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Make your layouts 
simpler to write 

simpler to modify
easier to understand
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•One new class—NSLayoutConstraint
• Constraints express geometric properties of views

• Constraints also express geometric relationships between views

NSLayoutConstraint

foo foo.width = 120

foo foo.width = bar.width

bar

• Relationships have a coefficient and a constant
foo.width = bar.width * 2 - 20
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NSLayoutConstraint

• Constraints can be equalities or inequalities
foo foo.width >= 120

• Constraints have priorities
foo foo.width = 120 with priority 500

foo.width = 75 with priority 1000



NSLayoutConstraint

• Constraints can be created three ways
■ Interface Builder
■ Visual format language
■ Base API

• Prefer this order
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Thinking in Constraints

•Auto Layout can be used like springs and struts
• But you get the most benefits from a shift in thinking
• Let your layouts becomes declarative
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Thinking in Constraints

Q W E R T Y

Springs and Struts

padding

keyOffset = padding + 
                keyIndex * (keyWidth + padding)

keyWidth = containerWidth / keyCount
               - padding * (keyCount + 1) / keyCount

containerWidth



Springs and Struts
Thinking in Constraints
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Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

=
Q.width = W.width
W.width = E.width
...



Thinking in Constraints

Q W E R T Y

Auto Layout

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

=
Q.width = W.width
W.width = E.width
...



Thinking in Constraints

Q W E R T Y

Auto Layout

Q.minX = container.minX + padding
W.minX = Q.maxX + padding
E.minX = W.maxX + padding...

=
Q.width = W.width
W.width = E.width
...

container.maxX = Y.maxX + padding



Demo
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• Each component contributes the constraints it cares about
• Layout becomes “owned”
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• Layout becomes distributed
•Decompose sophisticated layouts into components
• Each component contributes the constraints it cares about
• Layout becomes “owned”

Thinking in Constraints

Q
I’m square!Be centered 

vertically in me!
Be the same 

height as me!



Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity 
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization



1. Plan your attack

•A partial conversion lets you use Auto Layout just where you need it
■ Some compatibility issues to be aware of

•A full conversion will pay major dividends

Migrating from Springs and Struts
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2. Turn on Auto Layout in your nibs

• Create the constraints
you want in IB
• IB will create constraints that 
reflect your existing layout
•Add to or modify them

Migrating from Springs and Struts



3. Turn off autoresizing mask translation for every view
you create programmatically

[view setTranslatesAutoresizingMaskIntoConstraints:NO]

• If you forget, you’ll get unsatisfiable constraint warnings quickly

Migrating from Springs and Struts
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4. Look for places where you perform layout

- (void)layoutSubviews {…

Migrating from Springs and Struts

[view setFrame:rect]
[view setFrameSize:size]
[view setFrameOrigin:point]

They all have to go!
(But what do I replace them with?)



Migrating from Springs and Struts



Migrating from Springs and Struts

• Stop and think
■ Don’t try to merely replicate what the existing code is doing
■ Think about the underlying layout 



Migrating from Springs and Struts

• Stop and think
■ Don’t try to merely replicate what the existing code is doing
■ Think about the underlying layout 

• Try replacing it with nothing!
■ Are you working around a limitation of springs and struts?
■ Does the code implement a relationship?



Migrating from Springs and Struts

• Stop and think
■ Don’t try to merely replicate what the existing code is doing
■ Think about the underlying layout 

• Try replacing it with nothing!
■ Are you working around a limitation of springs and struts?
■ Does the code implement a relationship?

•Otherwise, add some constraints
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• Think about which component should own each constraint



Migrating from Springs and Struts

• Think about which component should own each constraint
• Consider centralizing it in updateConstraints



5. Test it
Migrating from Springs and Struts
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5. Test it

• Verify the layout is correct
• Fix issues you may have

Migrating from Springs and Struts

•Wait, what?



Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity 
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization



• Constraints that provide insufficient information
■ Ambiguity

• Constraints that provide conflicting information
■ Unsatisfiability

• Constraints that are satisfied in unexpected ways

What Can Go Wrong?



• Interface Builder prevents unsatisfiable or ambiguous constraints
• Rely on Interface Builder as much as possible
• You can reference constraints with outlets

What Can Go Wrong?



Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization
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Ambiguity

•Ambiguity means multiple layouts satisfy all constraints equally well
•A common symptom is that your views will cycle between those layouts
• Views “jump” or disappear entirely (jump to zero size)
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•Usually it means you need more constraints
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•Usually it means you need more constraints
• Each view needs four properties (two in each dimension)

■ MinX, Width, MinY, Height
■ MinX, MaxX, CenterY, MaxY
■ CenterX, Width, Baseline, Height
■ etc.
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•Usually it means you need more constraints
• Each view needs four properties (two in each dimension)

■ MinX, Width, MinY, Height
■ MinX, MaxX, CenterY, MaxY
■ CenterX, Width, Baseline, Height
■ etc.

• Inequalities by themselves are usually not enough
■ view.width ≥ 20 – is it 20? 200? 2 billion?
■ Inequalities don’t care how much larger or smaller you are
■ But equalities care

Ambiguity
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• Rarely, ambiguity means you need to adjust priorities
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[view(24@500)     [view(>=30@500)]



• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It can’t satisfy both
• They have equal priorities
•Ambiguity!

[view(24@500)     [view(>=30@500)]
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• Rarely, ambiguity means you need to adjust priorities

Ambiguity

• It still can’t satisfy both
• The inequality has a higher priority, so it will be satisfied first
• The equality will be satisfied as closely as possible
•No ambiguity!
• view.width = 30

[view(24@500)     [view(>=30@525)]



• Is my layout ambiguous? 
[view hasAmbiguousLayout]

•What is ambiguous about it?
[view exerciseAmbiguityInLayout]

[window visualizeConstraints: @[] ]

Ambiguity
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•Unsatisfiability means no layout can satisfy all required constraints
•Only required constraints can contribute to unsatisfiability

■ Constraints are required by default!

• Sizes are implicitly required to be at least zero

Unsatisfiability



•Unsatisfiability is immediately reported
•Ambiguity can be temporarily tolerated
• Remove constraints as soon as they might become invalid
• Create valid constraints again in updateConstraints

Unsatisfiability
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•Where are your views?
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•What constraints are making them that size?
■ Output [view constraintsAffectingLayoutForOrientation/Axis: 
    NSLayoutConstraintOrientationHorizontal/Vertical] 0 or 1



Help, I Don’t See Anything!

•Where are your views?
■ Check their -frame

•What constraints are making them that size?
■ Output [view constraintsAffectingLayoutForOrientation/Axis: 
    NSLayoutConstraintOrientationHorizontal/Vertical]

• Is the layout ambiguous?
■ Call [view hasAmbiguousLayout]
■ Call [view exerciseAmbiguityInLayout]

0 or 1
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Help, I Don’t See Anything!

• Some layouts are only satisfiable at 0 size!

foo.width = bar.width * 2

bar.width = foo.width * 3
foo.width = bar.width = 0



Demo



Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization
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Anatomy of an Unsatisfiability Log

Unable to simultaneously satisfy constraints:
(
    "<NSLayoutConstraint:0x10441ced0 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX - 11   (Names: LetterView-'H':0x10423c390 )>",
    "<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170   (Names: LetterView-'H':0x10423c390 )>"
)

Will attempt to recover by breaking constraint 
<NSLayoutConstraint:0x10441ce70 LetterView-'H'.centerX == LetterPile:
0x102b25230.centerX + 170   (Names: LetterView-'H':0x10423c390 )>

Set the NSUserDefault 
NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints to YES to have 
-[NSWindow visualizeConstraints:] automatically called when this happens.  
And/or, break on objc_exception_throw to catch this in the debugger.
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(Names: LetterView-'H':0x10423c390 )

Anatomy of an Unsatisfiability Log

Constraint’s address
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View’s identifier

Attribute
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NSLayoutConstraint:0x10441ced0

LetterView-'H'.centerX == LetterPile:0x102b25230.centerX - 11

(Names: LetterView-'H':0x10423c390 )

Anatomy of an Unsatisfiability Log

View’s identifier

Attribute

Relation

Other View Constant

“The letter view’s center should be 11 points to the left of the pile’s center”
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• Logs use the visual format syntax when possible

H:[NSView:0x102b5b3a0(250)]

H:[NSView:0x10480cd00]-(>=50)-[NSView:0x10481e9a0]>

“The view’s width is 250”



Anatomy of an Unsatisfiability Log

• Logs use the visual format syntax when possible

H:[NSView:0x102b5b3a0(250)]

H:[NSView:0x10480cd00]-(>=50)-[NSView:0x10481e9a0]>

“The view’s width is 250”

“This view is at least 50 points 
to the right of that view”
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Anatomy of an Unsatisfiability Log

<NSAutoresizingMaskLayoutConstraint:0x10590a360 h=-&- v=&--
V:[NSView:0x102e2af20(50)]>

•  translatesAutoresizingMaskIntoConstraints is on for this view
• That produces more than one constraint

Autoresizing Mask



Anatomy of an Unsatisfiability Log

<NSAutoresizingMaskLayoutConstraint:0x10590a360 h=-&- v=&--
V:[NSView:0x102e2af20(50)]>

•  translatesAutoresizingMaskIntoConstraints is on for this view
• That produces more than one constraint

Autoresizing Mask
“This view’s height is 50.”
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Autoresizing constraint Autoresizing mask
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<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

  H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0 )>

Horizontal

200 points between this view’s left edgeSuperview
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<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

  H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0 )>

Superview’s description
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<NSAutoresizingMaskLayoutConstraint:0x103b25030 h=-&- v=&--

  H:|-(200)-[NSView:0x103b25090]

 (Names: '|':FlippedView:0x102e163f0 )>

“This view’s left edge is 200 points 
from that of its superview,  which 

is a FlippedView”
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Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint based-layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization
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Animation

•How do you animate layout changes?
•Apply the new layout and let CoreAnimation handle animation

■ Very fast
■ May transiently appear to violate constraints

•Animate constraints directly
■ Pretty fast
■ Produces a correct layout at every frame
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Animation

≥20 ≥20100@250

Auto Layout



Animation

≥20 ≥20100@250

Auto LayoutCoreAnimation
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Animation with CoreAnimation

•Adjust your constraints
•Within an animation block, call
[view layoutIfNeeded]  on iOS
[view layoutSubtreeIfNeeded]  on OS X



Animation with CoreAnimation

•NSView
[NSAnimationContext runAnimationGroup:^(NSAnimationContext *context) {
    [context setDuration:0.5];
    [context setAllowsImplicitAnimation:YES];
    [view layoutSubtreeIfNeeded];
} completionHandler:nil]

•UIView
[UIView animateWithDuration:0.5 animations:^{
    [view layoutIfNeeded];
}]
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@interface NSLayoutConstraint
  @property (readonly) NSLayoutAttribute firstAttribute;
  @property (readonly) CGFloat multiplier;
  @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts
•Use an NSTimer
•Use the animator proxy

constraint.constant += 10

constraint.animator.constant = 10



Animation with NSLayoutConstraint

@interface NSLayoutConstraint
  @property (readonly) NSLayoutAttribute firstAttribute;
  @property (readonly) CGFloat multiplier;
  @property (readwrite) CGFloat constant;
@end

• The constant may be modified after creation
• Permits efficient relayouts
•Use an NSTimer
•Use the animator proxy

constraint.constant += 10

constraint.animator.constant = 10

OS X only



Demo



Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization
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Alignment Rects

• Constraints operate on content, not frames
• The content area is called the alignment rect

Edit 4



Alignment Rects



Alignment Rects

• You can convert between alignment rects and frames

@implementation (NS,UI)View

- (CGRect)alignmentRectForFrame:(CGRect)frame

- (CGRect)frameForAlignmentRect:(CGRect)alignmentRect



Intrinsic Content Size
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• Some views have a preferred size
sizeToFit
sizeThatFits:

• In Auto Layout, this is the intrinsicContentSize
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Intrinsic Content Size

•Many views are equally happy at any size
• Some views have a preferred size
sizeToFit
sizeThatFits:

• In Auto Layout, this is the intrinsicContentSize

Push Me ?
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Intrinsic Content Size

•An intrinsic content size generates two constraints per dimension

Push Me

120

25

H:[button(>=120]

H:[button(<=120]

V:[button(>=25)]
V:[button(<=25)]

• This is sufficient to unambiguously size the view!

Compression Resistance

Content Hugging
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Intrinsic Content Size

•Why two constraints?
• Because they can have different priorities!

•High content hugging priority, high compression resistance priority

Push Me Push Me

Pus…
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• Intrinsic content size is not settable
• The constraint priorities are settable



Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable



Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable



Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable

@implementation NSView
- (void)setContentHuggingPriority:(NSLayoutPriority)priority
        forOrientation:(NSLayoutConstraintOrientation)orientation;

- (void)setContentCompressionResistancePriority:(NSLayoutPriority)priority
        forOrientation:(NSLayoutConstraintOrientation)orientation;
@end



Intrinsic Content Size

• Intrinsic content size is not settable
• The constraint priorities are settable

@implementation UIView
- (void)setContentHuggingPriority:(UILayoutPriority)priority
        forAxis:(UILayoutConstraintAxis)axis;

- (void)setContentCompressionResistancePriority:(UILayoutPriority)priority
        forAxis:(UILayoutConstraintAxis)axis;
@end
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Intrinsic Content Size

• The view calls [self invalidateIntrinsicContentSize]
whenever its content changes
•Auto Layout reestablishes the sizing constraints
• If you implement a custom control, call this whenever your 
intrinsicContentSize might change

Short Label Longer L…



Intrinsic Content Size

• The view calls [self invalidateIntrinsicContentSize]
whenever its content changes
•Auto Layout reestablishes the sizing constraints
• If you implement a custom control, call this whenever your 
intrinsicContentSize might change

Short Label Longer L… Longer Longer Label
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• sizeToFit must preserve binary compatibility
• It may be wrong for the current artwork
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•Use intrinsicContentSize as a better sizeToFit



Intrinsic Content Size

intrinsicContentSize as a better sizeToFit

• sizeToFit must preserve binary compatibility
• It may be wrong for the current artwork
• intrinsicContentSize can change
•Use intrinsicContentSize as a better sizeToFit

NSRect alignmentRect = (NSRect){NSZeroPoint,
                               [control intrinsicContentSize]};
[control setFrameSize:
      [control frameForAlignmentRect:alignmentRect].size];
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Override intrinsicContentSize
Writing a Custom Control

•Do
■ Measure text or images
■ Hard-code values

•Do not
■ Inspect your position, size, or constraints
■ Call super and “tweak” its value
■ Use it as a substitute for explicit constraints
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Indicate your alignment rect
Writing a Custom Control

•Do
■ Consider using the default implementation
■ Override - (NS/UIEdgeInsets)alignmentRectInsets;

•Do not
■ Inspect your position, size, or constraints
■ Call super and “tweak” its value
■ Use it as a substitute for explicit constraints
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Overriding layout / layoutSubviews

-layout sets the receiver’s frame 
to the values determined by the 
constraints

NSView

-layoutSubviews sets the 
receiver’s center and bounds to 
the values determined by the 
constraints

UIView



Overriding layout / layoutSubviews

•Afterwards, the constraints and frames agree
•Override it to do custom layout as long as you maintain that invariant

-layout sets the receiver’s frame 
to the values determined by the 
constraints

NSView

-layoutSubviews sets the 
receiver’s center and bounds to 
the values determined by the 
constraints

UIView
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Overriding layout / layoutSubviews
Achieving a layout-dependent view hierarchy

•Override -layout / -layoutSubviews

•Call super

• Inspect the resulting view positions and sizes

•Adjust subviews and constraints

•Call super again

•Repeat!
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Auto Layout

• Thinking in constraints
■ Transitioning to constraints

•Debugging constraint-based layouts
■ Ambiguity
■ Unsatisfiability
■ Reading log messages

•Unleashing the power of constraints
■ Animation
■ Writing a custom control
■ Internationalization
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Internationalization

•One nib can now service multiple localizations
• Control content is translated with a strings file at runtime
• You can fall back to separate nibs when necessary

SichernAbbrechen



Internationalization

• Right-to-left support is built in
• The leading and trailing edges flip under right-to-left localizations

SichernAbbrechen
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Internationalization

• Right-to-left support is built in
• The leading and trailing edges flip under right-to-left localizations

SichernAbbrechen
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Summary

•Auto Layout allows for powerful layout with less (or no) code
• Think declaratively
• Be wary of ambiguity and unsatisfiability
• The log messages are there to help
• Judicious overriding lets your custom views integrate with Auto Layout
• Localize with a single nib and multiple strings files



More Information

Paul Marcos
Frameworks Evangelist
pmarcos@apple.com

Documentation
Cocoa Auto Layout Guide
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AutolayoutPG/

Apple Developer Forums
http://devforums.apple.com



Related Sessions

Auto Layout by Example Mission
Thursday 11:30AM



Labs

Auto Layout Lab App Services Lab B
Thursday 2:00PM




