
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Ben Nham
iOS Performance

Responsiveness

Session 235

iOS App Performance

Tim Lee
iOS Performance

Introduction

• Responsiveness: How quickly app reacts to user actions
• Performance: Getting an app’s work done efficiently

What You’ll Learn

•Measuring performance
• Fast app launch
• Performance strategies
• Speedy event handling

Performance Workflow

Performance Workflow

Performance Workflow

Reproduce the problem

Performance Workflow

Reproduce the problem

Profile with tools

Performance Workflow

Form a hypothesis

Reproduce the problem

Profile with tools

Performance Workflow

Form a hypothesis

Make a change

Reproduce the problem

Profile with tools

Performance Workflow

Form a hypothesis

Make a change

Reproduce the problem

Profile with tools

App Launch

App Launch

• Launch time is the first measure of responsiveness
•Apps are launched concurrently with zoom animation

■ 400 ms on iPhone
■ 500 ms on iPad

• Strive for “instant” app launch

Beware the Watchdog

• System watchdog terminates
app if it launches slowly
• Xcode disables watchdog
while debugging
•Users give up before timeout

Scenario Watchdog Timeout

Launch 20 seconds

Resume 10 seconds

Suspend 10 seconds

Quit 6 seconds

Background task 10 minutes

Choose an endpoint
Measuring Launch Time

•Watchdog cares about end of first CATransaction
■ First layout and draw
■ Currently in -[UIApplication _reportAppLaunchFinished]

• Users may care about another metric
■ Camera app should measure time to enabling shutter

Logging time to first frame
Measuring Launch Time

•Get start time in main()
int main(int argc, char **argv) {
 StartTime = CFAbsoluteTimeGetCurrent();

• Stop timer after launch run loop
- (void)applicationDidFinishLaunching:(UIApplication *)app {
 dispatch_async(dispatch_get_main_queue(), ^{

 NSLog(@"Launched in %f sec", CFAbsoluteTimeGetCurrent() - StartTime);
 });

Using Time Profiler to measure time to first frame
Measuring Launch Time

• Switch to CPU strategy view
• Search for -[UIApplication _reportAppLaunchFinished]
• Find last sample containing _reportAppLaunchFinished

Demo
Measuring App Launch in Time Profiler

Phases of App Launch

• Linking and loading
•UIKit initialization
•Application callbacks
• First Core Animation transaction

Phases of App Launch

• Linking and loading
•UIKit initialization
•Application callbacks
• First Core Animation transaction

Linking and Loading

• Shows up in dyld in Time Profiler
• Libraries are mapped into address space
• Bindings are fixed up
• Static initializers are run

Minimize linked frameworks
Linking and Loading

• Each Objective-C framework adds small time and memory cost
•Avoid linking unnecessary frameworks

Optional frameworks
Linking and Loading

•Optional frameworks may cause linker to do extra work
•Do not mark necessary frameworks as optional

Optional frameworks
Linking and Loading

•Optional frameworks may cause linker to do extra work
•Do not mark necessary frameworks as optional

•Use optional for frameworks released after deployment target

Optional frameworks
Linking and Loading

•Optional frameworks may cause linker to do extra work
•Do not mark necessary frameworks as optional

Avoid static initializers
Linking and Loading

•Avoid creating global C++ objects
static std::map<int, int> GlobalMap = {{1, 2}, {3, 4}, {5, 6}};

•Avoid code that runs at load time
+ (void)load {}
__attribute__((constructor)) void DoSomeInitializationWork {}

• Causes extra code to always run before main
• Explicitly initialize at runtime instead

■ The +initialize method is okay: Runs on first use

Phases of App Launch

• Linking and loading
•UIKit initialization
•Application callbacks
• First Core Animation transaction

UIKit Initialization

• Fonts, status bar, user defaults, main nib initialized
• Shows up in:
UIApplicationInitialize
UIApplicationInstantiateSingleton
-[UIApplication _createStatusBarWithRequestedStyle: ...]
-[UIApplication _loadMainNibFileNamed:bundle:]

UIKit Initialization
Minimize size of main nib

Do not store too much data in preferences
UIKit Initialization

• Preferences are stored as property list files
• Property lists are deserialized all at once

NSUserDefaults *ud = [NSUserDefaults standardUserDefaults];
NSData *largeImage = UIImagePNGRepresentation(image);
[ud setObject:largeImage forKey:@"favoriteImage”];

Phases of App Launch

• Linking and loading
•UIKit initialization
•Application callbacks
• First Core Animation transaction

Application Callbacks

•UIKit calls into your code to finish launching
■ Calls application:willFinishLaunchingWithOptions:
■ Restores application state
■ Calls application:didFinishLaunchingWithOptions:

• Your app is now in control

Phases of App Launch

• Linking and loading
•UIKit initialization
•Application callbacks
• First Core Animation transaction

First Core Animation Transaction

• Shows up as time in CA::Transaction::commit
■ Usually happens automatically at end of run loop
■ Also happens in -[UIApplication _reportAppLaunchFinished] after launch

• Important phases of commit
■ Preparation: Decompressing images
■ Layout: Sizes all layers (-layoutSubviews)
■ Drawing: -drawRect:

Demo
Phases of App Launch in WWDC App

Conclusion
App Launch

• Launch is the first user interaction—it should be responsive
•Measure launch time
• Profile with Time Profiler

■ Understand phases of app launch

•Observe best practices

Performance Strategies

Profile Your App
Don’t guess!

Performance Strategies

•Don’t do it
•Don’t do it again
•Do it faster
•Do it beforehand
•Do it afterwards
•Do it at scale

Performance Strategies

•Don’t do it
•Don’t do it again
•Do it faster
•Do it beforehand
•Do it afterwards
•Do it at scale

Avoid Unnecessary Work

• Profiling often reveals useless work
• Examples

■ Unnecessary shadows and masks
■ Multiple queries for the same data
■ Hundreds of milliseconds in logging at launch time

Performance Strategies

•Don’t do it
•Don’t do it again
•Do it faster
•Do it beforehand
•Do it afterwards
•Do it at scale

Reuse Instead of Recreating

• Certain classes are expensive to initialize
■ Table view cells
■ Date/number formatters
■ Regular expressions
■ SQLite statements

• Reuse the expensive-to-create object instead of recreating it

Date formatters
Reuse Instead of Recreating

- (UITableViewCell *)tableView:(UITableView *)view
 cellForRowAtIndexPath:(NSIndexPath *path)
{
 // dequeue or create cell...
 NSDateFormatter *formatter = [NSDateFormatter new];
 [formatter setDateFormat:@"MMMM"];
 cell.textLabel.text = [formatter stringFromDate:date];
 [formatter release];

• For commonly used date formats:
■ Cache one formatter per date format
■ Invalidate cache on NSLocaleDidChangeNotification

• Setting format is as expensive as recreating

Calendars
Reuse Instead of Recreating

• Calling NSLog makes a new calendar for each line logged
■ Avoid calling NSLog excessively

• Calling +[NSCalendar currentCalendar] returns a new instance for each call
■ Save the instance if using repeatedly

for (Event *event in events) {
 NSCalendar *calendar = [NSCalendar currentCalendar];
 NSDateComponents *components =
 [calendar components:NSYearCalendarUnit fromDate:date];
 [sections addEvent:event forYear:[components year]];
}

SQLite statements
Reuse Instead of Recreating

• Each SQLite statement is a compiled program
■ Calling sqlite3_prepare compiles SQL query into bytecode

•Use bind parameters and reuse prepared statements

NSString *format = @"SELECT * FROM Tracks WHERE id=%d";
NSString *query = [NSString stringWithFormat:format, rowid];
sqlite3_prepare_v2(db, [query UTF8String], -1, &stmt, NULL);
// use stmt

const char *query = "SELECT * FROM TRACKS WHERE id=?";
sqlite3_prepare_v2(db, query, -1, &stmt, NULL);
sqlite3_bind_int(stmt, 1);
// use stmt

Performance Strategies

•Don’t do it
•Don’t do it again
•Do it faster
•Do it beforehand
•Do it afterwards
•Do it at scale

Work Efficiently

• Choose the right data structure and algorithms
■ Refer to Collections Programming Topics

• Choose a faster algorithm

Data formats
Work Efficiently

• Property lists are for smaller pieces of data
■ Must deserialize entire plist to access a single object in it
■ Use binary format for plists

• Certain APIs are implemented with plists underneath
■ Preferences
■ Serialization via NSCoding

•Use Core Data or SQLite for storing lots of data
■ Allows for incremental loading

Optimize database queries
Work Efficiently

• Find slow queries with sqlite3_trace and sqlite3_profile
static void profile(void *context, const char *sql, sqlite3_uint64 ns) {
 syslog(LOG_WARNING, "Query: %s\n", sql);
 syslog(LOG_WARNING, "Execution Time: %llu ms\n”, ns / 1000000);
}

sqlite3_profile(conn, &profile, NULL);

•Understand problematic queries with EXPLAIN QUERY PLAN
sqlite3> EXPLAIN QUERY PLAN
 ...> SELECT * FROM Track WHERE AlbumID=2 ORDER BY AlbumOrder;

TABLE Track WITH INDEX TrackAlbumIDOrderIndex ORDER BY

Performance Strategies

•Don’t do it
•Don’t do it again
•Do it faster
•Do it beforehand
•Do it afterwards
•Do it at scale

Precompute Results

• Results of expensive calculations can be precomputed
• Example: Recurring events

■ Recurring events can take a long time to expand
■ Meeting on first Monday, Wednesday, and Friday of every month
except February

■ Solution
■ Pre-expand recurrences into occurrences
■ Store occurrences in database

Beware of memory growth
Precompute Results

• Precomputing and caching certain objects has large memory impact
• Caching images is especially problematic

■ Backing bitmap persists in memory for lifetime of object

static UIImage *ScreenSizedImage = nil;

if (!ScreenSizedImage) {
 ScreenSizedImage = [UIImage imageNamed:@"wallpaper.png"];
}

Performance Strategies

•Don’t do it
•Don’t do it again
•Do it faster
•Do it beforehand
•Do it afterwards
•Do it at scale

Asynchronous Loading

• Showing data synchronously is a better user experience
• If not possible, use GCD or other APIs to postpone work

• Example: Calendar
■ Launches to a responsive interface with no events
■ Events are loaded asynchronously

Performance Strategies

•Don’t do it
•Don’t do it again
•Do it faster
•Do it beforehand
•Do it afterwards
•Do it at scale

Contacts Launch Time
Scale to Large Data Sets

3000 Contacts

300 Contacts

30 Contacts

0 0.2 0.4 0.6 0.8 1

0.69

0.73

0.8

Launch Time on iPhone 4 (seconds)

Make critical methods fast
Scale to Large Data Sets

• Loading sections
 -numberOfSectionsInTableView:
 -tableView:titleForHeaderInSection:
 -tableView:numberOfRowsInSection:

Make critical methods fast
Scale to Large Data Sets

• Loading sections
 -numberOfSectionsInTableView:
 -tableView:titleForHeaderInSection:
 -tableView:numberOfRowsInSection:

Make critical methods fast
Scale to Large Data Sets

• Loading the index bar
 -tableView:sectionIndexTitlesForTableView

• Loading sections
 -numberOfSectionsInTableView:
 -tableView:titleForHeaderInSection:
 -tableView:numberOfRowsInSection:

Make critical methods fast
Scale to Large Data Sets

• Loading the index bar
 -tableView:sectionIndexTitlesForTableView

• Loading visible cells
 -tableView:cellForRowAtIndexPath:

Loading section information
Scale to Large Data Sets

•UITableView requires section counts and titles up front
■ Slow: load entire data set and group into sections
■ Faster: store section counts separately

• CoreData users get this for free
-[NSFetchedResultsController initWithFetchRequest:(NSFetchRequest *)fetchRequest
 managedObjectContext:(NSManagedObjectContext *)context
 sectionNameKeyPath:(NSString *)sectionNameKeyPath
 cacheName:(NSString *)name]

Conclusion
Performance Strategies

• Profile your app
•Avoid unnecessary work
• Test with large data sets

Event Handling

Processing User Events

•User events are processed on main thread’s run loop
■ Touch
■ Scrolling
■ Accelerometer
■ Proximity sensor

• Keep main run thread free to process events

Events

Main Run Loop

Events

Main Run Loop

Events

Main Run Loop

Events

Main Run Loop

Optimizing Event Handling

•Minimize CPU time in main thread
•Move work off the main thread
•Don’t block the main thread

Optimizing Event Handling

•Minimize CPU time in main thread
•Move work off the main thread
•Don’t block the main thread

Minimizing CPU Work

• Performance strategies also apply to event handling
•Use Time Profiler to measure hotspots

Demo
Switching tabs in the WWDC App

Optimizing Event Handling

•Minimize CPU time in main thread
•Move work off the main thread
•Don’t block the main thread

Moving Work Off the Main Thread

• Implicit concurrency
• Explicit concurrency

Two categories

Implicit concurrency
Moving Work Off the Main Thread

• View and layer animations
• Layer compositing
• PNG decoding
• Important: Scrolling is not an animation!

Explicit concurrency
Moving Work Off the Main Thread

•Grand Central Dispatch
•NSOperationQueue
•NSThread

Grand Central Dispatch
Reading a file off the main thread

Layout Draw Read String Layout Draw

Frame 1 Frame 2

Main Thread

Dropped

Grand Central Dispatch
Reading a file off the main thread

Layout Draw

Read String

Layout Draw

Frame 1 Frame 2

Main Thread

Dispatch Queue

Reading a file off the main thread
Grand Central Dispatch

 NSError *err = nil;
 NSStringEncoding encoding;
 NSString *myText = [NSString stringWithContentsOfFile:myFile
usedEncoding:&encoding error:&err];
 if (err == nil) {

[myTextField setText:myText];
}

Reading a file off the main thread
Grand Central Dispatch

 NSError *err = nil;
 NSStringEncoding encoding;
 NSString *myText = [NSString stringWithContentsOfFile:myFile
usedEncoding:&encoding error:&err];
 if (err == nil) {

 dispatch_async(dispatch_get_main_queue(), ^{

 });

});

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
^{

[myTextField setText:myText];

}

Too many threads
GCD Gotchas

• It’s possible for GCD to make too many threads for you
•Having too many threads adds overhead
• There’s also a hard limit

Too many threads
GCD Gotchas

GCD Queue

Too many threads
GCD Gotchas

• Concurrent queue—ok

GCD Queue

Too many threads
GCD Gotchas

• Concurrent queue—ok
•Add some blocks—ok

GCD Queue

Too many threads
GCD Gotchas

• Concurrent queue—ok
•Add some blocks—ok
• The blocks make long blocking calls—bad!

GCD Queue

Too many threads
GCD Gotchas

• Concurrent queue—ok
•Add some blocks—ok
• The blocks make long blocking calls—bad!

GCD Queue

Too many threads
GCD Gotchas

• Concurrent queue—ok
•Add some blocks—ok
• The blocks make long blocking calls—bad!

dispatch_queue_t queue =
 dispatch_get_global_queue(0, 0);

for (NSURLRequest *req in requests) {
 dispatch_async(queue, ^{
 NSData *data = sendSyncURLReq(req);
 processData(data);
 });
}

Too many threads
GCD Gotchas

• Solutions
■ Serial queue
■ Dispatch sources
■ NSOperationQueue with limit
■ NSURLConnection async methods

Thread safety
GCD Gotchas

Thread safety
GCD Gotchas

• Main thread only—UIKit
■ Exceptions: UIGraphics, UIBezierPath, UIImage

Thread safety
GCD Gotchas

• Main thread only—UIKit
■ Exceptions: UIGraphics, UIBezierPath, UIImage

•Any thread (with synchronization)—Most of CG, CA, Foundation
■ Can’t access from two threads simultaneously

Thread safety
GCD Gotchas

• Main thread only—UIKit
■ Exceptions: UIGraphics, UIBezierPath, UIImage

•Any thread (with synchronization)—Most of CG, CA, Foundation
■ Can’t access from two threads simultaneously

• Thread-safe—Objective-C introspection
■ Coarse locks in thread-safe frameworks can lead to contention
■ Use System Trace to detect contention

Background queues
GCD Gotchas

• iOS 4.3 added DISPATCH_QUEUE_PRIORITY_BACKGROUND
• Background is extremely low priority

■ I/O is throttled
■ May not run for seconds

■ What happens if bg queue holds lock that main thread needs?

•Only use for truly background operations
■ Consider using DISPATCH_QUEUE_PRIORITY_LOW instead

Optimizing Event Handling

•Minimize CPU time in main thread
•Move work off the main thread
•Don’t block the main thread

Don’t Block the Main Thread

•Main thread may be unresponsive even if it uses little CPU
•Main thread may block for:

■ Disk
■ Network
■ Locks or dispatch_sync
■ Sending messages to other processes or threads

•How do you detect these issues?
■ Regular Time Profile only detects CPU usage issues

Profiling with Time Profiler
Don’t Block the Main Thread

•Good: Use regular Time Profile
■ Switch to CPU strategy view
■ Highlight main thread

• Better: Use “Record Waiting Threads” in Time Profile

Profiling with Time Profiler
Don’t Block the Main Thread

•Good: Use regular Time Profile
■ Switch to CPU strategy view
■ Highlight main thread

• Better: Use “Record Waiting Threads” in Time Profile

Profiling with System Trace
Don’t Block the Main Thread

•Most blocking events are associated with a system call
• Common blocking syscalls

■ Reading/writing a file: read/write
■ Sending/receiving network data: send/recv
■ Acquiring lock: psynch_mutex_wait
■ IPC: mach_msg

• System Trace records all system calls
■ Also time spent waiting on each system call

Demo
Finding blocking calls with System Trace

Summary

• Profile your application
•Understand app launch
•Don’t block the main thread

More Information

Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
iOS App Programming Guide
http://developer.apple.com/library/ios/#DOCUMENTATION/iPhone/Conceptual/
iPhoneOSProgrammingGuide/Introduction/Introduction.html

Apple Developer Forums
http://devforums.apple.com

Related Sessions

iOS App Performance: Graphics and Animations Presidio
Thursday 3:15PM

iOS App Performance: Memory Presidio
Thursday 4:30PM

Learning Instruments Presidio
Wednesday 4:30PM

Core Data Best Practices Mission
Wednesday 9:00AM

Building Concurrent User Interfaces on iOS Pacific Heights
Wednesday 9:00AM

Labs

OS X Performance Lab Developer Tools Lab A
Friday 9:00AM

Xcode Lab Developer Tools Lab B
Friday 9:00AM

