What’s New in Core Motion

Session 423

Chris Moore
iOS Software Engineer

These are confidential sessions—please refrain from streaming, blogging, or taking pictures




Agenda

App idea

Using Core Motion

Let’s code!

Deep dive

Camera Control




What’s New in Core Motion

€ Rraw magnetometer data

@ North-referenced attitude

@ Background support




Setting the Stage




Locatio

Attitude

IR e




Gyroscope
Measures rotation rate




Accelerometer
Measures gravity and user acceleration




Magnetometer
Measures magnetic field

-’ /




Gyroscope Challenges

* No absolute reference
* Bias and Scale Error

Biate AriouditHitsleNcramdstenulateTiwieh Angle

Amound ohRotation




Accelerometer Challenges

* No yaw reference
* Filtering required to isolate gravity and user acceleration

High Pass Pdsridietfer Gaelgration

\
Frequency (w)




Magnetometer Challenges

* Internal interference (bias)
* External interference




Solution: Core Motion
Sensor fusion

 Full 3D attitude

= Pitch and roll
= Yaw

* Very responsive to changes in 3D attitude




Using Core Motion




Core Motion Objects

Motion Manager

Your Application Controller Core Motion Framework

CMMotionManager

Start/Stop Updates
Set Update Intervals




Core Motion Objects

Sensor data objects

Your Application Controller

Core Motion Framework

CMAccelerometerData

CMGyroData

CMMagnetometerData

CMAttitude

CiviDeviceMotion




Retrieving Data
Push and pull

* Push
= Must provide NSOperationQueue and block

* Pull
- Periodically ask CMMotionManager for latest sample
- Often done when view is updated




Retrieving Data
Push vs. pull tradeoffs

Advantages

Disadvantages

Recommendation

Never miss a sample

Increased overhead

Often best to drop
samples

Data collection apps

More efficient

Less code required

May need
additional timer

Most ap%aeres




Threading

* Core Motion creates its own thread to:

= Handle raw data from sensors
- Run device motion algorithms

* Pushing data
= Only your block will execute on your threads
* Pulling data

- Core Motion will never interrupt your threads to send them data




Outline for Using Core Motion

€ Setup

@) Retrieve data
© Clean-up




Step 1:Setup

—(void) startAnimation

{

// Create a CMMotionManager instance
motionManager = [[CMMotionManager alloc] init];

// Ensure that the data we’'re interested in is available
if (!motionManager.isAccelerometerAvailable) {

// Fail gracefully
}

// Set the desired update interval (60Hz in this case)
motionManager.accelerometerUpdateInterval = 1.0 / 60.0;

// Start updates

// Note: We could call the following here instead:

// [motionManager startAccelerometerUpdatesToQueue:withHandler:]
[motionManager startAccelerometerUpdates];




Step 2: Retrieving Data

—(void) drawView: (id)sender

{

CMAccelerometerData *newestAccel = motionManager.accelerometerData;

/] e




Step 3: Cleaning Up

—(void) stopAnimation

{

[motionManager stopAccelerometerUpdates];

[motionManager releasel];

[/




Using Core Motion
Summary

* Two methods to receive data
= Push
= Pull

* Processing done on Core Motion’s
own thread

* Three steps to use Core Motion
= Setup
- Retrieve data
« Clean-up




Demo

Xiaoyuan Tu
iOS Software Engineer and Scientist




From UIKit to Core Motion

UIKit Object

Core Motion Object

UlAccelerometer

UlAcceleration

UlAccelerationValue

CMMotionManager

CMAccelerometerData

double




Deep Dive into Device Motion




CMDeviceMotion Properties

CMDeviceMotion

attitude

gravity

userAcceleration

rotationRate

magneticField




Attitude

@property(readonly, nonatomic) CMAttitude *attitude;
* Orientation of the device in 3D
* Ways to express

= Rotation matrix
= Quaternion
- Euler angles (pitch, roll, yaw)




Reference Frame Choices

typedef enum {
CMAttitudeReferenceFrameXArbitraryZVertical = 1 << 0,
CMAttitudeReferenceFrameXArbitraryCorrectedZVertical = 1 << 1,
CMAttitudeReferenceFrameXMagneticNorthZVertical = 1 << 2,
CMAttitudeReferenceFrameXTrueNorthZVertical = 1 << 3

} CMAttitudeReferenceFrame;

+ (NSUInteger)availableAttitudeReferenceFrames

— (void)startDeviceMotionUpdatesUsingReferenceFrame:




Reference Frame Choices
CMAttitudeReferenceFrameXArbitraryZVertical

Up=Z1:ZQZZ3

|

Magnetic North .

Gravity




Reference Frame Choices
CMAttitudeReferenceFrameXArbitraryCorrectedZVertical

» Same as previous reference frame, except: Up=2=2,=7,
- Better longterm yaw accuracy |
- Higher CPU usage

Magnetic North

Gravity




Reference Frame Choices
CMAttitudeReferenceFrameXMagneticNorthZVertical

Up:Z1

|

Magnetic North

Gravity




Calibration Requirements

* When using CMAttitudeReferenceFrameXMagneticNorthZVertical

- Magnetometer calibration may be required
- New CMMotionManager property to control display of calibration HUD

- @property(assign, nonatomic) BOOL showsDeviceMovementDisplay




Reference Frame Choices
CMAttitudeReferenceFrameXTrueNorthZVertical

Up:Z1

|

True North

Gravity




Magnetic North
Direction of Earth’s Magnetic Field

North Pole
Magnetic North

-




True North

Direction of the Earth’s Geographic Poles

True North
North Pole

 Direction we are most familiar with
* Marked in the sky by the North Star, Polaris Magnetic North

« Reference point used when creating maps wxs \
kk N

* Can calculate true north given: i ‘
- Magnetic north LEs 1
= Model of difference between true north

and magnetic north around globe
- Approximate location




Example

CMDeviceMotion xdeviceMotion = motionManager.deviceMotion;
CMRotationMatrix R = deviceMotion.attitude.rotationMatrix;
CMAcceleration gravityReference = {0.0, 0.0, -1.0};

// gravityDevice == deviceMotion.gravity
gravityDevice = multiplyMatrixAndVector(R, gravityReference);

deviceMotion.gravity = R




Gravity and User Acceleration

@property(readonly, nonatomic) CMAcceleration gravity;
@property(readonly, nonatomic) CMAcceleration userAcceleration;

// Units are G's

typedef struct {
double Xx;
double vy;
double z;

} CMAcceleration;




Rotation Rate

@property(readonly, nonatomic) CMRotationRate rotationRate;

// Units are radians/second
typedef struct {

double x;

double vy;

double z;
} CMRotationRate;




Magnetic Field

@property(readonly, nonatomic) CMCalibratedMagneticField magneticField;

typedef struct {
CMMagneticField field;
CMMagneticFieldCalibrationAccuracy accuracy;
} CMCalibratedMagneticField;




Magnetic Field




iPhone 4

Availability Matrix

iPhone 3GS

iPad 2

iPad

iPod touch
(4th Gen.)

iPod touch
(3rd Gen.)

Simulator

Accelerometer I
Data

Gyro Data

Magnetometer
Data

Device Motion
(original)

Device Motion
(new)

/

/

/

/
v/

/




Demo

Xiaoyuan Tu
iOS Software Engineer and Scientist




Camera Control




Attitude for Camera Control
Camera-centered pivot




Attitude for Camera Control
Camera-centered pivot




Attitude for Camera Control
Object-centered pivot




Attitude for Camera Control
Object-centered pivot




Rigid Body Transformations




Camera-centered Pivot

* pw = Camera position in world coordinates
R = Attitude from Core Motion

CMRotationMatrix R = motionManager.deviceMotion.attitude.rotationMatrix;

* pd = Camera position in device coordinates

" pd — R*pW = pdx

pdy
pd;

*4x4 \iew matrix =




Object-centered Pivot

PWx

* pw = Camera position in world coordinates = | pw,
* R = Attitude from Core Motion P

CMRotationMatrix R = motionManager.deviceMotion.attitude.rotationMatrix;

Wy
* 4x4 View matrix = R P

‘sz
0 1







More Information

Allan Shaffer

Graphics and Game Technologies Evangelist
aschaffer@apple.com

Documentation
Event Handling Guide for iOS
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com




Related Sessions

Essential Game Technologies for iOS Parts 1 (Repeat)

Marina
Friday 10:15AM

Essential Game Technologies for iOS Part 2 (Repeat)

Marina
Friday 11:30AM

Best Practices for OpenGL ES Apps in iOS

Mission
Wednesday 4:30PM

Testing your Location—Aware App Without Leaving Your Chair

Mission
Friday 9:00AM




Labs

. Graphics, Media, & Games Lab B
Core Motion Lab Friday 11:30am-1:30pm




& WWDC2011




