
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

AppKit + Core Animation

Session 217

Layer-Backed Views

Corbin Dunn
AppKit Software Engineer

Expectations
Before We Begin

• Experience with traditional AppKit or UIKit drawing
•No experience with Core Animation is required

Effectively Using Layer-Backed NSViews

• Layer-backed views use Core Animation
• Layer-backing gives smoother, faster animations

■ Animations use less CPU as work is done in the GPU
■ Allows the use of the NSView hierarchy, events, and responder chain

•Historically layer-backed views use traditional AppKit drawing
■ AppKit has had the ability to use layers for many releases

Demo
Animation performance

Agenda
Effectively Using Layer-Backed NSViews

•Drawing
•Animating

■ Contents Updating
■ Synchronized Subview Animations

• Best Practices
■ Text and Font Smoothing
■ Focus Rings

•More Details and Tips

Drawing

Drawing

• Traditional NSView drawing model
•Using Core Animation layers and how they work
•Differences in -setNeedsDisplay: for redrawing

Traditional NSView Drawing Model
Custom NSView

Tandem Unicycle

Custom drawRect: implementation
Traditional NSView Drawing Model

- (void)drawRect:(NSRect)dirtyRect {
 // Fill the contents
 [[NSColor lightGrayColor] set];
 NSRectFill(self.bounds);
 // Draw the border
 [[NSColor grayColor] set];
 NSFrameRect(self.bounds);
 // Draw the title
 [@"Tandem Unicycle" drawInRect:titleRect withAttributes:...];
 // Draw the image
 [image drawInRect:imageRect fromRect:.. operation:.. fraction:..];
}

Tandem Unicycle

Custom drawRect: implementation
Traditional NSView Drawing Model

- (void)drawRect:(NSRect)dirtyRect {
 // Fill the contents
 [[NSColor lightGrayColor] set];
 NSRectFill(self.bounds);
 // Draw the border
 [[NSColor grayColor] set];
 NSFrameRect(self.bounds);
 // Draw the title
 [@"Tandem Unicycle" drawInRect:titleRect withAttributes:...];
 // Draw the image
 [image drawInRect:imageRect fromRect:.. operation:.. fraction:..];
}

- (void)drawRect:(NSRect)dirtyRect {
 // Fill the contents
 [[NSColor lightGrayColor] set];
 NSRectFill(self.bounds);
 // Draw the border
 [[NSColor grayColor] set];
 NSFrameRect(self.bounds);
 // Draw the title
 [@"Tandem Unicycle" drawInRect:titleRect withAttributes:...];
 // Draw the image
 [image drawInRect:imageRect fromRect:.. operation:.. fraction:..];
}

Custom drawRect: implementation
Traditional NSView Drawing Model

- (void)drawRect:(NSRect)dirtyRect {
 // Fill the contents
 [[NSColor lightGrayColor] set];
 NSRectFill(self.bounds);
 // Draw the border
 [[NSColor grayColor] set];
 NSFrameRect(self.bounds);
 // Draw the title
 [@"Tandem Unicycle" drawInRect:titleRect withAttributes:...];
 // Draw the image
 [image drawInRect:imageRect fromRect:.. operation:.. fraction:..];
}

Custom drawRect: implementation
Traditional NSView Drawing Model

Tandem Unicycle

- (void)drawRect:(NSRect)dirtyRect {
 // Fill the contents
 [[NSColor lightGrayColor] set];
 NSRectFill(self.bounds);
 // Draw the border
 [[NSColor grayColor] set];
 NSFrameRect(self.bounds);
 // Draw the title
 [@"Tandem Unicycle" drawInRect:titleRect withAttributes:...];
 // Draw the image
 [image drawInRect:imageRect fromRect:.. operation:.. fraction:..];
}

Custom drawRect: implementation
Traditional NSView Drawing Model

Tandem Unicycle

What happens in NSWindow draw time
Traditional NSView Drawing Model

•NSWindow recursively draws all
views in a dirty region
• Children draw on top of the parent

Tandem Unicycle

What happens in NSWindow draw time
Traditional NSView Drawing Model

•NSWindow recursively draws all
views in a dirty region
• Children draw on top of the parent

Tandem Unicycle

What happens in NSWindow draw time
Traditional NSView Drawing Model

•NSWindow recursively draws all
views in a dirty region
• Children draw on top of the parent

Tandem Unicycle

What happens in NSWindow draw time
Traditional NSView Drawing Model

•NSWindow recursively draws all
views in a dirty region
• Children draw on top of the parent

Tandem Unicycle

What happens in NSWindow draw time
Traditional NSView Drawing Model

•NSWindow recursively draws all
views in a dirty region
• Children draw on top of the parent

Tandem Unicycle

What happens in NSWindow draw time
Traditional NSView Drawing Model

•Drawing into the window’s
backing store
• Similar to drawing into
a large image

Tandem Unicycle

What happens in NSWindow draw time
Traditional NSView Drawing Model

•Drawing into the window’s
backing store
• Similar to drawing into
a large image

Tandem Unicycle

[NSView drawRect:]

Window Drawing Flow Chart

Window has dirty regions to draw

Prepares the window context for drawing

[NSView drawRect:][NSView drawRect:]

[NSView drawRect:][NSView drawRect:]

Enumerates all views from
outermost to innermost

For each subview

Core Animation and AppKit
How to use Core Animation layers

Tandem Unicycle

Hello World!

Core Animation and AppKit
Call setWantsLayer:YES on parent NSView

Tandem Unicycle

Hello World!

NSView
setWantsLayer:YES

Core Animation and AppKit
All children views become layer-backed

Tandem Unicycle

Hello World!

NSView

NSView
setWantsLayer:YES

NSView

NSView

Core Animation and AppKit
All children views become layer-backed

CALayer

CALayer

CALayer

CALayer

Tandem Unicycle

Hello World!

Tandem Unicycle

Hello World!

Core Animation and AppKit
Each filled in via drawRect:

-drawRect:

-drawRect:

-drawRect:

-drawRect:

CALayer

CALayer

CALayer

CALayer

Layer Drawing Flow Chart

- drawLayer: inContext:

CALayer needs to draw

Creates a CGContextRef
for a backing store (image)

-drawRect:

layer.contents

CA then calls to AppKit

AppKit then calls

The result is a cached image
of drawRect: assigned to the
layer’s contents

Tandem Unicycle

Hello World!

Layer Drawing Flow Chart
Layer contents are quickly composited to screen

layer.contents

layer.contents

layer.contents

layer.contents

Marking a view dirty
Traditional NSView Drawing Model

• Custom NSView marked as dirty
via setNeedsDisplay:YES

Tandem Unicycle

Marking a view dirty
Traditional NSView Drawing Model

• Custom NSView marked as dirty
via setNeedsDisplay:YES
•NSWindow keeps track of the
dirty region

Tandem Unicycle

Marking a view dirty
Traditional NSView Drawing Model

• Custom NSView marked as dirty
via setNeedsDisplay:YES
•NSWindow keeps track of the
dirty region
•All NSViews in that region
will redisplay
■ Including one like this under
the other view

Tandem Unicycle

Marking a view dirty
Traditional NSView Drawing Model

• Subsequently, if this view is marked
as setNeedsDisplay:YES

Tandem Unicycle

Marking a view dirty
Traditional NSView Drawing Model

• Subsequently, if this view is marked
as setNeedsDisplay:YES
• This custom view will also
be redrawn

Tandem Unicycle

Each layer tracks its own dirty rect
Layers and setNeedsDisplay:

• If this view has
setNeedsDisplay:YES called on it
■ Only that view is marked as dirty
■ The window is not marked as dirty
■ This custom view will not
get redrawn

Tandem Unicycle

Each layer tracks its own dirty rect
Layers and setNeedsDisplay:

• If this view has
setNeedsDisplay:YES called on it
■ Only that view is marked as dirty
■ The window is not marked as dirty
■ This custom view will not
get redrawn

Tandem Unicycle

What we covered
Drawing

• Traditional NSView drawing model
•Using Core Animation layers and how they work
•Differences in -setNeedsDisplay: for redrawing

Animating

The animator proxy
Animating in AppKit

@protocol NSAnimatablePropertyContainer

- (id)animator;
...
@end

• Implemented on NSView and NSWindow
•An opaque proxy object that can be treated just like original object
• Initiates implied animations on property changes
• The animator proxy starts and possibly drives the animation

Use the animator proxy (layer-backed or not layer-backed)
Traditional Animating in AppKit

•Use the animator proxy object to perform animations
 NSRect frame = [view frame]; // size: 100, 100
 frame.size = NSMakeSize(300, 300);
 [[view animator] setFrame:frame];
 // At this point the view.frame is still 100, 100

The proxy calls setFrame: on each step of the animation

• drawRect: is then invoked on each step of the animation

Tandem Unicycle

Traditional Animating in AppKit
Animations use the animator proxy

Tandem UnicycleTandem UnicycleTandem Unicycle

drawRect:

size = (100, 100)

drawRect:

size = (175, 175)

drawRect:

size = (250, 250)

drawRect:

size = (300, 300)

Done by AppKit on the main thread (non-optimal)

CALayers do not need to have an animator proxy
Core Animation + Frame Animations

CGRect frame = [layer frame]; // size: 100, 100
frame.size = CGSizeMake(300, 300);
layer.frame = frame; // Implicitly animates
// At this point the layer.frame is 300, 300!

Done by CA in a background thread

CALayers do not need to have an animator proxy
Core Animation + Frame Animations

• Layers simply stretch their image contents
•How they stretch is based on various CALayer properties

Done by CA in a background thread

Animating in AppKit with Core Animation

•All changes in Core Animation animate without the need
for an animator proxy
layer.frame = newLayerFrame; // This will animate

• Layer-backed views in AppKit disable layer animations unless you
are using the proxy object
 [[view animator] setFrame:frame];

Turns on CALayer
animations

Allows the layer to
animate the frame

Redrawing Layer-Backed Views

• This property tells when AppKit should mark the layer
as needing display
■ NSViewLayerContentsRedrawDuringViewResize
■ NSViewLayerContentsRedrawOnSetNeedsDisplay
■ NSViewLayerContentsRedrawBeforeViewResize
■ NSViewLayerContentsRedrawNever

• These options only apply to layer-backed views

Lion introduced -[NSView layerContentsRedrawPolicy]

Lion introduced -[NSView layerContentsRedrawPolicy]
Redrawing Layer-Backed Views

• This property tells when AppKit should mark the layer
as needing display
■ NSViewLayerContentsRedrawDuringViewResize
■ NSViewLayerContentsRedrawOnSetNeedsDisplay
■ NSViewLayerContentsRedrawBeforeViewResize
■ NSViewLayerContentsRedrawNever

• These options only apply to layer-backed views

Redrawing Layer-Backed Views

• This is the default value for NSView!
• setNeedsDisplay is called whenever the frame changes
It is the most compatible with traditional drawRect: animations
NSRect frame = [view frame]; // size: 100, 100
frame.size = NSMakeSize(300, 300);
[[view animator] setFrame:frame];
// At this point the view.frame is still 100, 100

The proxy calls setFrame: on each step of the animation
drawRect: is then called on each step of the animation

NSViewLayerContentsRedrawDuringViewResize

Layer-Backed View
Traditional animations (even when layer-backed)

Tandem UnicycleTandem UnicycleTandem UnicycleTandem Unicycle

drawRect:

size = (100, 100)

drawRect:

size = (175, 175)

drawRect:

size = (250, 250)

drawRect:

size = (300, 300)

Done by AppKit on the main thread (non optimal)

Redrawing Layer-Backed Views

• This property tells when AppKit should mark the layer
as needing display
■ NSViewLayerContentsRedrawDuringViewResize
■ NSViewLayerContentsRedrawOnSetNeedsDisplay
■ NSViewLayerContentsRedrawBeforeViewResize
■ NSViewLayerContentsRedrawNever

Lion introduced -[NSView layerContentsRedrawPolicy]

NSViewLayerContentsRedrawOnSetNeedsDisplay
Redrawing Layer-Backed Views

•Doing: [view setNeedsDisplay:YES]
■ Means “invalidate the layer and lazily redraw”

•AppKit does not call setNeedsDisplay: when the frame changes!
•NOT the default value

■ Therefore, you MUST set it!

NSViewLayerContentsRedrawOnSetNeedsDisplay
Redrawing Layer-Backed Views

NSRect frame = [view frame]; // size: 100, 100
frame.size = NSMakeSize(300, 300);
[[view animator] setFrame:frame]; // Animates via Core Animation
// At this point the view frame is 300, 300!

Done by CA in a background thread

NSViewLayerContentsRedrawOnSetNeedsDisplay
Problems with This Approach

•Animation driven by Core Animation\
• drawRect: is NOT called on each step of the animation
• The contents are stretched

Tandem Unicycle

NSViewLayerContentsRedrawOnSetNeedsDisplay
Problems with This Approach

•Animation driven by Core Animation\
• drawRect: is NOT called on each step of the animation
• The contents are stretched

Tandem Unicycle

Text is stretched/blurry
and the image is stretched

Tandem Unicycle

NSViewLayerContentsRedrawOnSetNeedsDisplay
Solution to This Approach

• Be sure to use the proper autoresizingMask or auto layout
• Layout views in Interface Builder or runtime

Custom NSView:
backgroundColor and borderColor

Tandem Unicycle

NSViewLayerContentsRedrawOnSetNeedsDisplay
Solution to This Approach

• Be sure to use the proper autoresizingMask or auto layout
• Layout views in Interface Builder or runtime

Custom NSView:
backgroundColor and borderColor

NSTextField

Tandem Unicycle

NSViewLayerContentsRedrawOnSetNeedsDisplay
Solution to This Approach

• Be sure to use the proper autoresizingMask or auto layout
• Layout views in Interface Builder or runtime

Custom NSView:
backgroundColor and borderColor

NSTextField

NSImageView

NSViewLayerContentsRedrawOnSetNeedsDisplay
Compositing with Subviews

•Animation is smooth and not redrawing (just moving layers)
• Text does not change size

■ Just moves the position

• The individual image view stretches its contents properly

Tandem Unicycle Tandem UnicycleTandem Unicycle

Redrawing Layer-Backed Views

• This property tells when AppKit should mark the layer
as needing display
■ NSViewLayerContentsRedrawDuringViewResize
■ NSViewLayerContentsRedrawOnSetNeedsDisplay
■ NSViewLayerContentsRedrawBeforeViewResize
■ NSViewLayerContentsRedrawNever

Lion introduced -[NSView layerContentsRedrawPolicy]

NSViewLayerContentsRedrawBeforeViewResize
Redrawing Layer-Backed Views

• Redraws the layer once using the “final size” right before the frame
animation starts
• Thus uses that “final size” image for the contents while animating
• Contents look crisp at the end of the animation

■ However, they might look shrunken at the start of the animation

NSViewLayerContentsRedrawBeforeViewResize
Layer-Backed View

[[view animator] setFrame:(0,0,300,300)];

Tandem Unicycle

size = (100, 100)

drawRect:

size = (300, 300)

drawRect:

Tandem Unicycle

size = (100, 100)

drawRect:

size = (300, 300)

drawRect:

NSViewLayerContentsRedrawBeforeViewResize
Layer-Backed View

[[view animator] setFrame:(0,0,300,300)];

•At the animation start, the final size is redrawn for the layer contents

Tandem Unicycle

size = (100, 100)

drawRect:

size = (300, 300)

drawRect:

NSViewLayerContentsRedrawBeforeViewResize
Layer-Backed View

[[view animator] setFrame:(0,0,300,300)];

•At the animation start, the final size is redrawn for the layer contents

The layer contents will be
shrunken and down sampled.

This might look bad!

Tandem Unicycle

size = (100, 100)

drawRect:

size = (300, 300)

drawRect:

NSViewLayerContentsRedrawBeforeViewResize
Layer-Backed View

[[view animator] setFrame:(0,0,300,300)];

•At the animation start, the final size is redrawn for the layer contents

Tandem Unicycle

size = (100, 100)

drawRect:

size = (300, 300)

drawRect:

NSViewLayerContentsRedrawBeforeViewResize
Layer-Backed View

[[view animator] setFrame:(0,0,300,300)];

•At the animation start, the final size is redrawn for the layer contents

Lion introduced -[NSView layerContentsRedrawPolicy]
Redrawing Layer-Backed Views

• This property tells when AppKit should mark the layer
as needing display
■ NSViewLayerContentsRedrawDuringViewResize
■ NSViewLayerContentsRedrawOnSetNeedsDisplay
■ NSViewLayerContentsRedrawBeforeViewResize
■ NSViewLayerContentsRedrawNever

NSViewLayerContentsRedrawNever
Redrawing Layer-Backed Views

• Tells the view to never redraw the layer
• Calling [view setNeedsDisplay:YES] does nothing!
•Generally, this is only useful in limited cases
•Good for layer-hosted views

Layer-backed
Layer-Backed vs. Layer-Hosted

• The layer behind the view is created and managed by AppKit
•AppKit creates and “owns” the layer and will control most properties

Hello World! CALayer

Layer-hosted
Layer-Backed vs. Layer-Hosted

• The layer behind the view is assigned by the developer
•Use -[NSView setLayer:]
•AppKit keeps a “hands-off” approach to the layer

MyCustomLayer

Contents updating
Animating

Great! Animations Are Smooth
…Now memory usage is high!

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle Tandem Unicycle

Tandem Unicycle

Great! Animations Are Smooth
…Now memory usage is high!

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle Tandem Unicycle

Tandem Unicycle
Each CALayer has
its own backing

image filled in by
-drawRect:

Do not use -drawRect:!
Improving Layer-Backed Memory Use

- (void)drawRect:(NSRect)dirtyRect {
 // Fill the contents
 [[NSColor lightGrayColor] set];
 NSRectFill(self.bounds);
 // Draw the border
 [[NSColor grayColor] set];
 NSFrameRect(self.bounds);
 // Draw the title
 [@"Tandem Unicycle" drawInRect:titleRect withAttributes:...];
 // Draw the image
 [image drawInRect:imageRect fromRect:.. operation:.. fraction:..];
}

Techniques to save memory
Improving Layer-Backed Memory Use

•Use CALayer properties
backgroundColor
borderColor

•Directly set the layer.contents (to an image)
■ Share the same contents in multiple views
■ Stretch small images larger

Understanding CALayer Properties
Improving Layer-Backed Memory Use

CALayer *layer = [CALayer layer];
layer.backgroundColor = NSColor.whiteColor.CGColor;
layer.borderColor = NSColor.redColor.CGColor;
layer.borderWidth = 2.0;

Understanding CALayer Properties
Improving Layer-Backed Memory Use

CALayer *layer = [CALayer layer];
layer.backgroundColor = NSColor.whiteColor.CGColor;
layer.borderColor = NSColor.redColor.CGColor;
layer.borderWidth = 2.0;

Understanding CALayer Properties
Improving Layer-Backed Memory Use

CALayer *layer = [CALayer layer];
layer.backgroundColor = NSColor.whiteColor.CGColor;
layer.borderColor = NSColor.redColor.CGColor;
layer.borderWidth = 2.0;

CGColorRef

Understanding CALayer Properties
Improving Layer-Backed Memory Use

CALayer *layer = [CALayer layer];
layer.backgroundColor = NSColor.whiteColor.CGColor;
layer.borderColor = NSColor.redColor.CGColor;
layer.borderWidth = 2.0;
layer.contents = [NSImage imageNamed:@"Unicycle"];

Traditional Layer Updating Flow Chart

CALayer needs to draw

CGContextRef backing store made

-drawLayer:inContext:

-[NSView drawRect:]

layer.contents

then calls AppKit’s

AppKit then calls

CGContextRef backing store made

-drawLayer:inContext:

-[NSView drawRect:]

layer.contents

then calls AppKit’s

AppKit then calls

Mountain Lion Layer Updating
Flow Chart

CALayer needs to draw

CA call’s AppKit’s -displayLayer:

-[NSView updateLayer]

layer.contents

Yes

AppKit then calls

No

-[NSView wantsUpdateLayer]?

Use -wantsUpdateLayer and -updateLayer
Improving Layer-Backed Memory Use

- (BOOL)wantsUpdateLayer {
 return YES;
}
- (void)updateLayer {
 self.layer.backgroundColor = NSColor.whiteColor.CGColor;
 self.layer.borderColor = NSColor.redColor.CGColor;
}

Alternative to -drawRect:
Improving Layer-Backed Memory Use

- (void)updateLayer {
 self.layer.backgroundColor = NSColor.whiteColor.CGColor;
 self.layer.borderColor = NSColor.redColor.CGColor;
 self.layer.contents = [NSImage imageNamed:@"Unicycle"];
}

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle Tandem Unicycle

Tandem Unicycle

Share the same layer.contents in multiple views
Improving Layer-Backed Memory Use

[NSImage imageNamed:@"Unicycle"]

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle

Tandem Unicycle Tandem Unicycle

Tandem Unicycle

Share the same layer.contents in multiple views
Improving Layer-Backed Memory Use

layer.backgroundColor =
 NSColor.grayColor.CGColor

Nine part background image such as a button
Contents Updating in -updateLayer

•Goal is a button that can properly stretch when resized

Start with a background view
Contents Updating in -updateLayer

• Background stretchable image
• Image is to be shared directly as the contents among all buttons

- (void)updateLayer {
 self.layer.contents = [NSImage imageNamed:]; // Pseudo-code
 self.layer.contentsCenter = CGRectMake(0.5, 0.5, 1e-5, 1e-5);
}

Start with a background view
Contents Updating in -updateLayer

- (void)updateLayer {
 self.layer.contents = [NSImage imageNamed:]; // Pseudo-code
 self.layer.contentsCenter = CGRectMake(0.5, 0.5, 1e-5, 1e-5);
}

Start with a background view
Contents Updating in -updateLayer

Note that this image is
not the size of the

view’s bounds!

- (void)updateLayer {
 self.layer.contents = [NSImage imageNamed:]; // Pseudo-code
 self.layer.contentsCenter = CGRectMake(0.5, 0.5, 1e-5, 1e-5);
}

Start with a background view
Contents Updating in -updateLayer

Note that this image is
not the size of the

view’s bounds!

This stretches the middle pixel.
See CALayer.h for more information.

- (void)layout {
 if (_textField == nil) {
 _textField = [[NSTextField alloc] initWithFrame:frame];
 _textField.title = @”Button”;
 } else {
 _textField.frame = // Update the location
 }
 [super layout];
}

Start with a background view
Contents Updating in -updateLayer

- (void)layout {
 if (_textField == nil) {
 _textField = [[NSTextField alloc] initWithFrame:frame];
 _textField.title = @”Button”;
 } else {
 _textField.frame = // Update the location
 }
 [super layout];
}

Start with a background view
Contents Updating in -updateLayer

Works when using auto layout
and/or using layer backing

Dealing with multiple states (a “pressed” state)
Contents Updating in -updateLayer

- (void)updateLayer {
 if (self.pressed) {
 self.layer.contents = [NSImage imageNamed:];
 } else {
 self.layer.contents = [NSImage imageNamed:];
 }
 self.layer.contentsCenter = CGRectMake(0.5, 0.5, 1e-5, 1e-5);
}

Dealing with multiple states (a “pressed” state)
Contents Updating in -updateLayer

- (void)updateLayer {
 if (self.pressed) {
 self.layer.contents = [NSImage imageNamed:];
 } else {
 self.layer.contents = [NSImage imageNamed:];
 }
 self.layer.contentsCenter = CGRectMake(0.5, 0.5, 1e-5, 1e-5);
}

- (void)mouseDown:(NSEvent *)event {
 self.pressed = YES;
 [self setNeedsDisplay:YES];
}

- (void)setTitle:(NSString *)title {
 _textField.title = title;
 [self setNeedsLayout:YES];
}

Update the title correctly
Contents Updating in -updateLayer

- (void)setTitle:(NSString *)title {
 _textField.title = title;
 [self setNeedsLayout:YES];
}

Update the title correctly
Contents Updating in -updateLayer

The title is in a separate
view (NSTextField) that

redraws itself

- (void)setTitle:(NSString *)title {
 _textField.title = title;
 [self setNeedsLayout:YES];
}

Update the title correctly
Contents Updating in -updateLayer

The title is in a separate
view (NSTextField) that

redraws itself

Do NOT call setNeedsDisplay:—the
background does not need to redraw!

However, the textField location needs
updating and re-layout

Synchronized subview animations
Animating

Synchronized Subview Animations
Consider this…

Synchronized Subview Animations
Consider this…

Parent View

Synchronized Subview Animations
Consider this…

Child View

Parent View

Consider this…
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

Consider this…
Synchronized Subview Animations

• The parent view sees itself at its final size
• The child view is moved to the final layout position

Consider this…
Synchronized Subview Animations

• The parent view sees itself at its final size
• The child view is moved to the final layout position

Consider this…
Synchronized Subview Animations

• The parent view sees itself at its final size
• The child view is moved to the final layout position

What we really want is this
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

What we really want is this
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

Synchronized Subview Animations

• The NSAnimationContext allows grouping of animations
•Allows one to control animation properties for that group

@interface NSAnimationContext : NSObject { }

+ (void)beginGrouping;
+ (void)endGrouping;

+ (NSAnimationContext *)currentContext;

@property NSTimeInterval duration;
@property(retain) CAMediaTimingFunction *timingFunction;

@end

New to Mountain Lion allowsImplicitAnimations
Synchronized Subview Animations

• Controls implicit layer animations

@interface NSAnimationContext : NSObject { }
...

@property BOOL allowsImplicitAnimation NS_AVAILABLE_MAC(10_8);
...
@end

New to Mountain Lion allowsImplicitAnimations
Synchronized Subview Animations

•Defaults to NO
•When allowsImplicitAnimation == YES

■ All view/layer animatable properties will animate
■ There is no need to use the -animator proxy
■ Allows nesting of animations and side effect animations

■ Such as layout that is done in setFrame:
■ Similar to [UIView setAnimationsEnabled:YES]

•Only applies to layer-backed (or layer-hosted) views

allowsImplicitAnimations is automatically set
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

allowsImplicitAnimations is automatically set
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

 context.allowsImplicitAnimation = YES;
 view.frame = 500, 500;

 context.allowsImplicitAnimation = NO;

allowsImplicitAnimations is automatically set
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

allowsImplicitAnimations is automatically set
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

context.allowsImplicitAnimation = YES;
view.frame = 500, 500;
// implicitly -layout is called
subview.frame = // centered frame

context.allowsImplicitAnimation = NO;

Keeping frame animations in sync
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

Keeping frame animations in sync
Synchronized Subview Animations

[[parentView animator] setFrame:NSMakeRect(0, 0, 500, 500)];

Text and font smoothing
Best Practices

Also known as subpixel anti-aliasing
LCD Font Smoothing

Drawing text in a layer
LCD Font Smoothing

• LCD font smoothing requires an opaque area to composite with
•Normal AppKit drawing composites into one big image

Drawing text in a layer
LCD Font Smoothing

• LCD font smoothing requires an opaque area to composite with
•Normal AppKit drawing composites into one big image

Drawing text in a layer
LCD Font Smoothing

• LCD font smoothing requires an opaque area to composite with
•Normal AppKit drawing composites into one big image

Drawing text in a layer
LCD Font Smoothing

• Layers draw into their own mini-images which are then
composited together

Opaque background layer Opaque background layer

Text drawn in non-opaque layer
(pretend the white part is clear)

\

Text drawn in non-opaque layer looks bad
LCD Font Smoothing

• Text appears bolder than it should
■ (Opaque white background shown for clarity)

Font smoothing
LCD Font Smoothing

• Text looks better with font smoothing turned off
■ (Opaque white background shown for clarity)

Font smoothing may be turned off by AppKit
LCD Font Smoothing

•On when the view says YES to isOpaque

[NSView -isOpaque] = NO [NSView -isOpaque] = YES

Font smoothing may be turned off by AppKit
LCD Font Smoothing

•Manually turn it on when you draw
text in a layer in a non-opaque view

[NSView -isOpaque] = NO

Font smoothing may be turned off by AppKit
LCD Font Smoothing

•Manually turn it on when you draw
text in a layer in a non-opaque view

CGContextRef ctx =
NSGraphicsContext.currentContext.graphicsPort;
CGContextSetShouldSmoothFonts(ctx, true);
[@"Tandem" drawInRect: ...];

[NSView -isOpaque] = NO

NSTextField implements LCD font smoothing
Ideally Use NSTextField!

•Works even when in a non-opaque layer
•Use NSTextField instead of manually drawing text
• Caveat: Requires at least one opaque ancestor layer

Focus rings
Best Practices

Usually done in -drawRect:
How You Typically Draw Focus Rings

- (void)drawRect:(NSRect)dirtyRect {
 // Normal drawing code here ...

 // Draw the focus ring
 if (self.window.firstResponder == self) {
 NSSetFocusRingStyle(NSFocusRingOnly);
 NSRectFill(self.bounds);
 }
}

•Note the focus ring draws slightly outside
the view’s bounds!

Focus rings look wrong!
Focus Rings and Layers

• The focus ring is captured as part
of the layer’s contents
• The layer clips to its bounds

For regular views or layer-backed views
Focus Rings on Lion

•Use the Lion API
- (NSRect)focusRingMaskBounds;
- (void)drawFocusRingMask;
- (void)noteFocusRingMaskChanged;

focusRingMaskBounds
Focus Rings

• This is for the enclosing shape of the focus ring
•Only called if your view has focus (is the firstResponder)

- (NSRect)focusRingMaskBounds {
 return self.bounds;
}

• Return an empty rect to not have a focus ring

drawFocusRingMask
Focus Rings

•Draw your content; the focus ring will automatically appear around it

- (NSRect)drawFocusRingMask {
 NSBezierPath *strangeShape = ...;
 [strangeShape fill]; // Focus ring appears around this shape
}

noteFocusRingMaskChanged
Focus Rings

• Tell AppKit when your focus ring has changed
• To invalidate the focus ring shape, call
 [self noteFocusRingMaskChanged]

How the API works when layer-backed
Focus Rings

• The focus ring is drawn into a separate layer

•AppKit adds the layer above the focused view

More Details and Tips

CALayer properties that AppKit always manages
Layer-Backed and Layer-Hosted

geometryFlipped, bounds, frame (implied), position, anchorPoint, transform,
shadow[Color, Offset, Opacity, Radius], hidden, filters, and
compositingFilter

Hello World!

CALayer properties that AppKit always manages
Layer-Backed and Layer-Hosted

geometryFlipped, bounds, frame (implied), position, anchorPoint, transform,
shadow[Color, Offset, Opacity, Radius], hidden, filters, and
compositingFilter

Hello World!

geometryFlipped

Prior to Mountain Lion
Layers and Coordinates

• Layer coordinates where not equal to view coordinates
•AppKit would vary the anchorPoint
isFlipped = YES, then the anchorPoint is (0, 1)
isFlipped = NO, then the anchorPoint is (0, 0)

• You previously used -convertPointToLayer:
and -convertPointFromLayer:
-convertPointToLayer: flips the y location based on -isFlipped

• Changing the geometryFlipped property was still not recommended

On Mountain Lion and above
Layers and Coordinates

• Layer coordinates now equal view coordinates!
•AppKit does not change the anchorPoint

■ The anchorPoint is always (0, 0)

•AppKit does this by managing geometryFlipped
• You do not have to do anything for this!

Understanding CALayer’s geometryFlipped
Layers and Coordinates

geometryFlipped affects the parent layer and all child sublayers

Plain CALayer with
geometryFlipped = NO

(0,0) origin is here with
anchorPoint = (0,0)

Understanding CALayer’s geometryFlipped
Layers and Coordinates

geometryFlipped affects the parent layer and all child sublayers

Same CALayer with
geometryFlipped = YES

(0,0) origin is here with
anchorPoint = (0,0)

On Mountain Lion
Layers and Coordinates

• Layer coordinates equal view coordinates
• This is accomplished by AppKit managing -[CALayer geometryFlipped]

NSView isFlipped = YES

Backing layer’s
geometryFlipped = YES

(0,0) origin is here

On Mountain Lion
Layers and Coordinates

• Layer coordinates equal view coordinates
• This is accomplished by AppKit managing -[CALayer geometryFlipped]

NSView isFlipped = NO

Backing layer’s
geometryFlipped = YES

(0,0) origin is here

Use a layer-backed NSView and not a direct CALayer
Supporting High Resolution

•Avoid using CALayers directly (layer-hosting)
■ No mouse or tracking support
■ No events or responder chain support
■ No automatic High Resolution support

• If you must use a direct CALayer, use the delegate method
- (BOOL)layer:(CALayer *)layer
 shouldInheritContentsScale:(CGFloat)newScale
 fromWindow:(NSWindow *)window

(Instead of -updateLayer)
You can still use -drawRect:

• Sometimes it isn’t possible to refactor your views to use subviews
•Animating views works fine if the frame size never changes

■ Such as custom buttons or small custom views

• Implementing drawRect: and updateLayer allows you to support
10.7 and 10.8 when layer-backed

-drawRect: is still used for printing
Printing and -drawRect:

•Most controls and user interface
views don't need to print
• Standard AppKit controls still
support -drawRect: and will
always print correctly
■ NSTextView
■ NSImageView
■ …and others

Layer-backing does not use layers for each cell
Legacy Cell Based Controls

• Cell based NSTableView
■ Cells can not be layer-backed

•Use a View-Based TableView
■ See last year’s talk
■ Each view can be layer-backed

Layer-backing does not use layers for each cell
Legacy Cell Based Controls

•NSMatrix
■ Use regular views instead
■ Radio button groups interact together
■ Consider using NSCollectionView

•NSForm
■ Use NSTextFields

Subclassing Standard AppKit Controls

•Most AppKit controls implement -wantsUpdateLayer and return YES
■ They add subviews and update layer contents with -updateLayer:

•However, -wantsUpdateLayer returns NO if someone subclasses
and overrides any AppKit drawing methods
■ NSView’s -drawRect:, NSCell’s drawWithFrame:inView:,
drawInteriorWithFrameInView:, drawTitleWithFrame:inView:, etc.

Subclassing Standard AppKit Controls

• To extend an existing control
■ Implement -wantsUpdateLayer and return YES
■ Add extra subviews where necessary in -layout
■ Use the existing position methods to customize where AppKit added
subviews are located
■ On NSCell: titleRectForBounds:, imageRectForBounds:, etc.

Conclusion

Important stuff
Take Away Slide

•Use layerContentsRedrawPolicy = NSViewLayerContentsRedrawOnSetNeedsDisplay
•Use subviews whenever possible
•When possible use -wantsUpdateLayer and -updateLayer

■ Directly set the layer.contents and layer.contentsCenter

•Use NSTextField for adding text to get proper font smoothing
•Use the -animator proxy to start animations
•Use the Lion focus ring drawing API

More Information

Jake Behrens
UI Frameworks Evangelist
behrens@apple.com

Documentation
Core Animation Programming Guide
http://developer.apple.com/

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Advanced Tips and Tricks for High Resolution on OS X Mission
Friday 10:15AM

Labs

Cocoa & Layer-Backed Views on OS X Lab Essentials Lab B
Wednesday 2:00PM

 OS X Gestures and Cocoa Lab Essentials Lab B
Thursday 2:00PM

Cocoa and XPC Lab Essentials Lab A
Friday 10:15AM

High Resolution on OS X Lab Essentials Lab B
Wednesday 11:30AM

The last 3 slides
after the logo are
intentionally left
blank for all
presentations.

The last 3 slides
after the logo are
intentionally left
blank for all
presentations.

The last 3 slides
after the logo are
intentionally left
blank for all
presentations.

