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What You Will Learn

* Using Audio Units
* Introduction to the AUSampler
* CoreMIDI on iOS

* Playing of music sequences
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What Is an Audio Unit?

* Plug-in for processing audio

* Supports real-time input, output, or simultaneous I/0
* Organized in an audio processing graph

* Controlled by properties and parameters

* Can have a view (Mac OS X)




Types of Audio Units

« Effects

* Music effects
* Instruments

* Generators

* Panners

* Converters

* Mixers

* Offline effects
* Qutput units




Using Audio Units
Organizing Audio Units in a graph

* Audio Units can be added to an
audio processing network called
an AUGraph

- Each item in the graph
is an AUNode

- Graph defines connections
between nodes

- Signal flow goes from
input to output

- Graph ends with a
single output unit




Using Audio Units
AU graphs (cont.)

* Graphs can use a mixer unit to
combine separate chains prior to
the output
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Interacting with Audio Units
Properties

* Key-value pairs
* Configure state that is managed by the host

- Sample rate
- Stream format
- Number of input buses on a mixer

* Set on Audio Unit and take effect at initialization




Interacting with Audio Units
Parameters

* Key-value pairs

* Intended to be used during processing
- Delay time
- Feedback amount

- Stereo panning position
* Generally set through a Ul




Demo

Exploring Audio Units in AULab

Michael Hopkins

Core Audio Engineering




New Audio Units in iOS

* Effects

- Filters
- Highpass
= Lowpass
- Bandpass
- Highshelf
- Lowshelf
= Parametric EQ
- Peak limiter
- Dynamics processor

= Reverb




New Audio Units in iOS

* Effects

- Varispeed

- SimpleTime

- NotQuiteSoSimpleTime
* Generators

- AudioFilePlayer

- ScheduledSlicePlayer

* Instruments
- Sampler




Audio Components

Finding, loading, and instantiating Audio Units

Michael Hopkins

Core Audio Engineering




Audio Unit Basics

* Audio Unit instances are created from Audio Components
* Uniquely identified by an AudioComponentDescription

- Each value is a four-character OSType
- Type ‘aufx’
- Subtype ‘dlay’
- Manufacturer  ‘acme’
* Name

* \ersion




Introducing the AudioComponent API

* Provides facilities for Audio Components
- Finding
- Loading
- State management

* Available in iOS and Mac OS X

* Replaces Component Manager calls on Mac OS X




Finding and Loading an Audio Unit

Application AudioComponentDesc
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Finding and Loading an Audio Unit
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Finding and Loading an Audio Unit
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Finding and Loading an Audio Unit
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Finding and Creating an Audio Unit

* Use AudioComponentFindNext() to find a specific Audio Component

AudioComponent AudioComponentFindNext (AudioComponent xinComp,

const AudioComponentDescription *xinDesc)

- First argument can be NULL to start at beginning of component list
- Pass a specific Audio Component to retrieve next match
- Wildcard searches allowed




Registering Audio Components

* System scans directories for bundles
~/Library/Audio/Plug-Ins/Components
/Library/Audio/Plug—Ins/Components
/System/Library/Components

* Bundles have a specific extension

- .audiocomp (registers with Audio Component System)

- .component (registers with Component Manager and
Audio Component System)




Registering Audio Components
Components can be registered at runtime

AudioComponent AudioComponentRegister(AudioComponentDescription xdesc,
CFStringRef name,
UInt32 version,

AudioComponentFactoryFunction func)

* Component only available in application process




Audio Components
A look under the hood

* All Audio Components have an AudioComponentFactoryFunction

- Used to create instances of the Component
- Returns a pointer to an AudioComponentPlugininterface




Audio Units
A look under the hood

* All Audio Components have an AudioComponentFactoryFunction

- Used to create instances of the Component
- Returns a pointer to an AudioComponentPlugininterface

*Open() —I—o Open(self, newlnstance)

*Close() ——I—o Close(self) AudioComponentPlugininterface

*Lookup() ———I-o Lookup(selector)




Creating an Audio Component Instance
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Creating an Audio Component Instance
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Creating an Audio Component Instance
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Creating an Audio Component Instance
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Calling into an Audio Unit

Application % Audio Unit

Audio Component System AudioUnitRender( ... )




Calling into an Audio Unit

Application % Audio Unit

Audio Component System AudioUnitRender(




Calling into an Audio Unit

Application \— Audio Unit

Audio Component System AudioUnitRender( Audio Unit )
AudioComponentFactoryFunction () 4—:




Calling into an Audio Unit

Application \— Audio Unit

Audio Component System AudioUnitRender( Audio Unit )
AudioComponentFactoryFunction () 4—:

AudioComponentPlugininterface




Calling into an Audio Unit
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Calling into an Audio Unit

Audio Component System

Application

AudioUnitRender(

yoee) :
AudioComponentFactoryFunction ()
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Audio Unit

Audio Unit

AudioComponentPlugininterface

Lookup(kAudioUnitRenderSelect)

Render( AU, ...)




The Sampler Audio Unit
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The Sampler
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A New Instrument for iOS and Mac OS X

* What makes this an instrument?

- Generates audio output
= Music events trigger notes and change behavior




A New Instrument for iOS and Mac OS X

* What makes this an instrument?
- Generates audio output
= Music events trigger notes and change behavior
* What makes this a sampler?
- Audio files organized as a playable instrument
- Drum kit

= Acoustic piano
- Sound effects




Sampler Features

* Accepts samples in multiple formats

* Shares resources

* Streams large audio files

* Lightweight native presets

* Flexible instrument preset design

* Translates DLS and SoundFont2 instrument presets




How a Sampler Patch Is Organized
A hierarchy of zones and layers

Instrument




Zones
How to map each sample

* Inherit from parent layer
* Root key

* Key number range

* Key velocity range

* Waveform looping

* Gain

* Detune
. etc.




Layers
Allow zones to share common settings

* Collection of zones

* Settings for filters, LFOs,
envelopes, etc.

* Modulation connections
e Zone selection

* Key offset

* etfC.




Instrument
A collection of layers

Instrument




A Simple Patch

A single layer with multiple zones

I ’H ’| H| } ‘|| H ||' - Layer spans entire keyboard

 Divided into four zones
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Sampler Behavior
A single layer with multiple zones
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Sampler Behavior
A single layer with multiple zones

| ’H H H| } H| H ||’ * MIDI note on received
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Sampler Behavior
A note-on generates a single voice
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A Layered Patch

Two layers which overlap to produce a complex instrument
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* First layer divided into two zones

* Second layer divided into
four zones

Instrument

Layer 1 (Vibes Attack)

Zone Zone

Layer 2 (Vibes Sustain)

Zone Zone




Sampler Behavior
Two layers which overlap to produce a complex instrument
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Sampler Behavior
Two layers which overlap to produce a complex instrument
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* One zone in each layer selected

Instrument

Layer 1 (Vibes Attack)

Zone

Layer 2 (Vibes Sustain
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Sampler Behavior
A note on generates two voices
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* One zone in each layer selected
* Two voices are activated

Instrument

Layer 1 (Vibes Attack)

Zone

Layer 2 (Vibes Sustain

A

Zone Zone




Example of a Complex Patch
Keyboard split into two instrumental timbres

MR

Instrument

Layer 1 (Double Bass) Layer 1 (Vibraphone)

Zone @Zone | Zone | Zone Zone Zone
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Demo

The Sampler’s Custom View and Presets

Doug Scott

Core Audio Engineering




Configuring the Sampler
Loading a patch

* AUPreset file
* Build from set of audio files
* DLS bank or SoundFont 2 files




Loading a Patch Using an AUPreset File

* Audio file assets in app bundle’s resource directory (required on iOS)
* Convert the preset file into a PropertyList

* Load using the ClassInfo property

0SStatus result;
result = AudioUnitSetProperty(mySamplerUnit,
kAudioUnitProperty_ClassInfo,

kAudioUnitScope_Global,

9,

&presetPropertylList,

sizeof (CFPropertyListRef));




Creating a Patch from Audio Files
A new custom instrument

* Audio files in app bundle’s resource directory (required on iOS)

* Audio file's instrument chunk
- Sample loop
- Key range
- etc.




Loading a Patch from a Sound Bank
Sampler translates DLS and SoundFont2 patches

* Bank file in app bundle’s resource directory (required on iOS)

* Select a preset

«Bank ID
= Instrument ID

* Load using AudioUnitSetProperty




Demo

Using a Sampler AUPreset in Your App

Doug Scott

Core Audio Engineering




Introduction to CoreMIDI in i0S
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What Is CoreMIDI?

* A set of services that applications can use to communicate
with MIDI devices

* Provides abstractions for interacting with a MIDI network

MIDI Server Process Application Process

—
lllllll MIDI Server Core MIDI




MIDI Devices

Device -




MIDI Devices

Device

Endpoints




MIDI Devices

Source Destination

Device

Endpoints




Handling Device Notifications
Plugging in a new device

* Application needs to create
a client object

* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes
- Property changes
- Setup changes




Handling Device Notifications
Plugging in a new device

- Applicationneedstocreate ~ ANEHATI BRI LY
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* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes

- Property changes
MIDI Server
- Setup changes -




Handling Device Notifications
Plugging in a new device

- Applicationneedstocreate ~ HEBERE RN MR \' |
a client object -G | n
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* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes
- Property changes
- Setup changes

MIDI Server Process

MIDI Server




Handling Device Notifications
Plugging in a new device

- Application needstocreate |~ ARHET I BRI L
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* MIDI Server calls application’s
MIDINotifyProc() when

- Device changes

- Property changes
MIDI Server
Setup changes EZa

Application Process
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CoreMIDI Properties

* Properties can get information about devices, entities, or endpoints

Name

- Manufacturer

- Unique ID

- Offline state

- Receive and transmit channels
- Current patch

- MIDI settings
- Supports General MIDI
= Supports MMC
- Receives/transmits clock




Creating a MIDIClient

MIDIClientCreate




Getting MIDI Data

* Application needs to create mmInuInln
a MIDI input port o | mnmuint
* MIDI Server calls application’s &~

MIDIReadProc() when MIDI
messages are received -

* Provides a packet list of

MIDI events
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Getting MIDI Data

* Application needs to create
a MIDI input port

* MIDI Server calls application’s
MIDIReadProc() when MIDI
messages are received

* Provides a packet list of
MIDI events

MIDI Server Process

MIDI Server




Getting MIDI Data

* Application needs to create
a MIDI input port

* MIDI Server calls application’s
MIDIReadProc() when MIDI
messages are received

* Provides a packet list of
MIDI events

MIDI Server

Application Process




MIDI Packets
Anatomy of a MIDIPacket

Packet List

Packet 1 Packet 2 Packet 3

Timestamp Timestamp Timestamp

Length Length Length

Data Data Data

pl=PacketList[@] p2=MIDIPacketNext(pl) p3=MIDIPacketNext(p2)




Getting MIDI Data

Creating a port

// process packets

MIDIInputPortCreate




Sending MIDI Data

* Use MIDISend( ) to send a packet list of MIDI Data
* Use MIDIOutputPortCreate( ) to create an output port
* Specify the destination for the data

MIDISend(MIDIPortRef port,
MIDIEndpointRef dest,
const MIDIPacketList *packets)




Using Networked MIDI Connections

#import <CoreMIDI/MIDINetworkSession.h>

MIDINetworkSession xsession = [MIDINetworkSession defaultSession];
session.enabled = YES;

session.connectionPolicy = MIDINetworkConnectionPolicy_Anyone;

MIDINetworkHost *xhost = [MIDINetworkHost hostWithName: @“My Session”

address: @“myhost.acme.com”
port: 5004];

[MIDINetworkConnection connectWithHost: host];




The Music Sequencer

Doug Scott

Core Audio Engineering




Demo

Playing MIDI files in your app

Doug Scott

Core Audio Engineering




The Music Sequencing API

* Declared in <AudioToolbox/MusicPlayer.h>
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« AU Parameter automation data
« User data events




The Music Sequencing API

* Declared in <AudioToolbox/MusicPlayer.h>
* MusicSequence

- Tempo track

- Event tracks
* MusicTrack

= MIDI events

« AU Parameter automation data
« User data events

* MusicPlayer




The Music Sequencing API

MusicSequence

* Add, remove, merge MusicTracks
* Read and write MIDI files
* Beats/time conversion




The Music Sequencing API

MusicTrack

* Add, move, clear music events

* Mute, solo, looping, etc.

* Associate events with a destination

= Audio Units (instruments, sound effects, etc.)
- MIDI devices

* Supports event iteration




The Music Sequencing API

MusicPlayer

* Playback controls
* Host time to beats and vice versa




Loading a MIDI File—An Easy Use Pattern

MusicSequence

MusicSequence mySequence = ...
CFURLRef inPathToMIDIFile = ...

MusicSequenceFileLoad(mySequence, inPathToMIDIFile, 0,
kMusicSequencelLoadSMF_ChannelsToTracks);




Loading a MIDI File

MusicSequence

Tempo Track

* Loads file's tempo events if present
* Otherwise, creates a default tempo




Loading a MIDI File

MusicSequence

Tempo Track

Event Track 1

Event Track 2
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Loading a MIDI File

MusicSequence

Tempo Track

Event Track 1

Event Track 2

Instrument
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Playing the Sequence

MusicSequence

Tempo Track
Event Track 1

Event Track 2

MusicPlayerSetSequence(myMusicPlayer, mySequence);
MusicPlayerStart(myMusicPlayer);
MusicPlayerSetPlayRateScalar(myMusicPlayer, 1.0);

AUGraph

Instrument

)

Limiter

!

Output

!

(&




Creating a Custom Sequence
Complex usage pattern

* MIDI recorder/sequencer app
* Play a MIDI sequence with multiple instruments
* AU parameter automation data




Creating a Custom Sequence

* Create an empty sequence

* Create a custom AUGraph

* Add tracks to sequence

* Add events to tracks

* Target tracks to graph nodes or MIDI endpoints




An Example of a Custom Sequence

AUGraph
MusicSequence

Instrument 1 Instrument 2

Tempo Track \ /

Mixer Unit

!

Event Track 2 Output

l

(&

* The two event tracks send their events to different instruments

Event Track 1




Adding a Live Event to a Track

AUGraph
MusicSequence

Instrument 1 Instrument 2

Tempo Track \ /

Mixer Unit

!

O Event Track 2 Output
A

(‘\4

Event Track 1

MIDI Input —_— MIDI Event




Summary
Technologies for music applications

* Audio Units

* AUSampler
* CoreMIDI
* Music sequencing




Related Sessions

Marina

Audio Session Management for iOS Wednesday 11:30 AM




Labs

. Graphics & Media Lab C
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More Information

Eryk Vershen
Media Technologies Evangelist
evershen@apple.com

Documentation and Sample Code
iPhone Dev Center
http://developer.apple.com/iphone

Audio Unit Hosting Guide for iPhone OS
WWDC attendee website

Apple Developer Forums
http://devforums.apple.com
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