Capturing From the Camera
Using AV Foundation on iOS 5

APl enhancements and performance improvements

Session 419

Brad Ford
iOS Engineering

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

What You Will Learn

* Which iOS 5 captures APIs to use in your app

* The AV Foundation capture programming model

* i0S 5 Performance improvements in AV Foundation
* i0S 5 AV Foundation APl enhancements

Sample Code for This Session

* ChromaKey

* RosyWriter
*‘StacheCam

* StopNGo (iOS Edition)

Materials available at:
https://developer.apple.com/wwdc/schedule/details.php?id=419

Technology Framework

Camera app

UllmagePickerController

UIKit

AVFoundation

CoreAudio

CoreMedia

CoreAnimation

Using the Camera in iOS 5

Simple programmatic access

API for high, ‘ s R E — Hideable camera
medium, or low A A e controls Ul
quality recording | M > L

—(void)takePicture —(void)setCameraDevice:
—(BOOL)startVideoCapture —(void)setCameraFlashMode:

User touch to focus, like Camera app
User touch and hold to lock AE and AF

Why Use AV Foundation Capture?

Full access to the camera

* Independent focus, exposure, and white balance controls

- Independent locking

- Independent points of interest for focus and exposure
* Access to video frame data

= Accurate timestamps

- Per-frame metadata

- Configurable output format (e.g. 420v, BGRA)

- Configurable frame rate

- Configurable resolution

Why Use AV Foundation Capture?

Flexible output

« Still Image Capture

- YUV and RGB output
« Exif metadata insertion

* QuickTime Movie Recording

« Movie metadata insertion
= Orientation lock

*Video Preview in a CALayer

- Aspect fit, aspect fill, and stretch
* Audio level metering
* Access to audio sample data

AV Foundation Capture

Programming model

Capture Basics—Inputs and Outputs

Video
Audio —

Inputs

Outputs

1)

o
=
m

Capture Basics—Inputs and Outputs

AVCaptureVideoPreviewLayer

AVCaptureDevicelnput AVCaptureDevicelnput

AVCaptureSession

AVCaptureAudioDataOutput

AVCaptureStilllmageOutput

AVCaptureVideoDataOutput

AVCaptureMovieFileOutput

Capture Use Cases We Will Cover

Process video frames from the camera and render with OpenGL
Process live video and audio, and write them to a QuickTime movie
Scan video frames for patterns using the flash and VideoDataOutput
Process captured still images with Corelmage

Capture Use Cases We Will Cover

* Process video frames from the camera and render with OpenGL

Demo

ChromakKey

Sylvain Nuz
Core Media Engineering

ChromakKey

Process and render

Outputs " S T with OpenGL

ChromakKey

AVCaptureDevice

AVCaptureDevicelnput

AVCaptureSession

AVCaptureVideoDataOutput

|

CMSampleBuffer

ChromaKey

* Create an AVCaptureSession

AVCaptureSession xsession = [[AVCaptureSession alloc] init];
session.sessionPreset = AVCaptureSessionPreset1280x720;

* Find a suitable AVCaptureDevice
AVCaptureDevice xdevice = [AVCaptureDevice
defaultDeviceWithMediaType:AVMediaTypeVideo];
* Create and add an AVCaptureDevicelnput

AVCaptureDeviceInput xinput = [AVCaptureDeviceInput
deviceInputWithDevice:device error:&error];
[session addInput:input];

ChromaKey

* Create and add an AVCaptureVideoDataOutput
AVCaptureVideoDataOutput *output = [[AVCaptureVideoDataOutput alloc] init];
[session addOutput:output];

» Configure your output, and start the session

dispatch_queue_t serial_queue = dispatch_queue_create(“myQueue”, NULL);
[output setSampleBufferDelegate:self queue:serial_queuel];
[session startRunning];

* Implement your delegate callback

— (void)captureOutput: (AVCaptureOutput x)captureOutput
didOutputSampleBuffer: (CMSampleBufferRef)sampleBuffer
fromConnection: (AVCaptureConnection *)connection

// CFShow(sampleBuffer);

ChromaKey

 Lock autoexposure, focus, and white balance

AVCaptureDevice *device = self.device;
[device lockForConfiguration:&error];

[device setFocusMode:AVCaptureFocusModelLocked];
[device setExposureMode:AVCaptureExposureModelLocked];

[device setWhiteBalanceMode:AVCaptureWhiteBalanceModelLocked];

[device unlockForConfiguration];

ChromakKey

Bridging CoreVideo and OpenGLES

Brandon Corey
iOS Engineering

ChromaKey

CVOpenGLESTextureCache

* Bridges CoreVideo PixelBuffers to OpenGLES textures

- Avoids copies to and from the GPU
- Allows recycling of textures

* Supported in OpenGL ES 2.0 and later

* Defined in <coreVvideo/CV0penGLESTextureCache. h>

ChromaKey

* Efficiently maps a BGRA buffer as a source texture (OpenGL ES 2.0)

CVOpenGLESTextureCacheCreateTextureFromImage (
kCFAllocatorDefault,
openGLESTextureCacheRef,
pixelBuffer, // a CVPixelBuffer received from the delegate callback
NULL, // optional texture attributes
GL_TEXTURE_2D, // the target
GL_RGBA, // internal format
width,
height,
GL_BGRA, // pixel format
GL_UNSIGNED_BYTE, // data type of the pixels
@, // plane index to map (BGRA has only one plane)
SoutTexture);

Standard Texture Binding

CVPixelBuffer > Texture Image

memcpy ()

Texture Object

* Uploading data to a Texture Image
GLuint texture;
glGenTexture(1l, &texture);
void *pixelData = CVPixelBufferGetBaseAddress(pixelBuffer);

glTexImage2D(GL_TEXTURE_2D, @, GL_RGBA, 1280, 720,
@, GL_BGRA, GL_UNSIGNED_BYTE, pixelData);

CVOpenGLES Texture Binding

I0Surface backed Texture Image
CVPixelBuffer

Texture Object

* Binding data to a Texture Object

GLuint texture;
CVPixelBufferRef pixelBuffer;

CVOpenGLESTextureCacheCreateTextureFromImage(kCFAllocatorDefault,
textureCacheRef, pixelBuffer, NULL,
GL_RGBA, 1280, 720, GL_BGRA, GL_UNSIGNED_BYTE, 0, &texture);

Getting Data Back Out

GL_COLOR_ATTACHMENTO
Texture Image /
GL_COLOR_ATTACHMENT1

Texture Object
GL_COLOR_ATTACHMENTN

GL_DEPTH_ATTACHMENT

Renderbuffer Image
GL_STENCIL_ATTACHMENT

Renderbuffer Object Framebuffer Object (FBO)

* Have OpenGL ES render to a Framebuffer Object (FBO)
* Done one of two ways

= Create and attach a Renderbuffer to an FBO
= Create and attach a Texture to an FBO

* glReadPixels or glTeximage2D to move data into a buffer

CVOpenGLES Framebuffer Binding

Texture or Renderbuffer
Image R

/ » | CVPixelBuffer
. B o YR | G DY A
Texture or Renderbuffer Object -~
\ I0Surface backed
CVPixelBuffer

Texture or Renderbuffer Object

OpenGL ES Renderer

* Binding to a Texture and attaching to a Framebuffer Object

GLuint texture, fbo;

glGenFrameBuffer(1, &fbo);

CVOpenGLESTextureCacheCreateTextureFromImage(... &texture);

glBindFrameBuffer(GL_FRAMEBUFFER, fbo);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT®,
GL_TEXTURE_2D, texture, 0);

CVOpenGLESTextureCache

Usage notes

* Buffers from AVCapture and AVAssetReader are created with the
appropriate formatting

* If you create your own CVPixelBuffers, you must pass
kCVPixelBufferIOSurfacePropertieskey as a pixelBufferAttribute to
CVPixelBufferCreate() OrF CVPixelBufferPoolCreate()

* If you use AVAssetWriter, be sure to use the pixel buffer pool it provides

CVOpenGLESTextureCache

Usage notes (continued)

* BGRA, 420v, and 420f are supported

* OpenGLES now supports 6L_Rep and GL_RG
single channel render targets (iPad 2 only)

Performance Enhancements in iOS 5

AVCaptureVideoDataOutput

Brad Ford
iOS Engineering

AVCaptureVideoDataOutput
Usage

* setSampleBufferDelegate: queue: requires a serial dispatch queue
to ensure properly ordered buffer callbacks

* Note: Do not pass dispatch_get_current_queue()
* By default, buffers are emitted in the camera’s most efficient format

* Set the videoSettings property to specify a custom output format,
such as ‘BGRA’

* Hint: Both CoreGraphics and OpenGL work well with ‘BGRA’

AVCaptureVideoDataOutput

Performance tips

* Set the minFrameburation property to cap the max frame rate
* Configure the session to output the lowest practical resolution

» Set the alwaysbiscardsLateVvideoFrames property to YES (the default)
for early, efficient dropping of late video frames

* Your sample buffer delegate’s callback must be FAST!

AVCaptureVideoDataOutput

Supported pixel formats

« 420V’
- Planar yuv 4:2:0 video format (luma and chroma are in separate planes)
- Chroma is subsampled in horizontal and vertical direction
- “Video Range” samples (16-235)
- This is the default format on all iOS 5 supported cameras
*‘420f'
» Full color range planar yuv (0-255)
- This is the default format when using AVCaptureSessionPresetPhoto
* 'BGRA’
- Blue / Green / Red / Alpha, 8 bits per pixel (more than 2x bandwidth)

AVCaptureVideoDataOutput

Enhancements in iOS 5

* Support for rotation of CVPixelBuffers

- Rotation is hardware accelerated
- Use AVCaptureConnection’s setVideoOrientation: property
- All 4 AVCaptureVideoOrientations are supported

- Default is non-rotated buffers
= Front camera = AVCaptureVideoOrientationLandscapeleft
- Back camera = AvCaptureVideoOrientationlLandscapeRight

7 e

AVCaptureVideoDataOutput

Enhancements in iOS 5

* Support for pinning of minimum frame rate

- Enables fixed frame rate captures
= Use AVCaptureConnection’s -setMaxFrameburation: property

- WARNING: Fixed frame rate captures may result in reduced image
quality in low light

AVCaptureSession + AVCaptureVideoDataOutput

AVCaptureSession’s setsessionPreset: affects video data output resolution

High
Medium
Low
640x480
1280x720

Photo

Highest recording quality
Suitable for WiFi sharing
Suitable for 3G sharing
VGA

720p HD

Full photo resolution

352x288
iFrame 960x540

iFrame 1280x720

CIF for streaming apps
540p HD for editing

720p HD for editing

AVCaptureVideoDataOutput

Supported resolutions

Back Camera Front Camera

Preset iPhone 3GS iPhone 4 iPad 2 / iPod Touch All models

High 640x480 1280x720 1280x720 640x480

Medium 480x360

Low 192x144

Photo 512x384 852x640 960x720 640x480

AVCaptureVideoDataOutput

Supported resolutions (continued)

* Special consideration for Photo mode as of iOS 4.3
» AVCaptureSessionPresetPhoto delivers

- Full resolution buffers to AVCaptureStilllmageOutput
- Preview sized buffers to AVCaptureVideoDataOutput

* Aspect ratio is unchanged

AVCaptureVideoDataOutput

Supported resolutions (continued)

Back Camera Front Camera

Preset iPhone 3GS iPhone 4 iPad 2 / iPod touch All models

352x288 A A / /

640x480 / / / A

1280x720
iFrame960x540

iFrame1280x720

What is iFrame?

What Are | Frames?

e | —Intra

 P—Predictive

|« PP P-

« B—Bidirectionally predictive

| | B B P

What Is iFrame?

* Apple “ecosystem friendly” video
* Supported by 30+ camera/camcorder models

- H.264 | frame only video + AAC or PCM audio

- Constant frame rate (25 or 29.97 fps)

- ~30 megabits/s @ 960x540 or ~40 megabits/s @ 1280x720
- MOV or MP4 container

* Great for editing
* Produces larger files

Supported on all iOS devices with HD cameras

Capture Use Cases We Will Cover

* Process live video and audio, and write them to a QuickTime movie

Demo

RosyWriter

Matthew Calhoun
iOS Engineering

RosyWriter

Outputs

RosyWriter

AVCaptureDevice

AVCaptureDevicelnput

AVCaptureDevice

AVCaptureDevicelnput

AVCaptureSession

AVCaptureVideoDataOutput

AVAssetWriterlnput (video)

AVCaptureAudioDataOutput

AVAssetWriterlnput (audio)

AVAssetWriter

What Is an AVAsset?

* Defined in <AvFoundation/AVAsset.h>
* Abstraction for a media asset
- Can be URL-based
- Can be stream-based
- Can be inspected for properties
- Can be played with an AVPlayer
- Can be read with an AVAssetReader
- Can be exported with an AVAssetExportSession

Can be written with an AVAssetWriter

RosyWriter

* Create an AVAssetWriter

AVAssetWriter xwriter = [[AVAssetWriter alloc] initWithURL:url
fileType:AVFileTypeQuickTimeMovie error:&error];

* Create and add AVAssetWriterlnputs
AVAssetWriterInput xvideoInput = [[AVAssetWriterInput alloc]
initWithMediaType:AVMediaTypeVideo outputSettings:outputSettings];
[videoInput setExpectsMediaDatalnRealTime:YES];

[writer addInput:videoInput];
dispatch_queue_t serial_queue = dispatch_queue_create(“myQueue”, NULL);

[output setSampleBufferDelegate:self queue:serial_queue];
[session startRunning];

* Append samples in AVCaptureDataOutputs’ delegate callbacks

[writer startWriting];
if ([videoInput isReadyForMoreMediaDatal])
[videoInput appendSampleBuffer:sampleBuffer];

AVAssetWriter or AVCaptureMovieFileOutput

Which one to use?

* AVCaptureMovieFileOutput
- Requires no set up (automatically uses AVCaptureSessionPreset)
- Can record multiple movie files
- Supports max file size, duration, and minimum free disk space limits

- Does not allow client access to video/audio buffers before writing
* AVAssetWriter

- Requires set up of output settings
- Is a one-shot writer

- Allows client access to video/audio buffers before writing
(via AVCaptureVideoDataOutput / AVCaptureAudioDataOutput)

- Incurs more overhead than AVCaptureMovieFileOutput

AVAssetWriter

Sample video settings

* Settings are defined in <AvFoundation/AVVideoSettings.

NSDictionary xoutputSettings = [NSDictionary
dictionaryWithObjectsAndKeys:

AVVideoCodecH264, AVVideoCodecKey,

[NSNumber numberWithInt:1280], AVVideoWidthKey,

[NSNumber numberWithInt:720], AVVideoHeightKey,
[NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithInt:10500000], AVVideoAverageBitRateKey,
[NSNumber numberWithInt:1], AVVideoMaxKeyFrameIntervalKey,
AVVideoProfileLevelH264Main31, AVVideoProfilelLevelKey,
nil], AVVideoCompressionPropertiesKey,

nill;

AVAssetWriter

Sample audio settings

* Settings are defined in <AvFoundation/AVAudioSettings.h>

AudioChannellLayout acl = {0};
acl.mChannelLayoutTag = kAudioChannelLayoutTagMono;

NSDictionary sxoutputSettings = [NSDictionary dictionaryWithObjectsAndKeys:
[NSNumber numberWithInt:'aac '], AVFormatIDKey,
[NSNumber numberWithInt:64000], AVEncoderBitRatePerChannelKey,
[NSNumber numberWithInt:1], AVNumberOfChannelsKey,
[NSNumber numberWithDouble:44100.], AVSampleRateKey,
[NSData dataWithBytes:&layout length:sizeof(layout)], AVChannellLayoutKey,
nill;

AVAssetWriter

Do’s and don’ts

*DO:
- Set —expectsMediaDataInRealTime tO YES for each AVAssetWriterInput

- Set AVAssetWriter's movieFragmentInterval to preserve recordings in the
event of an interruption

- Set AVCaptureVideoDataOutput's —alwaysbiscardsLateVideoFrames to NO
* DON'T:

- Hold on to sample buffers outside the data output callbacks
- Take a long time to process buffers in the data output callbacks

What Is a Movie Fragment?

 Fast start QuickTime movie

Movie Header Movie Data

* Non fast start (captured) QuickTime movie

Movie Data Movie Header

* QuickTime movie with movie fragments

Header | Data Data Data Data Data Data Data Data Data Data Data

Capture Use Cases We Will Cover

* Scan video frames for patterns using the flash and VideoDataOutput

Demo

MorseMe

Valentin Bonnet
iOS Intern

MorseMe (Sender)

(0 JES8— (ED Torch
2]
|

MorseMe (Sender)

AVCaptureDevice

AVCaptureVideoPreviewLayer

MorseMe

AVCaptureDevice

AVCaptureDevicelnput

AVCaptureSession

AVCaptureVideoDataOutput

MorseMe
Torch support

* Torch modes
AVCaptureTorchModeOff
AVCaptureTorchModeOn
AVCaptureTorchModeAuto

* Use -hasTorch to determine if the AVCaptureDevice has one
* Call ~tockForconfiguration: before attempting to set the torch mode

Flashlight apps no longer need to run an AVCaptureSession
to use the torch

if (YES == [device lockForConfiguration:&error]) {
[device setTorchMode:AVCaptureTorchModeOn];
[device unlockForConfiguration];

MorseMe

Torch APl enhancements in iOS 5

* Torch availability accessors

- Torch may become unavailable as phone gets too hot

- Key-value observe isTorchavailable to know when the unit gets too hot,
and when it cools down enough

- Key-value observe the torchLevel property to know when the torch
illumination level is decreasing due to thermal duress

Capture Use Cases We Will Cover

* Process captured still images with Corelmage

Demo

‘StacheCam

Using AVCaptureStilllmageOutput with Corelmage in iOS 5

‘StacheCam

Process with

Outputs ClFaceDetector

AVCaptureVideoPreviewLayer

‘StacheCam

AVCaptureDevicelnput

AVCaptureSession

AVCaptureStilllmageOutput

‘StacheCam
iOS 5 enhancements for still images

* AVCaptureStilllmageOutput new property iscapturingStillImage

- Key-value observe to know exactly when a still image is being taken
- Handy for driving a shutter animation

* AVCaptureDevice new property subjectAreaChangeMonitoringEnabled

- Allows you to lock focus or exposure, but still receive a notification
when the scene has changed significantly, so you can re-focus / expose

‘StacheCam
iOS 5 enhancements for still images

* Corelmage ClFilters make their iOS debut

- Red-eye reduction
- “Auto-enhance”

* CIDectector finds faces and features
* Climage interfaces with CVPixelBuffers
* Specify ‘BGRA’ output for Climage compatibility

‘StacheCam
iOS 5 enhancements for still images

CVPixelBufferRef pb = CMSampleBufferGetImageBuffer(imageDataSampleBuffer);
CIImage *ciImage = [[CIImage alloc] pb options:nil];

NSDictionary xdetectorOptions = [NSDictionary dictionaryWithObject:
CIDetectorAccuracyLow forKey:CIDetectorAccuracyl;
CIDetector xfaceDetector = [CIDetector detectorOfType:CIDetectorTypeFace
context:nil options:detectorOptions];

NSArray xfeatures = [faceDetector featuresInImage:cilmage
options:imageOptions];
for (CIFaceFeature xface in features) {
// iterate through the faces, find bounds,
// left eye, right eye, mouth position

For More on Corelmage in iOS 5

Using Core Image on iOS & Mac OS X R

Summary
iOS 5 AV foundation capture

* Gives you more CPU cycles

* Bridges CoreVideo and OpenGL

* Exposes more resolutions

» Adds more flexibility to still image capture
* Enables you to deliver even cooler apps

More Information

Eryk Vershen
Media Technologies Evangelist
evershen@apple.com

Documentation

AV Foundation Programming Guide
http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/AVFoundationPG/

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Exploring AV Foundation

Presidio
Tuesday 2:00PM

AirPlay and External Displays in iOS apps

Presidio
Tuesday 3:15PM

HTTP Live Streaming Update

Nob Hill
Tuesday 4:30PM

Working with Media in AV Foundation

Pacific Heights
Wednesday 2:00PM

Introducing AV Foundation Capture For Lion

Pacific Heights
Wednesday 3:15PM

Labs

AirPlay Lab
AV Foundation Lab
HTTP Live Streaming Lab

QT Kit Lab

AV Foundation Lab
QuickTime Lab

DAL Lab

Graphics, Media & Games Lab B
Wednesday 9:00AM-1:30PM

Graphics, Media & Games Lab C
Wednesday 9:00AM-1:30PM

Graphics, Media & Games Lab D
Wednesday 9:00AM-1:30PM

Graphics, Media & Games Lab A
Wednesday 9:00AM-1:30PM

Graphics, Media & Games Lab B
Thursday 9:00AM-1:30PM

Graphics, Media & Games Lab D
Thursday 9:00AM-1:30PM

Graphics, Media & Games Lab C
Thursday 9:00AM-1:30PM

& WWDC201

