Music in iOS and Mac OS X

Session 411
Michael Hopkins

Core Audio Engineering

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

What You Will Learn

* Using Audio Units
* Introduction to the AUSampler
* CoreMIDI on iOS

* Playing of music sequences

/ma

EP Piano
Sampler

v

What Is an Audio Unit?

* Plug-in for processing audio

* Supports real-time input, output, or simultaneous I/0
* Organized in an audio processing graph

* Controlled by properties and parameters

* Can have a view (Mac OS X)

Types of Audio Units

« Effects

* Music effects
* Instruments

* Generators

* Panners

* Converters

* Mixers

* Offline effects
* Qutput units

Using Audio Units
Organizing Audio Units in a graph

* Audio Units can be added to an
audio processing network called
an AUGraph

- Each item in the graph
is an AUNode

- Graph defines connections
between nodes

- Signal flow goes from
input to output

- Graph ends with a
single output unit

Using Audio Units
AU graphs (cont.)

* Graphs can use a mixer unit to
combine separate chains prior to
the output

Audio Application

@ File Player Distortion Reverb
Unit Unit Unit
AAC

Sampler
Unit

v . .
Mixer Unit

\
Output Unit

1

4

Interacting with Audio Units
Properties

* Key-value pairs
* Configure state that is managed by the host

- Sample rate
- Stream format
- Number of input buses on a mixer

* Set on Audio Unit and take effect at initialization

Interacting with Audio Units
Parameters

* Key-value pairs

* Intended to be used during processing
- Delay time
- Feedback amount

- Stereo panning position
* Generally set through a Ul

Demo

Exploring Audio Units in AULab

Michael Hopkins

Core Audio Engineering

New Audio Units in iOS

* Effects

- Filters
- Highpass
= Lowpass
- Bandpass
- Highshelf
- Lowshelf
= Parametric EQ
- Peak limiter
- Dynamics processor

= Reverb

New Audio Units in iOS

* Effects

- Varispeed

- SimpleTime

- NotQuiteSoSimpleTime
* Generators

- AudioFilePlayer

- ScheduledSlicePlayer

* Instruments
- Sampler

Audio Components

Finding, loading, and instantiating Audio Units

Michael Hopkins

Core Audio Engineering

Audio Unit Basics

* Audio Unit instances are created from Audio Components
* Uniquely identified by an AudioComponentDescription

- Each value is a four-character OSType
- Type ‘aufx’
- Subtype ‘dlay’
- Manufacturer ‘acme’
* Name

* \ersion

Introducing the AudioComponent API

* Provides facilities for Audio Components
- Finding
- Loading
- State management

* Available in iOS and Mac OS X

* Replaces Component Manager calls on Mac OS X

Finding and Loading an Audio Unit

Application AudioComponentDesc

Audio Component System

Audio Audio Audio Audio Audio Audio
Component Component Component Component Component Component

Finding and Loading an Audio Unit

Application AudioComponentDesc

v
Audio Component System AudioComponentFindNext()

Audio Audio Audio Audio Audio Audio
Component Component Component Component Component Component

Finding and Loading an Audio Unit

Application AudioComponentDesc

v
Audio Component System AudioComponentFindNext()

Audio Audio Audio Audio Audio Audio
Component Component Component Component Component Component

Finding and Loading an Audio Unit

Application \—

Audio Component System

Audio Audio Audio Audio Audio Audio
Component Component Component Component Component Component

Finding and Loading an Audio Unit

\7 Audio

Application Component

v

Audio Component System AudioComponentinstanceNew()

Audio Audio Audio Audio Audio Audio
Component Component Component Component Component Component

Finding and Loading an Audio Unit

\7 Audio

Application Component

v

Audio Component System AudioComponentinstanceNew(

Audio Audio Audio Audio Audio Audio
Component Component Component Component Component Component

Finding and Loading an Audio Unit

\7 Audio

Application Component

Audio Unit

\/ / Audio

Audio Component System AudioComponentinstanceNew(| Component

Audio Audio Audio Audio Audio Audio
Component Component Component Component Component Component

Finding and Creating an Audio Unit

* Use AudioComponentFindNext() to find a specific Audio Component

AudioComponent AudioComponentFindNext (AudioComponent xinComp,

const AudioComponentDescription *xinDesc)

- First argument can be NULL to start at beginning of component list
- Pass a specific Audio Component to retrieve next match
- Wildcard searches allowed

Registering Audio Components

* System scans directories for bundles
~/Library/Audio/Plug-Ins/Components
/Library/Audio/Plug—Ins/Components
/System/Library/Components

* Bundles have a specific extension

- .audiocomp (registers with Audio Component System)

- .component (registers with Component Manager and
Audio Component System)

Registering Audio Components
Components can be registered at runtime

AudioComponent AudioComponentRegister(AudioComponentDescription xdesc,
CFStringRef name,
UInt32 version,

AudioComponentFactoryFunction func)

* Component only available in application process

Audio Components
A look under the hood

* All Audio Components have an AudioComponentFactoryFunction

- Used to create instances of the Component
- Returns a pointer to an AudioComponentPlugininterface

Audio Units
A look under the hood

* All Audio Components have an AudioComponentFactoryFunction

- Used to create instances of the Component
- Returns a pointer to an AudioComponentPlugininterface

*Open() —I—o Open(self, newlnstance)

*Close() ——I—o Close(self) AudioComponentPlugininterface

*Lookup() ———I-o Lookup(selector)

Creating an Audio Component Instance

— Audio
Application % Coml:)olnent

v
AudioComponentinstanceNew()

Audio Component System

Creating an Audio Component Instance

— Audio
Application % Coml:)olnent

v
AudioComponentinstanceNew(

Audio Component System

Creating an Audio Component Instance

Audio

Application \— Component

v Audio

e AudioComponentinstanceNew(| Component

AudioComponentFactoryFunction ()

Creating an Audio Component Instance

Audio

Application \— Component

v Audio

Audio Component System AudioComponentinstanceNew(| Component

AudioComponentFactoryFunction ()

AudioComponentPlugininterface

Creating an Audio Component Instance

\7 Audio
Component

Application

v Audio

Audio Component System AudioComponentinstanceNew(| Component

AudioComponentFactoryFunction ()

AudioComponentPlugininterface

Open(self, newlnstance)

Creating an Audio Component Instance

\7 Audio
Component

Application

Audio Unit

A

v Audio

Audio Component System AudioComponentinstanceNew(| Component

AudioComponentFactoryFunction ()

AudioComponentPlugininterface

Open(self, newinstance)

Calling into an Audio Unit

Application % Audio Unit

Audio Component System AudioUnitRender(...)

Calling into an Audio Unit

Application % Audio Unit

Audio Component System AudioUnitRender(

Calling into an Audio Unit

Application \— Audio Unit

Audio Component System AudioUnitRender(Audio Unit)
AudioComponentFactoryFunction () 4—:

Calling into an Audio Unit

Application \— Audio Unit

Audio Component System AudioUnitRender(Audio Unit)
AudioComponentFactoryFunction () 4—:

AudioComponentPlugininterface

Calling into an Audio Unit

Audio Component System

Application

AudioUnitRender(

yoee) :
AudioComponentFactoryFunction ()

\7

Audio Unit

Audio Unit

AudioComponentPlugininterface

Lookup(kAudioUnitRenderSelect)

Calling into an Audio Unit

Audio Component System

Application

AudioUnitRender(

yoee) :
AudioComponentFactoryFunction ()

\7

Audio Unit

Audio Unit

AudioComponentPlugininterface

Lookup(kAudioUnitRenderSelect)

Render(AU, ...)

The Sampler Audio Unit

Doug Scott

Core Audio Engineering

The Sampler

¥

tortion

Unit

Mixer Unit

1
Output Unit
1

Sampler
Unit

A New Instrument for iOS and Mac OS X

* What makes this an instrument?

- Generates audio output
= Music events trigger notes and change behavior

A New Instrument for iOS and Mac OS X

* What makes this an instrument?
- Generates audio output
= Music events trigger notes and change behavior
* What makes this a sampler?
- Audio files organized as a playable instrument
- Drum kit

= Acoustic piano
- Sound effects

Sampler Features

* Accepts samples in multiple formats

* Shares resources

* Streams large audio files

* Lightweight native presets

* Flexible instrument preset design

* Translates DLS and SoundFont2 instrument presets

How a Sampler Patch Is Organized
A hierarchy of zones and layers

Instrument

Zones
How to map each sample

* Inherit from parent layer
* Root key

* Key number range

* Key velocity range

* Waveform looping

* Gain

* Detune
. etc.

Layers
Allow zones to share common settings

* Collection of zones

* Settings for filters, LFOs,
envelopes, etc.

* Modulation connections
e Zone selection

* Key offset

* etfC.

Instrument
A collection of layers

Instrument

A Simple Patch

A single layer with multiple zones

I ’H ’| H| } ‘|| H ||' - Layer spans entire keyboard

 Divided into four zones

Instrument

Layer

Zone

Sampler Behavior
A single layer with multiple zones

| ’H H H| } H| H ||’ * MIDI note on received

Instrument

Layer

Zone

Sampler Behavior
A single layer with multiple zones

| ’H H H| } H| H ||’ * MIDI note on received

« Zone selected

Instrument

Layer

Zone

Sampler Behavior
A note-on generates a single voice

VT TTIT VT T s

Instrument

Layer

Zone

\ 4
one

A Layered Patch

Two layers which overlap to produce a complex instrument

11T T T T T s

* First layer divided into two zones

* Second layer divided into
four zones

Instrument

Layer 1 (Vibes Attack)

Zone Zone

Layer 2 (Vibes Sustain)

Zone Zone

Sampler Behavior
Two layers which overlap to produce a complex instrument

T T T TO T TTT

Instrument

Layer 1 (Vibes Attack)

Zone Zone

Layer 2 (Vibes Sustain)

Zone Zone

Sampler Behavior
Two layers which overlap to produce a complex instrument

TTITITTIT IV IO T THT e

* One zone in each layer selected

Instrument

Layer 1 (Vibes Attack)

Zone

Layer 2 (Vibes Sustain

\4

Zone Zone

Sampler Behavior
A note on generates two voices

TTITITTIT IV IO T THT e

* One zone in each layer selected
* Two voices are activated

Instrument

Layer 1 (Vibes Attack)

Zone

Layer 2 (Vibes Sustain

A

Zone Zone

Example of a Complex Patch
Keyboard split into two instrumental timbres

MR

Instrument

Layer 1 (Double Bass) Layer 1 (Vibraphone)

Zone @Zone | Zone | Zone Zone Zone

“/“ﬂrulll ;l l; -
s/"

Demo

The Sampler’s Custom View and Presets

Doug Scott

Core Audio Engineering

Configuring the Sampler
Loading a patch

* AUPreset file
* Build from set of audio files
* DLS bank or SoundFont 2 files

Loading a Patch Using an AUPreset File

* Audio file assets in app bundle’s resource directory (required on iOS)
* Convert the preset file into a PropertyList

* Load using the ClassInfo property

0SStatus result;
result = AudioUnitSetProperty(mySamplerUnit,
kAudioUnitProperty_ClassInfo,

kAudioUnitScope_Global,

9,

&presetPropertylList,

sizeof (CFPropertyListRef));

Creating a Patch from Audio Files
A new custom instrument

* Audio files in app bundle’s resource directory (required on iOS)

* Audio file's instrument chunk
- Sample loop
- Key range
- etc.

Loading a Patch from a Sound Bank
Sampler translates DLS and SoundFont2 patches

* Bank file in app bundle’s resource directory (required on iOS)

* Select a preset

«Bank ID
= Instrument ID

* Load using AudioUnitSetProperty

Demo

Using a Sampler AUPreset in Your App

Doug Scott

Core Audio Engineering

Introduction to CoreMIDI in i0S

Michael Hopkins

Core Audio Engineering

Audio Application

¥

tortion
Unit

Mixer Unit

4
Output Unit
I

What Is CoreMIDI?

* A set of services that applications can use to communicate
with MIDI devices

* Provides abstractions for interacting with a MIDI network

MIDI Server Process Application Process

—
lllllll MIDI Server Core MIDI

MIDI Devices

Device -

MIDI Devices

Device

Endpoints

MIDI Devices

Source Destination

Device

Endpoints

Handling Device Notifications
Plugging in a new device

* Application needs to create
a client object

* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes
- Property changes
- Setup changes

Handling Device Notifications
Plugging in a new device

- Applicationneedstocreate ~ ANEHATI BRI LY
a client object -8 11 n
(]
! W

* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes

- Property changes
MIDI Server
- Setup changes -

Handling Device Notifications
Plugging in a new device

- Applicationneedstocreate ~ HEBERE RN MR \' |
a client object -G | n
CJ

* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes
- Property changes
- Setup changes

MIDI Server Process

MIDI Server

Handling Device Notifications
Plugging in a new device

- Application needstocreate |~ ARHET I BRI L
a client object -G | n
CJ
L \

* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes

- Property changes
MIDI Server
Setup changes EZa

Application Process

-

CoreMIDI Properties

* Properties can get information about devices, entities, or endpoints

Name

- Manufacturer

- Unique ID

- Offline state

- Receive and transmit channels
- Current patch

- MIDI settings
- Supports General MIDI
= Supports MMC
- Receives/transmits clock

Creating a MIDIClient

MIDIClientCreate

Getting MIDI Data

* Application needs to create mmInuInln
a MIDI input port o | mnmuint
* MIDI Server calls application’s &~

MIDIReadProc() when MIDI
messages are received -

* Provides a packet list of

MIDI events

Getting MIDI Data

* Application needs to create munnpim u
a MIDI input port o | il
* MIDI Server calls application’s &~
VE—

MIDIReadProc() when MIDI
messages are received

* Provides a packet list of

MIDI events

Getting MIDI Data

* Application needs to create \ .
a MIDI input port l

* MIDI Server calls application’s &~
MIDIReadProc() when MIDI
messages are received

* Provides a packet list of

MIDI events

Getting MIDI Data

* Application needs to create
a MIDI input port

* MIDI Server calls application’s
MIDIReadProc() when MIDI
messages are received

* Provides a packet list of
MIDI events

MIDI Server Process

MIDI Server

Getting MIDI Data

* Application needs to create
a MIDI input port

* MIDI Server calls application’s
MIDIReadProc() when MIDI
messages are received

* Provides a packet list of
MIDI events

MIDI Server

Application Process

MIDI Packets
Anatomy of a MIDIPacket

Packet List

Packet 1 Packet 2 Packet 3

Timestamp Timestamp Timestamp

Length Length Length

Data Data Data

pl=PacketList[@] p2=MIDIPacketNext(pl) p3=MIDIPacketNext(p2)

Getting MIDI Data

Creating a port

// process packets

MIDIInputPortCreate

Sending MIDI Data

* Use MIDISend() to send a packet list of MIDI Data
* Use MIDIOutputPortCreate() to create an output port
* Specify the destination for the data

MIDISend(MIDIPortRef port,
MIDIEndpointRef dest,
const MIDIPacketList *packets)

Using Networked MIDI Connections

#import <CoreMIDI/MIDINetworkSession.h>

MIDINetworkSession xsession = [MIDINetworkSession defaultSession];
session.enabled = YES;

session.connectionPolicy = MIDINetworkConnectionPolicy_Anyone;

MIDINetworkHost *xhost = [MIDINetworkHost hostWithName: @“My Session”

address: @“myhost.acme.com”
port: 5004];

[MIDINetworkConnection connectWithHost: host];

The Music Sequencer

Doug Scott

Core Audio Engineering

Demo

Playing MIDI files in your app

Doug Scott

Core Audio Engineering

The Music Sequencing API

* Declared in <AudioToolbox/MusicPlayer.h>

The Music Sequencing API

* Declared in <AudioToolbox/MusicPlayer.h>
* MusicSequence

- Tempo track
- Event tracks

The Music Sequencing API

* Declared in <AudioToolbox/MusicPlayer.h>
* MusicSequence

- Tempo track

- Event tracks
* MusicTrack

= MIDI events

« AU Parameter automation data
« User data events

The Music Sequencing API

* Declared in <AudioToolbox/MusicPlayer.h>
* MusicSequence

- Tempo track

- Event tracks
* MusicTrack

= MIDI events

« AU Parameter automation data
« User data events

* MusicPlayer

The Music Sequencing API

MusicSequence

* Add, remove, merge MusicTracks
* Read and write MIDI files
* Beats/time conversion

The Music Sequencing API

MusicTrack

* Add, move, clear music events

* Mute, solo, looping, etc.

* Associate events with a destination

= Audio Units (instruments, sound effects, etc.)
- MIDI devices

* Supports event iteration

The Music Sequencing API

MusicPlayer

* Playback controls
* Host time to beats and vice versa

Loading a MIDI File—An Easy Use Pattern

MusicSequence

MusicSequence mySequence = ...
CFURLRef inPathToMIDIFile = ...

MusicSequenceFileLoad(mySequence, inPathToMIDIFile, 0,
kMusicSequencelLoadSMF_ChannelsToTracks);

Loading a MIDI File

MusicSequence

Tempo Track

* Loads file's tempo events if present
* Otherwise, creates a default tempo

Loading a MIDI File

MusicSequence

Tempo Track

Event Track 1

Event Track 2

Loading a MIDI File

MusicSequence

Tempo Track

Event Track 1

Event Track 2

Loading a MIDI File

MusicSequence

Tempo Track

Event Track 1

Event Track 2

Instrument

)

Limiter

}

Output

Playing the Sequence

MusicSequence

Tempo Track
Event Track 1

Event Track 2

MusicPlayerSetSequence(myMusicPlayer, mySequence);
MusicPlayerStart(myMusicPlayer);
MusicPlayerSetPlayRateScalar(myMusicPlayer, 1.0);

AUGraph

Instrument

)

Limiter

!

Output

!

(&

Creating a Custom Sequence
Complex usage pattern

* MIDI recorder/sequencer app
* Play a MIDI sequence with multiple instruments
* AU parameter automation data

Creating a Custom Sequence

* Create an empty sequence

* Create a custom AUGraph

* Add tracks to sequence

* Add events to tracks

* Target tracks to graph nodes or MIDI endpoints

An Example of a Custom Sequence

AUGraph
MusicSequence

Instrument 1 Instrument 2

Tempo Track \ /

Mixer Unit

!

Event Track 2 Output

l

(&

* The two event tracks send their events to different instruments

Event Track 1

Adding a Live Event to a Track

AUGraph
MusicSequence

Instrument 1 Instrument 2

Tempo Track \ /

Mixer Unit

!

O Event Track 2 Output
A

(‘\4

Event Track 1

MIDI Input —_— MIDI Event

Summary
Technologies for music applications

* Audio Units

* AUSampler
* CoreMIDI
* Music sequencing

Related Sessions

Marina

Audio Session Management for iOS Wednesday 11:30 AM

Labs

. Graphics & Media Lab C
AUdIO La b Wednesday 2:00PM

More Information

Eryk Vershen
Media Technologies Evangelist
evershen@apple.com

Documentation and Sample Code
iPhone Dev Center
http://developer.apple.com/iphone

Audio Unit Hosting Guide for iPhone OS
WWDC attendee website

Apple Developer Forums
http://devforums.apple.com

& WWDC201

