
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

for OS X and iOS

Session 228
Peter Ammon
AppKit Engineer

Best Practices for
Mastering Auto Layout

Make your layouts
simpler to write

simpler to modify
easier to understand

Auto Layout

Auto Layout

Auto Layout

Auto Layout

Identical APIs!

Auto Layout

Identical APIs!

Auto Layout

Auto Layout

“View”

Auto Layout

“View”
NSView UIView

NSLayoutConstraint

•One new class—NSLayoutConstraint

NSLayoutConstraint

•One new class—NSLayoutConstraint
• Constraints express geometric properties of views

NSLayoutConstraint

•One new class—NSLayoutConstraint
• Constraints express geometric properties of views

NSLayoutConstraint

foo foo.width = 120

•One new class—NSLayoutConstraint
• Constraints express geometric properties of views

• Constraints also express geometric relationships between views

NSLayoutConstraint

foo foo.width = 120

•One new class—NSLayoutConstraint
• Constraints express geometric properties of views

• Constraints also express geometric relationships between views

NSLayoutConstraint

foo foo.width = 120

foo foo.width = bar.width

bar

•One new class—NSLayoutConstraint
• Constraints express geometric properties of views

• Constraints also express geometric relationships between views

NSLayoutConstraint

foo foo.width = 120

foo foo.width = bar.width

bar

• Relationships have a coefficient and a constant

•One new class—NSLayoutConstraint
• Constraints express geometric properties of views

• Constraints also express geometric relationships between views

NSLayoutConstraint

foo foo.width = 120

foo foo.width = bar.width

bar

• Relationships have a coefficient and a constant
foo.width = bar.width * 2 - 20

NSLayoutConstraint

NSLayoutConstraint

• Constraints can be equalities or inequalities

NSLayoutConstraint

• Constraints can be equalities or inequalities
foo foo.width >= 120

NSLayoutConstraint

• Constraints can be equalities or inequalities
foo foo.width >= 120

• Constraints have priorities

NSLayoutConstraint

• Constraints can be equalities or inequalities
foo foo.width >= 120

• Constraints have priorities
foo foo.width = 120 with priority 500

foo.width = 75 with priority 1000

NSLayoutConstraint

• Constraints can be created three ways
■ Interface Builder
■ Visual format language
■ Base API

• Prefer this order

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Thinking in Constraints

•Auto Layout can be used like springs and struts
• But you get the most benefits from a shift in thinking
• Let your layouts becomes declarative

Thinking in Constraints

Thinking in Constraints

Q W E R T Y

Thinking in Constraints

Q W E R T Y
padding

Thinking in Constraints

Q W E R T Y
padding

containerWidth

Thinking in Constraints

Q W E R T Y

Springs and Struts

padding

containerWidth

Thinking in Constraints

Q W E R T Y

Springs and Struts

padding

keyWidth = containerWidth / keyCount
 - padding * (keyCount + 1) / keyCount

containerWidth

Thinking in Constraints

Q W E R T Y

Springs and Struts

padding

keyOffset = padding +
 keyIndex * (keyWidth + padding)

keyWidth = containerWidth / keyCount
 - padding * (keyCount + 1) / keyCount

containerWidth

Springs and Struts
Thinking in Constraints

Q W E R T Y

Relationships

Thinking in Constraints
Auto Layout

Q W E R T Y

Relationships

Thinking in Constraints
Auto Layout

Q W E R T Y

Relationships

Thinking in Constraints
Auto Layout

Q W E R T Y

Q.width = container.width / keyCount
 - padding * (keyCount + 1) / keyCount

Relationships

Thinking in Constraints
Auto Layout

Q W E R T Y

Q.width = container.width / keyCount
 - padding * (keyCount + 1) / keyCount

Relationships

Thinking in Constraints
Auto Layout

Q W E R T Y

Q.width = container.width / keyCount
 - padding * (keyCount + 1) / keyCount

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

Relationships

Thinking in Constraints
Auto Layout

Q W E R T Y

Q.width = container.width / keyCount
 - padding * (keyCount + 1) / keyCount

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

Relationships

Thinking in Constraints

Q W E R T Y

Auto Layout

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

Thinking in Constraints

Q W E R T Y

Auto Layout

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

=

Thinking in Constraints

Q W E R T Y

Auto Layout

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

=
Q.width = W.width
W.width = E.width
...

Thinking in Constraints

Q W E R T Y

Auto Layout

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

=
Q.width = W.width
W.width = E.width
...

Thinking in Constraints

Q W E R T Y

Auto Layout

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

=
Q.width = W.width
W.width = E.width
...

container.maxX = Y.maxX + padding

Demo

• Layout becomes distributed
•Decompose sophisticated layouts into components
• Each component contributes the constraints it cares about
• Layout becomes “owned”

Thinking in Constraints

• Layout becomes distributed
•Decompose sophisticated layouts into components
• Each component contributes the constraints it cares about
• Layout becomes “owned”

Thinking in Constraints

Q

• Layout becomes distributed
•Decompose sophisticated layouts into components
• Each component contributes the constraints it cares about
• Layout becomes “owned”

Thinking in Constraints

Q
I’m square!

• Layout becomes distributed
•Decompose sophisticated layouts into components
• Each component contributes the constraints it cares about
• Layout becomes “owned”

Thinking in Constraints

Q
I’m square!

• Layout becomes distributed
•Decompose sophisticated layouts into components
• Each component contributes the constraints it cares about
• Layout becomes “owned”

Thinking in Constraints

Q
I’m square!Be centered

vertically in me!
Be the same

height as me!

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

1. Plan your attack

•A partial conversion lets you use Auto Layout just where you need it
■ Some compatibility issues to be aware of

•A full conversion will pay major dividends

Migrating from Springs and Struts

2. Turn on Auto Layout in your nibs
Migrating from Springs and Struts

2. Turn on Auto Layout in your nibs
Migrating from Springs and Struts

2. Turn on Auto Layout in your nibs
Migrating from Springs and Struts

2. Turn on Auto Layout in your nibs
Migrating from Springs and Struts

2. Turn on Auto Layout in your nibs

• Create the constraints
you want in IB
• IB will create constraints that
reflect your existing layout
•Add to or modify them

Migrating from Springs and Struts

3. Turn off autoresizing mask translation for every view
you create programmatically

[view setTranslatesAutoresizingMaskIntoConstraints:NO]

• If you forget, you’ll get unsatisfiable constraint warnings quickly

Migrating from Springs and Struts

4. Look for places where you perform layout
Migrating from Springs and Struts

4. Look for places where you perform layout

- (void)layoutSubviews {…

Migrating from Springs and Struts

4. Look for places where you perform layout

- (void)layoutSubviews {…

Migrating from Springs and Struts

[view setFrame:rect]
[view setFrameSize:size]
[view setFrameOrigin:point]

4. Look for places where you perform layout

- (void)layoutSubviews {…

Migrating from Springs and Struts

[view setFrame:rect]
[view setFrameSize:size]
[view setFrameOrigin:point]

They all have to go!

4. Look for places where you perform layout

- (void)layoutSubviews {…

Migrating from Springs and Struts

[view setFrame:rect]
[view setFrameSize:size]
[view setFrameOrigin:point]

They all have to go!
(But what do I replace them with?)

Migrating from Springs and Struts

Migrating from Springs and Struts

• Stop and think
■ Don’t try to merely replicate what the existing code is doing
■ Think about the underlying layout

Migrating from Springs and Struts

• Stop and think
■ Don’t try to merely replicate what the existing code is doing
■ Think about the underlying layout

• Try replacing it with nothing!
■ Are you working around a limitation of springs and struts?
■ Does the code implement a relationship?

Migrating from Springs and Struts

• Stop and think
■ Don’t try to merely replicate what the existing code is doing
■ Think about the underlying layout

• Try replacing it with nothing!
■ Are you working around a limitation of springs and struts?
■ Does the code implement a relationship?

•Otherwise, add some constraints

Migrating from Springs and Struts

Migrating from Springs and Struts

• Think about which component should own each constraint

Migrating from Springs and Struts

• Think about which component should own each constraint
• Consider centralizing it in updateConstraints

5. Test it
Migrating from Springs and Struts

5. Test it

• Verify the layout is correct
• Fix issues you may have

Migrating from Springs and Struts

5. Test it

• Verify the layout is correct
• Fix issues you may have

Migrating from Springs and Struts

•Wait, what?

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

• Constraints that provide insufficient information
■ Ambiguity

• Constraints that provide conflicting information
■ Unsatisfiability

• Constraints that are satisfied in unexpected ways

What Can Go Wrong?

• Interface Builder prevents unsatisfiable or ambiguous constraints
• Rely on Interface Builder as much as possible
• You can reference constraints with outlets

What Can Go Wrong?

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Ambiguity

Q W E R T Y

•Ambiguity means multiple layouts satisfy all constraints equally well

Ambiguity

Q W E R T Y

•Ambiguity means multiple layouts satisfy all constraints equally well

Ambiguity

Q W E R T Y

•Ambiguity means multiple layouts satisfy all constraints equally well

Q W
E

R

T

Y

Ambiguity

Ambiguity

•Ambiguity means multiple layouts satisfy all constraints equally well

Ambiguity

•Ambiguity means multiple layouts satisfy all constraints equally well
•A common symptom is that your views will cycle between those layouts

Ambiguity

•Ambiguity means multiple layouts satisfy all constraints equally well
•A common symptom is that your views will cycle between those layouts
• Views “jump” or disappear entirely (jump to zero size)

Ambiguity

•Usually it means you need more constraints

Ambiguity

•Usually it means you need more constraints
• Each view needs four properties (two in each dimension)

■ MinX, Width, MinY, Height
■ MinX, MaxX, CenterY, MaxY
■ CenterX, Width, Baseline, Height
■ etc.

Ambiguity

•Usually it means you need more constraints
• Each view needs four properties (two in each dimension)

■ MinX, Width, MinY, Height
■ MinX, MaxX, CenterY, MaxY
■ CenterX, Width, Baseline, Height
■ etc.

• Inequalities by themselves are usually not enough
■ view.width ≥ 20 – is it 20? 200? 2 billion?
■ Inequalities don’t care how much larger or smaller you are
■ But equalities care

Ambiguity

Ambiguity

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

[view(24@500) [view(>=30@500)]

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It can’t satisfy both
• They have equal priorities
•Ambiguity!

[view(24@500) [view(>=30@500)]

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

[view(24@500) [view(>=30@525)]

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It still can’t satisfy both

[view(24@500) [view(>=30@525)]

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It still can’t satisfy both
• The inequality has a higher priority, so it will be satisfied first

[view(24@500) [view(>=30@525)]

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It still can’t satisfy both
• The inequality has a higher priority, so it will be satisfied first
• The equality will be satisfied as closely as possible

[view(24@500) [view(>=30@525)]

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It still can’t satisfy both
• The inequality has a higher priority, so it will be satisfied first
• The equality will be satisfied as closely as possible
•No ambiguity!

[view(24@500) [view(>=30@525)]

• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It still can’t satisfy both
• The inequality has a higher priority, so it will be satisfied first
• The equality will be satisfied as closely as possible
•No ambiguity!
• view.width = 30

[view(24@500) [view(>=30@525)]

• Is my layout ambiguous?
[view hasAmbiguousLayout]

•What is ambiguous about it?
[view exerciseAmbiguityInLayout]

[window visualizeConstraints: @[]]

Ambiguity

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Unsatisfiability

•Unsatisfiability means no layout can satisfy all required constraints

Unsatisfiability

•Unsatisfiability means no layout can satisfy all required constraints
•Only required constraints can contribute to unsatisfiability

■ Constraints are required by default!

Unsatisfiability

•Unsatisfiability means no layout can satisfy all required constraints
•Only required constraints can contribute to unsatisfiability

■ Constraints are required by default!

• Sizes are implicitly required to be at least zero

Unsatisfiability

•Unsatisfiability is immediately reported
•Ambiguity can be temporarily tolerated
• Remove constraints as soon as they might become invalid
• Create valid constraints again in updateConstraints

Unsatisfiability

Help, I Don’t See Anything!

Help, I Don’t See Anything!

•Where are your views?
■ Check their -frame

Help, I Don’t See Anything!

•Where are your views?
■ Check their -frame

•What constraints are making them that size?
■ Output [view constraintsAffectingLayoutForOrientation/Axis:
 NSLayoutConstraintOrientationHorizontal/Vertical]

Help, I Don’t See Anything!

•Where are your views?
■ Check their -frame

•What constraints are making them that size?
■ Output [view constraintsAffectingLayoutForOrientation/Axis:
 NSLayoutConstraintOrientationHorizontal/Vertical] 0 or 1

Help, I Don’t See Anything!

•Where are your views?
■ Check their -frame

•What constraints are making them that size?
■ Output [view constraintsAffectingLayoutForOrientation/Axis:
 NSLayoutConstraintOrientationHorizontal/Vertical]

• Is the layout ambiguous?
■ Call [view hasAmbiguousLayout]
■ Call [view exerciseAmbiguityInLayout]

0 or 1

Help, I Don’t See Anything!

• Some layouts are only satisfiable at 0 size!

Help, I Don’t See Anything!

• Some layouts are only satisfiable at 0 size!

foo.width = bar.width * 2

bar.width = foo.width * 3

Help, I Don’t See Anything!

• Some layouts are only satisfiable at 0 size!

foo.width = bar.width * 2

bar.width = foo.width * 3
foo.width = bar.width = 0

Demo

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Anatomy of an Unsatisfiability Log

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",
 "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>"
)

Will attempt to recover by breaking constraint
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170 (Names: LetterView-'H':0x10423c390)>

Set the NSUserDefault
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have
-[NSWindow visualizeConstraints:] automatically called when this happens.
And/or, break on objc_exception_throw to catch this in the debugger.

Anatomy of an Unsatisfiability Log

 "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11 (Names: LetterView-'H':0x10423c390)>",

Anatomy of an Unsatisfiability Log

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

Constraint’s address

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

Map from identifier to view

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

Map from identifier to view

• View identifiers make logs easier to read

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

Map from identifier to view

• View identifiers make logs easier to read

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

Map from identifier to view

• View identifiers make logs easier to read

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

View’s identifier

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

View’s identifier

Attribute

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

View’s identifier

Attribute

Relation

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

View’s identifier

Attribute

Relation

Other View

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

View’s identifier

Attribute

Relation

Other View Constant

NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390)

Anatomy of an Unsatisfiability Log

View’s identifier

Attribute

Relation

Other View Constant

“The letter view’s center should be 11 points to the left of the pile’s center”

Anatomy of an Unsatisfiability Log

Anatomy of an Unsatisfiability Log

• Logs use the visual format syntax when possible

Anatomy of an Unsatisfiability Log

• Logs use the visual format syntax when possible

H:[NSView:0x102b5b3a0(250)]

Anatomy of an Unsatisfiability Log

• Logs use the visual format syntax when possible

H:[NSView:0x102b5b3a0(250)]
“The view’s width is 250”

Anatomy of an Unsatisfiability Log

• Logs use the visual format syntax when possible

H:[NSView:0x102b5b3a0(250)]

H:[NSView:0x10480cd00]-(>=50)-[NSView:0x10481e9a0]>

“The view’s width is 250”

Anatomy of an Unsatisfiability Log

• Logs use the visual format syntax when possible

H:[NSView:0x102b5b3a0(250)]

H:[NSView:0x10480cd00]-(>=50)-[NSView:0x10481e9a0]>

“The view’s width is 250”

“This view is at least 50 points
to the right of that view”

Anatomy of an Unsatisfiability Log

Anatomy of an Unsatisfiability Log

<NSAutoresizingMaskLayoutConstraint:0x10590a360 h=-&- v=&--
V:[NSView:0x102e2af20(50)]>

Anatomy of an Unsatisfiability Log

<NSAutoresizingMaskLayoutConstraint:0x10590a360 h=-&- v=&--
V:[NSView:0x102e2af20(50)]>

• translatesAutoresizingMaskIntoConstraints is on for this view

Anatomy of an Unsatisfiability Log

<NSAutoresizingMaskLayoutConstraint:0x10590a360 h=-&- v=&--
V:[NSView:0x102e2af20(50)]>

• translatesAutoresizingMaskIntoConstraints is on for this view
• That produces more than one constraint

Autoresizing Mask

Anatomy of an Unsatisfiability Log

<NSAutoresizingMaskLayoutConstraint:0x10590a360 h=-&- v=&--
V:[NSView:0x102e2af20(50)]>

• translatesAutoresizingMaskIntoConstraints is on for this view
• That produces more than one constraint

Autoresizing Mask

Anatomy of an Unsatisfiability Log

<NSAutoresizingMaskLayoutConstraint:0x10590a360 h=-&- v=&--
V:[NSView:0x102e2af20(50)]>

• translatesAutoresizingMaskIntoConstraints is on for this view
• That produces more than one constraint

Autoresizing Mask
“This view’s height is 50.”

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

Autoresizing constraint

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

Autoresizing constraint Autoresizing mask

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

Horizontal

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

Horizontal

200 points between

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

Horizontal

200 points between this view’s left edge

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

Horizontal

200 points between this view’s left edgeSuperview

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

Superview’s description

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

 H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0)>

“This view’s left edge is 200 points
from that of its superview, which

is a FlippedView”

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint based-layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Animation

Animation

•How do you animate layout changes?

Animation

•How do you animate layout changes?
•Apply the new layout and let CoreAnimation handle animation

■ Very fast
■ May transiently appear to violate constraints

Animation

•How do you animate layout changes?
•Apply the new layout and let CoreAnimation handle animation

■ Very fast
■ May transiently appear to violate constraints

•Animate constraints directly
■ Pretty fast
■ Produces a correct layout at every frame

Animation

Animation

Animation

≥20 ≥20100@250

Animation

≥20 ≥20100@250

Animation

≥20 ≥20100@250

Animation

≥20 ≥20100@250

Auto Layout

Animation

≥20 ≥20100@250

Auto LayoutCoreAnimation

Animation with CoreAnimation

Animation with CoreAnimation

•Adjust your constraints
•Within an animation block, call
[view layoutIfNeeded] on iOS
[view layoutSubtreeIfNeeded] on OS X

Animation with CoreAnimation

•NSView
[NSAnimationContext runAnimationGroup:^(NSAnimationContext *context) {
 [context setDuration:0.5];
 [context setAllowsImplicitAnimation:YES];
 [view layoutSubtreeIfNeeded];
} completionHandler:nil]

•UIView
[UIView animateWithDuration:0.5 animations:^{
 [view layoutIfNeeded];
}]

Animation with NSLayoutConstraint

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts
•Use an NSTimer

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts
•Use an NSTimer constraint.constant += 10

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts
•Use an NSTimer
•Use the animator proxy

constraint.constant += 10

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts
•Use an NSTimer
•Use the animator proxy

constraint.constant += 10

constraint.animator.constant = 10

Animation with NSLayoutConstraint

@interface NSLayoutConstraint
 @property (readonly) NSLayoutAttribute firstAttribute;
 @property (readonly) CGFloat multiplier;
 @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts
•Use an NSTimer
•Use the animator proxy

constraint.constant += 10

constraint.animator.constant = 10

OS X only

Demo

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Push Me

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Push Me

Push Me

Push MePush Me

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Push Me

Push Me

Push Me ?

?

?

Push Me

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Push Me

Frame
Alignment Rect

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Edit

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Edit

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Edit 4

Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Edit 4

Alignment Rects

Alignment Rects

• You can convert between alignment rects and frames

@implementation (NS,UI)View

- (CGRect)alignmentRectForFrame:(CGRect)frame

- (CGRect)frameForAlignmentRect:(CGRect)alignmentRect

Intrinsic Content Size

Intrinsic Content Size

•Many views are equally happy at any size
• Some views have a preferred size
sizeToFit
sizeThatFits:

• In Auto Layout, this is the intrinsicContentSize

Intrinsic Content Size

•Many views are equally happy at any size
• Some views have a preferred size
sizeToFit
sizeThatFits:

• In Auto Layout, this is the intrinsicContentSize

Push Me

Intrinsic Content Size

•Many views are equally happy at any size
• Some views have a preferred size
sizeToFit
sizeThatFits:

• In Auto Layout, this is the intrinsicContentSize

Push Me

Intrinsic Content Size

•Many views are equally happy at any size
• Some views have a preferred size
sizeToFit
sizeThatFits:

• In Auto Layout, this is the intrinsicContentSize

Push Me ?

Intrinsic Content Size

•An intrinsic content size generates two constraints per dimension

Push Me

120

25

H:[button(>=120]

H:[button(<=120]

V:[button(>=25)]
V:[button(<=25)]

Intrinsic Content Size

•An intrinsic content size generates two constraints per dimension

Push Me

120

25

H:[button(>=120]

H:[button(<=120]

V:[button(>=25)]
V:[button(<=25)]

Compression Resistance

Intrinsic Content Size

•An intrinsic content size generates two constraints per dimension

Push Me

120

25

H:[button(>=120]

H:[button(<=120]

V:[button(>=25)]
V:[button(<=25)]

Compression Resistance

Content Hugging

Intrinsic Content Size

•An intrinsic content size generates two constraints per dimension

Push Me

120

25

H:[button(>=120]

H:[button(<=120]

V:[button(>=25)]
V:[button(<=25)]

• This is sufficient to unambiguously size the view!

Compression Resistance

Content Hugging

Intrinsic Content Size

•Why two constraints?
• Because they can have different priorities!

Intrinsic Content Size

•Why two constraints?
• Because they can have different priorities!

This is a label

Intrinsic Content Size

•Why two constraints?
• Because they can have different priorities!

This is a label This is a label

Intrinsic Content Size

•Why two constraints?
• Because they can have different priorities!

This is a label

This is…

This is a label

Intrinsic Content Size

•Why two constraints?
• Because they can have different priorities!

This is a label

This is…

This is a label

• Low content hugging priority, high compression resistance priority

Intrinsic Content Size

•Why two constraints?
• Because they can have different priorities!

•High content hugging priority, high compression resistance priority

Push Me Push Me

Pus…

Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable

Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable

Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable

Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable

@implementation NSView
- (void)setContentHuggingPriority:(NSLayoutPriority)priority
 forOrientation:(NSLayoutConstraintOrientation)orientation;

- (void)setContentCompressionResistancePriority:(NSLayoutPriority)priority
 forOrientation:(NSLayoutConstraintOrientation)orientation;
@end

Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable

@implementation UIView
- (void)setContentHuggingPriority:(UILayoutPriority)priority
 forAxis:(UILayoutConstraintAxis)axis;

- (void)setContentCompressionResistancePriority:(UILayoutPriority)priority
 forAxis:(UILayoutConstraintAxis)axis;
@end

Intrinsic Content Size

Short Label

Intrinsic Content Size

Short Label Longer L…

Intrinsic Content Size

• The view calls [self invalidateIntrinsicContentSize]
whenever its content changes
•Auto Layout reestablishes the sizing constraints
• If you implement a custom control, call this whenever your
intrinsicContentSize might change

Short Label Longer L…

Intrinsic Content Size

• The view calls [self invalidateIntrinsicContentSize]
whenever its content changes
•Auto Layout reestablishes the sizing constraints
• If you implement a custom control, call this whenever your
intrinsicContentSize might change

Short Label Longer L… Longer Longer Label

Intrinsic Content Size

Intrinsic Content Size

intrinsicContentSize as a better sizeToFit

Intrinsic Content Size

intrinsicContentSize as a better sizeToFit

• sizeToFit must preserve binary compatibility
• It may be wrong for the current artwork
• intrinsicContentSize can change
•Use intrinsicContentSize as a better sizeToFit

Intrinsic Content Size

intrinsicContentSize as a better sizeToFit

• sizeToFit must preserve binary compatibility
• It may be wrong for the current artwork
• intrinsicContentSize can change
•Use intrinsicContentSize as a better sizeToFit

NSRect alignmentRect = (NSRect){NSZeroPoint,
 [control intrinsicContentSize]};
[control setFrameSize:
 [control frameForAlignmentRect:alignmentRect].size];

Override intrinsicContentSize
Writing a Custom Control

Override intrinsicContentSize
Writing a Custom Control

•Do
■ Measure text or images
■ Hard-code values

Override intrinsicContentSize
Writing a Custom Control

•Do
■ Measure text or images
■ Hard-code values

•Do not
■ Inspect your position, size, or constraints
■ Call super and “tweak” its value
■ Use it as a substitute for explicit constraints

Indicate your alignment rect
Writing a Custom Control

Indicate your alignment rect
Writing a Custom Control

•Do
■ Consider using the default implementation
■ Override - (NS/UIEdgeInsets)alignmentRectInsets;

Indicate your alignment rect
Writing a Custom Control

•Do
■ Consider using the default implementation
■ Override - (NS/UIEdgeInsets)alignmentRectInsets;

•Do not
■ Inspect your position, size, or constraints
■ Call super and “tweak” its value
■ Use it as a substitute for explicit constraints

Overriding layout / layoutSubviews

Overriding layout / layoutSubviews

-layout sets the receiver’s frame
to the values determined by the
constraints

NSView

Overriding layout / layoutSubviews

-layout sets the receiver’s frame
to the values determined by the
constraints

NSView

-layoutSubviews sets the
receiver’s center and bounds to
the values determined by the
constraints

UIView

Overriding layout / layoutSubviews

•Afterwards, the constraints and frames agree
•Override it to do custom layout as long as you maintain that invariant

-layout sets the receiver’s frame
to the values determined by the
constraints

NSView

-layoutSubviews sets the
receiver’s center and bounds to
the values determined by the
constraints

UIView

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

•Override -layout / -layoutSubviews

•Call super

• Inspect the resulting view positions and sizes

•Adjust subviews and constraints

•Call super again

•Repeat!

Demo

Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization

Internationalization

Internationalization

•Auto Layout makes internationalization easier
■ Controls size according to their content
■ The same constraints still work across different localizations

Internationalization

•Auto Layout makes internationalization easier
■ Controls size according to their content
■ The same constraints still work across different localizations

SaveCancel

Internationalization

•Auto Layout makes internationalization easier
■ Controls size according to their content
■ The same constraints still work across different localizations

SichernAbbrechen

Internationalization

•One nib can now service multiple localizations
• Control content is translated with a strings file at runtime
• You can fall back to separate nibs when necessary

SichernAbbrechen

Internationalization

• Right-to-left support is built in
• The leading and trailing edges flip under right-to-left localizations

SichernAbbrechen

!"# إ'&%ء

Internationalization

• Right-to-left support is built in
• The leading and trailing edges flip under right-to-left localizations

SichernAbbrechen

Demo

Summary

•Auto Layout allows for powerful layout with less (or no) code
• Think declaratively
• Be wary of ambiguity and unsatisfiability
• The log messages are there to help
• Judicious overriding lets your custom views integrate with Auto Layout
• Localize with a single nib and multiple strings files

More Information

Paul Marcos
Frameworks Evangelist
pmarcos@apple.com

Documentation
Cocoa Auto Layout Guide
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AutolayoutPG/

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Auto Layout by Example Mission
Thursday 11:30AM

Labs

Auto Layout Lab App Services Lab B
Thursday 2:00PM

