
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Get them to play it again and again

Session 410
Christy Warren
iPhone Development Engineer

MultiPlayer Gaming
with Game Center

1

What Is Multiplayer?

• Play with others over the network
■ Friends
■ Strangers

• Wi-Fi and cellular
• Great opportunity for social gaming

■ Foster competition and engagement
■ Increase impact of leaderboards and achievements

vs.

2

• Discover your game through invites
• Make your game stand out

■ People like to play against real opponents
■ Encourage cooperative team play
■ Many top games support multiplayer
■ Popular among players

• Increase the longevity of your game
■ Keep players coming back

• Chance for game immortality

Why Add Multiplayer?

3

Multiplayer support

• Matchmaking UI
• Programmatic auto-match
• Peer-to-peer communications
• Server-based games
• In-game voice chat
• Setup on Game Center services

What You Will Learn

4

Styles of Multiplayer

Turn-Based
(next session)

Peer-to-Peer Server-Based

Custom Server

5

Styles of Multiplayer
Comparison

Players

Game Play

Host

Communications

Data Transmission

2–4 2–16 2–16

Simultaneous Sequential Simultaneous

Device or Distributed Distributed Developer Server

Point-to-Point/Broadcast Point-to-Point Developer Defined

GameKit API GameKit API Developer Defined

Turn-BasedPeer-to-Peer Server-Based

Custom Server

6

All styles
Basic Flow

Pick Players Wait for Players
and Setup

Play

Matchmaking UI
Game Code

Observe player states
setup communication

player

list

Game Code
Start game

share game state

all players

connectedProgrammatic
(Auto-match)

Ready Get Set Go!

7

Choose Players

Pick Players

Invite Friends

Auto-match

8

Multiplayer Entry Points

Entry Points

In Game

Hit “Play” in Game Center

User Accepted Invite

9

Basic Flow

Pick Players

Matchmaking UI

In Game

Hit “Play” in Game Center

User Accepted Invite

Invite Friends Auto-match

Summary

10

Multiplayer Walkthrough

Pick Players

Matchmaking UI

In Game

Invite Friends Auto-match

Wait for Players
and Setup

Play

Game Code

Ready Get Set Go!

didChangeState:

Game Code

Send Data

Receive Data

Hit “Play” in Game Center

User Accepted Invite

Configure
Communications

Tasks

11

Multiplayer Preliminaries
GKLocalPlayer

• User of the device
• Responsible for authentication
• Provides friend list
• Invariant playerID

■ Save games
■ Cache data
■ Achievements
■ High scores

12

Multiplayer Preliminaries
Authentication

• Authenticate at launch
• Other operations will return errors if not authenticated
• May get called again later
GKLocalPlayer *localPlayer = [GKLocalPlayer localPlayer];

 // Authenticate and enable Game Center functionality

[localPlayer authenticateWithCompletionHandler:^(NSError *error) {

if (localPlayer.isAuthenticated) {

 // Enable Game Center features;

}

else {

 // Disable Game Center features

}

}];

13

Multiplayer Preliminaries
Thread safety

• Multiplayer APIs may not call back on the main thread
■ Delegate callbacks
■ Block-based callbacks

• Make sure you synchronize access to your data

14

Matchmaking UI

15

Features

• Standard UI
■ Invite friends to play game
■ Auto-match
■ Users can rate your game

• Push notification sent to friend’s device
■ Accept
■ Decline
■ Buy game

Matchmaking UI

16

Demo
Matchmaking UI

17

Matchmaking UI

Pick Players

GKMatchRequest

GKMatch

GKMatchmakerViewController

GKMatchmaker

Matchmaking UI
Classes

18

Steps to Make a Match

• Create match request
• Initialize GKMatchmakerViewController with request
• Show GKMatchmakerViewController

■ User will be able to invite players up to max players
■ Auto-match will fill in the rest

• Get match

19

GKMatchRequest

• Set minimum players
• Set maximum players
• Assign player group
• Assign player attributes

20

Matchmaking UI

21

Setup
Matchmaking UI

GKMatchmakerViewControllerGKMatchRequest

22

GKMatchmakerViewControllerGKMatchRequest

Matchmaking UI
Setup

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];

matchRequest.minPlayers = 2;

matchRequest.maxPlayers = 4;

23

GKMatchmakerViewControllerGKMatchRequest

Matchmaking UI
Show it

GKMatchmakerViewController *controller = [[GKMatchmakerViewController alloc]
initWithMatchRequest:matchRequest];

controller.matchmakerDelegate = self;

[self.viewController presentViewController:viewController animated:YES
 completion:nil];

24

Delegate

GKMatchmakerViewControllerGKMatchRequest

Matchmaking UI
User hits “Play”

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
didFindMatch:(GKMatch *)match
{
match.delegate = self;
// Setup match

}

25

Delegate

GKMatchmakerViewControllerGKMatchRequest

Matchmaking UI
User hits “Cancel”

- (void)matchmakerViewControllerWasCancelled:(GKMatchmakerViewController *)
viewController
{
// Handle cancellation

}

26

Delegate

GKMatchmakerViewControllerGKMatchRequest

Matchmaking UI
Match failed

- (void)matchmakerViewController:(GKMatchmakerViewController *)viewController
didFailWithError:(NSError *)error
{
// Handle error

}

27

Invitations
Handling invites

• Implement inviteHandler block
■ Called when user launches your game from Game Center app

■ Initialize GKMatchmakerViewController with match request
and players

■ Called when recipient has accepted an invite
■ Initialize GKMatchmakerViewController with invite
■ May be called immediately if invite is already pending

28

Classes

GKMatchmakerViewControllerGKMatchmaker

29

 GKMatchmakerViewController *controller = [[GKMatchmakerViewController alloc]
 initWithMatchRequest:self.matchRequest playersToInvite:players];
 controller.matchmakerDelegate = self;

 [self.viewController presentViewController:viewController animated:YES completion:nil];
 [controller autorelease];

-[GKMatchmaker sharedMatchmaker].inviteHandler = ^(GKInvite *invite, NSArray *players) {
if (invite) {

GKInviteinviteHandler

Invite Notifications

GKMatchmakerViewControllerGKMatchmaker

 } else if (players) {

GKMatchmakerViewController *controller = [[GKMatchmakerViewController alloc]
 initWithInvite:invite];

controller.matchmakerDelegate = self;
 [self.viewController presentViewController:viewController animated:YES completion:nil];

[controller autorelease];

 ...

 ...

 }
};

30

Matchmaker UI
Summary

• Create match request
• Present standard UI
• Handle invites

■ May be called at app launch
■ Called any time even during the game

• Same UI works if you want to host yourself
• Programmatic auto-match is easy

31

Programmatic Auto-match

32

Programmatic (Auto-match)

Pick Players

GKMatchRequest

GKMatchmaker

GKMatch

Programmatic Auto-match
Quick way to play

33

GKMatchMakerGKMatchRequest

Quick and easy
Auto-match

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker findMatchForRequest:myMatchRequest
 withCompletionHandler:^(GKMatch *match, NSError *error) {
if (error) {
// Handle error

}
else {
// get ready to play

}
}];

34

Auto-match
Match request redux

• Set minimum players
• Set maximum players
• Assign player group
• Assign player attributes

35

Player Groups
Pick a track…

• Match players based on game defined groups
■ Game level/map

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];

matchRequest.playerGroup = FigureEightTrack;

• Other ideas for player group assignment:
■ Difficulty (easy, normal, hard)
■ Game type (death match, capture the flag, team-fortress)
■ Location (North America, Europe, Asia)

• API to check player group activity

36

Player Attributes
Pick a side

• Specify the player’s role
• 32-bit unsigned integer
• Logical OR operation
• Chosen based on player characteristics

■ Chess (white vs. black)
■ Role-playing (fighter, cleric, mage, thief)
■ Band (guitar, bass, drums, vocals)
■ Sports (goalie, forward, defense)

Black

0xFFFF0000

White

0x0000FFFF

Don’t Care

0xFFFFFFFF

Match players that OR to
0xFFFFFFFF

37

Auto-match
Summary

• Create a match request
■ Use player groups and attributes as desired

• Request match
• Wait for players to connect
• Play!

38

Hosting Your Own Server

39

Hosting Your Own Server

• Use UI or programmatic auto-match
• Use playerID to track players
• Communicate matched players to server
• Implement your own networking

40

We will hook you up!
Hosting Your Own Server

Game Center
Auto-matching

Services
Your Game Server

41

Hosting Your Own Server
Auto-matching API

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];
matchRequest.minPlayers = 2;
matchRequest.maxPlayers = 4;

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker findPlayersForHostedMatchRequest:matchRequest
! ! ! ! withCompletionHandler:^(NSArray *playerIDs, NSError *error) {
! if (playerIDs.count > 0) {
! ! // Connect to the server and pass along player
! } else if (error) {
! ! // Handle error

! }

}];

42

Hosting Your Own Server
MatchMaker UI—inviter side

GKMatchmakerViewController *viewController = [[GKMatchmakerViewController
alloc] initWithMatchRequest: matchRequest];

viewController.hosted = YES;
viewController.matchmakerDelegate = self;

[self.viewController presentViewController:viewController animated:YES
! ! ! ! completion:nil];

[viewController release];

43

Invitations API—inviter side
Hosting Your Own Server

Delegate

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didReceiveAcceptFromHostedPlayer:(NSString *)playerID
{
// talk to your server and make sure they are signed in

[viewController setHostedPlayer:playerID connected:YES]; // update the UI
}

44

Hosting Your Own Server

Delegate

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewController:(GKMatchmakerViewController *)
 viewController didFindPlayers:(NSArray *)playerIDs
{
[self.viewController dismissViewControllerAnimated: YES completion:^{
// Start match

}];
}

Invitations API—both sides

45

Peer-to-Peer Networking

46

Peer-to-Peer Networking

• Game communications among players
■ Send data
■ Receive data
■ Option for reliable or unreliable communications

• Player state changes
■ Wait for all players to connect
■ Handle disconnection mid-game
■ Add players to existing game

• Use host selection to minimize network overhead

Overview

47

Game Code

Wait for Players and Setup

GKMatch didChangeState:

Host Selection

Play

Game Code

Send Data

Receive Data

GKMatch

Peer-to-Peer Multiplayer
Communicating with your peers

48

Peer-to-Peer Network
Sending data

• Keep data sizes as small as possible
• Minimize update frequency
• Choice of communication styles

■ Reliable vs. unreliable

if (![self.match sendDataToAllPlayers:data

 withDataMode:GKMatchSendDataUnreliable

 error:&error])

{

// Handle error

}

49

Peer-to-Peer Network
Sending data

NSArray *playerIDs = [NSArray arrayWithObject:destPlayerID];

if (![self.match sendData:data toPlayers: playerIDs

 withDataMode:GKMatchSendDataReliable error:&error]) {

// Handle error

}

50

Receiving data

- (void)match:(GKMatch *)match didReceiveData:(NSData *)data

fromPlayer:(NSString *)playerID

{

// Parse data

}

Peer-to-Peer Network

51

Peer-to-Peer Networking
Waiting for players to connect

• Check expectedPlayers
■ Number of players you are waiting on

- (void)match:(GKMatch *)match player:(NSString *)playerID didChangeState:
(GKPlayerConnectionState)state

{

 if (state == GKPlayerStateConnected)

 // Show that the player has connected

 else if (state == GKPlayerStateDisconnected)

 // Handle player disconnection

 if (!self.gameStarted && match.expectedPlayers == 0) {

 // Begin game once all players are connected

 }

}

52

Peer-to-Peer Networking
Offline considerations

• Players can come and go during game play
■ Take phone calls
■ Lose and regain connection
■ Switch game to background

• Important for game play to continue for others

53

Enable Reconnect for 1–1 Games
Works only on invite-based games

• Implement shouldReinvitePlayer on your GKMatchDelegate

- (BOOL)match:(GKMatch *)match shouldReinvitePlayer:(GKPlayer *)player

{

 return TRUE;

}

54

Add Player to Existing Game
Come join the fun!

• Easy-to-use method on GKMatchMakerViewController
■ Create a match request
■ Create matchMakerViewController
■ Call addPlayersToMatch:

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];

matchRequest.minPlayers = 2;

matchRequest.maxPlayers = 4;

GKMatchmakerViewController *controller = [[GKMatchmakerViewController
alloc] initWithMatchRequest: matchRequest];

controller.delegate = self;

[controller addPlayersToMatch:self.currentMatch];

55

Peer-to-Peer Best Practices
Being a good network citizen

• Keep network traffic to minimum
■ Minimize size of data packets
■ Send data only when necessary

• Use common network strategies
■ Pick a peer to act as the host

56

Peer-to-Peer Best Practices
Full mesh

57

Peer-to-Peer Best Practices
Peer-hosted

58

Peer-to-Peer Networking
Summary

• GKMatch provides API
• Handle player state changes
• Be a good network citizen

■ Keep network traffic to minimum
■ Consider hosting on your own servers

59

In-Game Voice Chat

60

In-Game Voice Chat

Voice Chat

GKMatch

GKVoiceChat

61

In-Game Voice Chat

• Allows players to talk with each other
• Keeps players involved
• Enhances competition
• Easy to integrate
• Networking handled for you

62

In-Game Voice Chat
Features

• Multiple named chats
• Hear audio from selected chats
• Microphone is routed to single chat
• Adjust the volume of a chat

• Mute player in a chat
• Player state feedback via playerStateUpdateHandler

63

In-Game Voice Chat
Pre-setup

• Set audio session to play and record
• Make audio session active

AVAudioSession *audioSession = [AVAudioSession sharedInstance];

[audioSession setCategory:AVAudioSessionCategoryPlayAndRecord error:&error];

[audioSession setActive:YES error:&error];

64

Usage
In-Game Voice Chat

// Get separate channels for the game and team
GKVoiceChat *mainChat = [self.match voiceChatWithName:@”main”];
GKVoiceChat *teamChat = [self.match voiceChatWithName:@”redTeam”];

// Stop main chat
[mainChat stop];
// Start team chat
[teamChat start];

// Make the team chat active to route microphone
teamChat.active = YES;

// Provide audio and visual indicator that the microphone is active
[self indicateMicrophoneActive];

65

Handling player state changes
In-Game Voice Chat

teamChat.playerStateUpdateHandler = ^(NSString *playerID,
! ! ! ! GKVoiceChatPlayerState state) {
 switch (state) {
 case GKVoiceChatPlayerConnected: { ... } break;
 // Indicate that the player has connected
 case GKVoiceChatPlayerDisconnected: { ... } break;
 // Indicate that the player has disconnected
 case GKVoiceChatPlayerSpeaking: { ... } break;
 // Indicate that the player has started speaking
 case GKVoiceChatPlayerSilent: { ... } break;
 // Indicate that the player has gone silent
 default: { ... } break;
 // Indicate the the player has stopped speaking
 }
};

66

Multiplayer Setup
Things to consider

• Version compatibility
■ Set up in iTunes Connect
■ Invitee’s device compares version to inviter’s

• Upgrades offered if necessary, but only to current version

67

Notes on Testing

• Need to test on devices
■ Multiple devices
■ Multiple accounts
■ Multiple networks
■ Multiple carriers

• Testing on simulator limited
■ Invitations are not available
■ In-game voice chat is disabled
■ No push notifications

68

Multiplayer Summary

• Popular feature

• Adds longevity to your app

• Peer-to-peer/turn-based/hosted

• Basic flow
■ MatchMaker UI
■ Programmatic auto-match
■ Hosted server

• Peer-to-peer communications

• Setting up voice chat

• Game Center services

• Testing

vs.

69

More Information

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Apple Developer Forums
http://devforums.apple.com

70

Related Sessions

Working with Game Center Mission
Wednesday 9:00AM

 Introduction to Game Center Mission
Tuesday 4:30PM

Turn-Based Gaming with Game Center Mission
Wednesday 11:30AM

Essential Game Technologies for iOS, Part 1 Mission
Tuesday 9:00 AM

 Introduction to Game Center (Repeat) Russian Hill
Friday 9:00AM

Essential Game Technologies for iOS, Part 2 Mission
Tuesday 10:15 AM

Essential Game Technologies for iOS, Part 1 (Repeat) Marina
Friday 10:15AM

Essential Game Technologies for iOS, Part 2 (Repeat) Marina
Friday 11:30AM

71

Game Design for iOS Lab Graphics & Media Lab A
Tuesday 2:00PM-6:00PM

Game Center Lab Graphics & Media Lab A
Wednesday 2:00PM-6:00PM

Labs

Game Center Lab Graphics & Media Lab A
Friday 11:30AM-1:30PM

72

73

