: 4096

optimized

Working with Compressed Audio

James McCartney

Core Audio Engineering

Samples, Frames, and Packets

* Sample [
- One sample of a waveform
* Frame

- A collection of samples for each channel
* Packet

= The smallest cohesive unit of data for a format
= For LPCM, one packet equals one frame

- For compressed formats, one packet is a group of bytes
that decompress to some number of frames of LPCM

Packets and Frames

AAC
1 packet

1024 frames of LPCM

Working with Compressed Audio

* Compressed audio has “leading” and “trailing” frames
a.k.a.”priming” and “remainder”

Working with Compressed Audio

* Compressed audio has “leading” and “trailing” frames
* Leading frames express the processing latency of the codec

* Trailing frames are excess frames within the last packet that are not part
of the program material

Working with Compressed Audio

* Compressed audio has “leading” and “trailing” frames
* Leading frames express the processing latency of the codec

* Trailing frames are excess frames within the last packet that are not part
of the program material

AAC packet AAC packet AAC packet AAC packet AAC packet
1024 frames 1024 frames 1024 frames 1024 frames 1024 frames

2112 leading frames 2205 valid frames 803 trailing
(50 msecs) HEINES

5 packets * 1024 frames per packet - 2112 leading - 803 trailing = 2205 valid frames

Decoding Compressed Audio

AAC packet AAC packet
1024 frames 1024 frames

AAC packet AAC packet
1024 frames 1024 frames

AAC packet
1024 frames

2112 leading frames

2205 valid frames
(50 msecs)

803 trailing
HEINES

5 packets * 1024 frames per packet - 2112 leading - 803 trailing = 2205 valid frames

Decoding Compressed Audio

AAC packet
1024 frames

AAC packet
1024 frames

AAC packet AAC packet
1024 frames 1024 frames

AAC packet
1024 frames

2112 leading frames

2205 valid frames
(50 msecs)

803 trailing
HEINES

5 packets * 1024 frames per packet - 2112 leading - 803 trailing = 2205 valid frames

Decoding Compressed Audio

AAC packet
1024 frames

AAC packet
1024 frames

AAC packet
1024 frames

AAC packet
1024 frames

AAC packet
1024 frames

2112 leading frames

2205 valid frames

(50 msecs)

803 trailing
HEINES

5 packets * 1024 frames per packet - 2112 leading - 803 trailing = 2205 valid frames

Decoding Compressed Audio

AAC packet
1024 frames

il i
2112 leading frames 2205 valid frames 803 trailing
(50 msecs) HEINES

5 packets * 1024 frames per packet - 2112 leading - 803 trailing = 2205 valid frames

Decoding Compressed Audio

803
trailing
frames

” LY TLULIA

UM\WH i 'Jr T~
| H [l

2112 leading frames 2205 valid frames 803 trailing
(50 msecs) HEINES

5 packets * 1024 frames per packet - 2112 leading - 803 trailing = 2205 valid frames

Decoding Compressed Audio

[TT—
L

AAC packet AAC packet AAC packet AAC packet AAC packet
1024 frames 1024 frames 1024 frames 1024 frames 1024 frames

2205 valid frames
(50 msecs)

5 packets * 1024 frames per packet - 2112 leading - 803 trailing = 2205 valid frames

Working with Compressed Audio

* AVAudioPlayer handles this for you

AAC packet AAC packet AAC packet AAC packet AAC packet
1024 frames 1024 frames 1024 frames 1024 frames 1024 frames

2205 valid frames
(50 msecs)

Working with Compressed Audio

* AVAudioPlayer handles this for you
* Extended Audio File allows you to ignore it and deal with PCM

AAC packet AAC packet AAC packet AAC packet AAC packet
1024 frames 1024 frames 1024 frames 1024 frames 1024 frames

2205 valid frames
(50 msecs)

afinfo
Leading and trailing frames

> afinfo tic.caf
File: tic.caf
File type ID: caff

Data format: 1 ch, 44100 Hz, 'aac ' (0x00000000) O bits/channel, ©
bytes/packet, 1024 frames/

packet, @ bytes/frame
no channel layout.
estimated duration: 0.05 sec
audio bytes: 488
audio packets: 5
audio 2205 valid frames + 2112 priming + 803 remainder = 5120
bit rate: 18604 bits per second

packet size upper bound: 224
audio data file offset: 4096
optimized

The Extended Audio File API

And compressed data

* Combines an AudioFile with an AudioConverter

- Allows you to more easily read and write files in any supported format
while treating the data like it was linear PCM

Client

P AudioConverter 44—l AudioFile
rogram

The Extended Audio File API

And compressed data

* Combines an AudioFile with an AudioConverter

- Allows you to more easily read and write files in any supported format
while treating the data like it was linear PCM

* Client side can just deal with the uncompressed data

- All reading, writing, and file positions are handled in sample frames

PCIlent AudioConverter 44—l AudioFile
rogram

Spatial Audio

A More “Complex” Game

* A listener and multiple sources
* 3D audio

- Panning, directional cues, reverberation, obstruction, occlusion
* Low latency

Spatial Audio Cues

* Interaural intensity difference
* Interaural time delay

* Head filtering

* Distance filtering

Reverberation

* Simulates sound reflections
within a space

- Room size
- Decay time
- High-frequency damping

Obstruction and Occlusion

* Simulate filtering of sound due to objects in the environment
that block propagation paths

Obstruction
Direct path is blocked

Direct path is muffled Reflections are clear

Occlusion
Both direct and reverb paths are blocked

Direct path is muffled Reflections are muffled

3D Mixer

* The 3D mixer is how spatial audio is supported on Mac OS X and iOS
* Several spatialization modes supported

* Reverb

* Filters for occlusion and obstruction

1I0S 3D Mixer

Spatialization modes

* Equal power
* Spherical head
- Interaural intensity difference
- Interaural time-delay cue
- Filtering due to head
- Distance filtering

Mac OS X 3D Mixer

Spatialization modes

* Equal power

* Spherical head

* Head Related Transfer Function (HRTF)
* Sound field (multichannel)
*Vector-based panning (multichannel)

1I0S 3D Mixer

New features for iOS 5

* Reverb

* Occlusion
- Sound source is in an adjacent environment (room)
- Both direct and reverb path are filtered

* Obstruction
= Sound source is in the same environment but obstructed

- Only direct path is filtered

3D Mixer Signal Path

Input Signal Chain

Input Signal

v

Occlusion Filter

!

Reverb Send @ —> Reverb

|

Obstruction Filter

|

Panner

|

3D Mixer Parameters
Azimuth

Front Center

+90° Right

3D Mixer Parameters
Distance

Front Center
OO
A

v
)

+90° Right

3D Mixer Parameters
Elevation

Zenith

+15°

O° Horizon

3D Mixer Property

Distance attenuation

Reference Distance Maximum Distance

= |nverse Curve
Exponential Curve

| inear Curve

Distance from Listener

Use This Stuff

* It will give depth to your game and make it more engaging

* The more you use this and the more feedback we get,
the better this will be

OpenAL

Kapil Krishnamurthy

Core Audio Engineering

What Is OpenAL?

* Open-standard audio API for spatial (3D) audio
* Designed to complement OpenGL

- OpenGL Coordinate system
* Available on Mac OS X and i0OS

OpenAL Coordinate System

* Right-handed Cartesian coordinate system
- Thumb . X axis (pointing right)
- Index finger : y axis (pointing up)
- Middle finger : z axis (pointing toward you)

Setting Up OpenAL

Listener orientation

* Direction and rotation of listener’s head

* Expressed as “up” and “at” vectors

« Objects are panned correctly "
2

%

L)
L)

Setting Up OpenAL

Listener orientation

* Direction and rotation of listener’s head

* Expressed as “up” and “at” vectors

« Objects are panned correctly "
2

%

L)
L)

OpenAL—Review

Virtual 3D Space

OpenAL
Source

-

OpenAL
Source

]

3DMixer
AudioUnit

Audio Hardware

RemotelO
AudioUnit

OpenAL Buffer

OpenAL Buffer

OpenAL Buffer

OpenAL—Review

Virtual 3D Space

—> OpenAL
Context

3DMixer

: AudioUnit

Audio Hardware

OpenAL—Review

Virtual 3D Space

OpenAL
Source

L1

OpenAL
Source —

]

Audio Hardware

OpenAL—Review

Virtual 3D Space

Audio Hardware

OpenAL Buffer

OpenAL Buffer

OpenAL Buffer

OpenAL—Review

Virtual 3D Space Audio Hardware

RemotelO
AudioUnit

Setting Up OpenAL

Creating the context (listener)

// Open an OpenAL Device
// Uses default system output device
device = alcOpenDevice(NULL);

// Create a new OpenAL Context (the mixer) for rendering
// Listener 1s implicit within the context
context = alcCreateContext(device, 0);

// Make the new context the Current OpenAL Context
alcMakeContextCurrent(context);

Setting Up OpenAL

Creating a source

// Create an OpenAL Source Object
alGenSources(1, &source);

Setting Up OpenAL

Creating a buffer

// Create an OpenAL Buffer Object to store audio data
alGenBuffers(1l, &buffer);

// Get Some Audio Data with ExtAudioFile...

// Fill the buffer with audio data
alBufferDataStatic(buffer, AL_FORMAT_MONO016, dataPtr, dataSize, 22050);

Setting Up OpenAL

Creating a buffer

// Create an OpenAL Buffer Object to store audio data
alGenBuffers(1l, &buffer);

// Get Some Audio Data with ExtAudioFile...

// Fill the buffer with audio data
alBufferDataStatic(buffer, AL_FORMAT_MONO16, dataPtr, dataSize, 22050);

Setting Up OpenAL
Using ExtAudioFile to load data into OpenAL buffer

//0pen the file
err = ExtAudioFileOpenURL(url, &xaf);

Setting Up OpenAL
Using ExtAudioFile to load data into OpenAL buffer

// Set the client format to the OpenAL format: AL_FORMAT_MONO16

UInt32 flags = kAudioFormatFlagIsSignedInteger |
kAudioFormatFlagIsPacked |
kAudioFormatFlagIsNativeEndian;

AudioStreamBasicDescription format = { 22050., kAudioFormatLinearPCM,
flags, 2, 1, 2, 1, 16, 0 };
err = ExtAudioFileSetProperty(xaf, kExtAudioFileProperty_ClientDataFormat,

size, &format);

Setting Up OpenAL
Using ExtAudioFile to load data into OpenAL buffer

//Allocate buffers and read data
UInt32 dataSize numFrames * sizeof(SIntl6);
SInt16x dataPtr (SIntl16%) malloc(dataSize);

AudioBufferList abl;

abl.mNumberBuffers = 1;

abl.mBuffers[0] .mDataByteSize = dataSize;
abl.mBuffers|[0] .mData = dataPtr;

//Read data into buffers using ExtAudioFileRead

err = ExtAudioFileRead(xaf, &nhumFrames, abl);

Setting Up OpenAL

Creating a buffer

// Create an OpenAL Buffer Object to store audio data
alGenBuffers(1l, &buffer);

// Get Some Audio Data with ExtAudioFile...

// Fill the buffer with audio data
alBufferDataStatic(buffer, AL_FORMAT_MONO16, dataPtr, dataSize, 22050);

Setting Up OpenAL

Creating a buffer

// Create an OpenAL Buffer Object to store audio data
alGenBuffers(1l, &buffer);

// Get Some Audio Data with ExtAudioFile...

// Fill the buffer with audio data
alBufferDataStatic(buffer, AL_FORMAT_MONO016, dataPtr, dataSize, 22050);

// attach OpenAL Buffer to OpenAL Source
alSourcei(source, AL_BUFFER, buffer);

Setting Up OpenAL

Set source and listener attributes

//Set some source attributes

alSourcefv(source, AL_POSITION, source_position);
alSourcef (source, AL_REFERENCE_DISTANCE, 5.0f);
alSourcei (source, AL_LOOPING, AL_TRUE);

Setting Up OpenAL

Set source and listener attributes

//Set some listener attributes
alListenerfv(AL_POSITION, listener_position);
alListenerfv(AL_ORIENTATION, listener_orientation);

Setting Up OpenAL

Play your sound

// Begin playing our audio source

alSourcePlay(source);

Setting Up OpenAL

Play your sound

// Begin playing our audio source

alSourcePlay(source);

// then during gameplay...
// move source position

alSourcefv(source, AL_POSITION, source_position);

// move listener position
alListenerfv(AL_POSITION, listener_position);

OpenAL Extensions

OpenAL—Extensions

* What are OpenAL extensions?

- Mechanism for augmenting API set
* Determine if extension is present at runtime
* Get pointers for extension functions

OpenAL—Extensions

* ASA Extension (Apple Spatial Audio)
= ALC_EXT_ASA

= Reverb, Occlusion, and Obstruction
«New in iOS 5

- Already available on Mac OS X

OpenAL—Extensions

* ASA Extension (Apple Spatial Audio)
- ALC_EXT_ASA

- Reverb, Occlusion, and Obstruction
*New in iOS 5
- Already available on Mac OS X
* Source Notifications Extension
« AL_EXT_SOURCE_NOTIFICATIONS
- Callback Mechanism for Source State

= New in iOS 5 and Mac OS 10.7

OpenAL—Extensions
ASA extension

* Spatial effects

- Reverb
- Stock room presets
- Occlusion
- Obstruction
* Set/Get listener/source properties

- alcASAGetListener() and alcASAGetSource()
- alcASASetListener() and alcASASetSource()

OpenAL—Extensions
ASA extension: listener reverb properties

ALC_ASA_REVERB_ON
ALC_ASA_REVERB_GLOBAL_LEVEL

= Qverall reverb level (-40 dB to 40 dB)

OpenAL—Extensions
ASA extension: listener reverb type properties

ALC_ASA_REVERB_ROOM_TYPE
- Predefined room types

ALC_REVERB_ROOM_TYPE_SmallRoom
ALC_REVERB_ROOM_TYPE_MediumRoom
ALC_REVERB_ROOM_TYPE_LargeRoom
ALC_REVERB_ROOM_TYPE_MediumHall
ALC_REVERB_ROOM_TYPE_LargeHall
ALC_REVERB_ROOM_TYPE_Cathedral
ALC_REVERB_ROOM_TYPE_Plate

ALC_REVERB_ROOM_TYPE_MediumChamber
ALC_REVERB_ROOM_TYPE_LargeChamber
ALC_REVERB_ROOM_TYPE_LargeRoom2
ALC_REVERB_ROOM_TYPE_MediumHal1l2
ALC_REVERB_ROOM_TYPE_MediumHall3
ALC_REVERB_ROOM_TYPE_LargeHall2

OpenAL—Extensions
ASA extension: listener reverb EQ properties

* Parametric EQ settings for reverb

* Settable in real time
ALC_ASA_EQ_GAIN

« Cut/boost level of EQ
ALC_ASA_EQ_BANDWIDTH

- Frequency bandwidth in octaves
ALC_ASA_EQ_FREQ

- Center frequency of EQ band

OpenAL—Extensions
ASA extension: source properties

ALC_ASA_REVERB_SEND_LEVEL
- Wet/dry reverb mix
0.0 = no reverb - 1.0 = only reverb

OpenAL—Extensions
ASA extension: source properties

ALC_ASA_OCCLUSION
- Low pass filter applied to source
- 0.0 dB (no effect) to -100.0 dB (most occlusion)
- Applied to pre-reverb send

OpenAL—Extensions
ASA extension: source properties

ALC_ASA_OBSTRUCTION
- Low pass filter applied to source
- 0.0 dB (no effect) to -100.0 dB (most obstruction)
- Applied to post-reverb send

OpenAL—Extensions
Using the ASA extension

//Set a listener property

ALuint setting = 1;

alcASASetListenerProc(alcGetEnumValue(NULL, "ALC_ASA_REVERB_ON"), &setting,
sizeof(setting));

//5et a source property

ALfloat level = 0.4;

alcASASetSourceProc(alcGetEnumValue(NULL, "ALC_ASA_REVERB_SEND_ LEVEL"),
source, &level, sizeof(level));

OpenAL—Extensions
Source-state notifications

* Eliminates the need for polling to check for:

- Source-state change
- Number of buffers processed

* Notifies the user via a callback mechanism

OpenAL—Extensions
Source-state notifications

* Notification types

- AL_SOURCE_STATE
- AL_INITIAL

* AL_PLAYING

- AL_PAUSED

- AL_STOPPED
- AL_BUFFERS_PROCESSED
- AL_QUEUE_HAS_LOOPED

OpenAL—Extensions
Polling for changes—native mechanism

ALint numBuffersProcessed = 0;

while (numBuffersProcessed < 1)

{
alGetSourcei(mySourceID, AL_BUFFERS_PROCESSED, numBuffersProcessed);
usleep(1000);

OpenAL—Extensions
Using source-state notifications

* Register source for notifications

//Register for a notification
error = alSourceAddNotificationProc(source, AL_BUFFERS_PROCESSED,
(alSourceNotificationProc) HandleNotification, NULL);

* Handle notification calls in application

void HandleNotification(ALuint source, ALuint notificationID,
alSourceNotificationProc notifyProc, ALvoidx userData)
{

//Do something based on the source and notificationID

}

OpenAL Summary

* Coordinate system/listener orientation
* Objects—context (listener), sources, buffers, device
* OpenAL Extensions

- Apple Spatial Audio Extension (ASA)
- Source Notifications Extension

AudioSession and Games

AudioSession

* AudioSession category
* Detecting background audio
* Responding to interruptions

AudioSession Category
Ambient

* Audio obeys ringer switch

* Audio obeys screen lock

* Solo or not?

Is the Game’s Audio Primary?
Detecting background audio

S =

PLAY GAME SOUNDS?

NO

PLAY GAME SOUNDS?

YES

” NO

Use SoloAmbient Use Ambient

Play game soundtrack Don't play soundtrack

Detecting Background Audio

kAudioSessionProperty_OtherAudioIsPlaying
- Use this to decide

- Play game music or not?

- Which category to use?

UInt32 otherAudiolIsPlaying;
UInt32 propertySize = sizeof(otherAudioIsPlaying);

AudioSessionGetProperty(
kAudioSessionProperty_OtherAudioIsPlaying,
&propertySize, &otherAudioIsPlaying);

Responding to Interruptions

* Session may be interrupted by higher-priority audio
- Phone call, clock alarm, foreground app

* Interruption makes your session inactive
- Currently playing audio is stopped

* After the interruption is over
- Reactivate certain state (API-specific)

Responding to Interruptions
AVAudioPlayer

* AVAudioPlayers are stopped
* Override delegate methods if:

- Ul needs to be updated
= Sounds need to be restarted

Responding to Interruptions
AVAudioPlayer delegate

— (void)audioPlayerBeginInterruption: (AVAudioPlayerx) player

- Playback automatically stops

- Update Ul if needed
— (void)audioPlayerEndInterruption: (AVAudioPlayerx)player

withFlags: (NSUInteger)flags

- Resume playback of sounds if needed
- Update Ul if needed

Responding to Interruptions
OpenAL

* Use AVAudioSession

- Invalidate context when interrupted
- Make context current again upon interruption end

Responding to Interruptions
OpenAL and AVAudioSession

— (void)beginInterruption

{
alcMakeContextCurrent (NULL);

}

- (void)endInterruptionWithFlags: (NSUInteger)flags

{
if (flags == AVAudioSessionInterruptionFlags_ShouldResume)

{

[session setActive:YES error:nill;
alcMakeContextCurrent (myContext);

AudioSession Summary

* AudioSession category
* Detecting background audio
* Handling interruptions

To Sum It All Up...

* Simple game

* Understanding your assets
* Complex game

* AudioSession

Related Sessions

\ETNE]

Audio Session Management for iOS Wednesday 11:30AM

Labs

. Graphics, Media and Games Lab B
Audio Lab Tuesday 2:00PM

. Graphics, Media and Games Lab C
AUdIO Lab Wednesday 2:00PM

More Information

Allan Shaffer

Graphics and Game Technologies Evangelist
aschaffer@apple.com

Eryk Vershen
Media Technologies Evangelist
evershen@apple.com

Audio Programming Guides
iPhone Dev Center
http://developer.apple.com/devcenter/ios/

Apple Developer Forums
http://devforums.apple.com

& WWDC201

