
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 236

The Evolution of
View Controllers on iOS

Matt Gamble, Bruce D. Nilo
UIKit Engineers

Roadmap
The Evolution of View Controllers

• Looking forward to today

• View controllers today and new directions

The “why” and “how” of view controllers
Looking Forward to Today

Matt Gamble
UIKit Engineer

Make common tasks simpler
Why UIViewController?

Why UIViewController?
Manage a view hierarchy

Why UIViewController?
Manage a view hierarchy

UIView

Why UIViewController?
Manage a view hierarchy

UIView

UIView UIView UIView

UIView UIView UIView

UIView UIViewUIView UIView

Why UIViewController?
Manage a view hierarchy

UIView

UIView UIView UIView

UIView UIView UIView

UIView UIViewUIView UIView

Why UIViewController?
Manage a view hierarchy

UIView

UIView UIView UIView

UIView UIView UIView

UIView UIViewUIView UIView

Why UIViewController?
Optionally load view from a nib

Make common tasks simpler
Why UIViewController?

• Manage a view
■ More specifically, a view hierarchy
■ Optionally load view from a nib

Make common tasks simpler
Why UIViewController?

• Manage a view
■ More specifically, a view hierarchy
■ Optionally load view from a nib
■ Convenient appearance calls

Why UIViewController?
Autorotation

Why UIViewController?
Autorotation

Why UIViewController?
Autorotation

Why UIViewController?
Autorotation

Autorotation
Why UIViewController?

Autorotation
Why UIViewController?

- (void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration;

Autorotation
Why UIViewController?

- (void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration;

- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration

Autorotation
Why UIViewController?

- (void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration;

- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration

- (void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)fromInterfaceOrientation

Why UIViewController?
Centralize responsibility

Why UIViewController?
Centralize responsibility

Views

Views

Views

Views

Why UIViewController?
Centralize responsibility

Views

Views

Views

Views

Why UIViewController?
Centralize responsibility

Views

Views

Views

Views

Model Object

Why UIViewController?
Centralize responsibility

Views

Views

Views

Views

Model Object

Why UIViewController?
Centralize responsibility

Views

Views

Views

Views

Model Object

Why UIViewController?
Centralize responsibility

Views

Views

Views

Views

Model Object

Why UIViewController?
Centralize responsibility

Views

Views

Views

Views

Model Object

Why UIViewController?
Centralize responsibility

View Controller

Views

Views

Views

Views

Model Object

Why UIViewController?
Centralize responsibility (MVC pattern)

C

VM

Make common tasks simpler
Why UIViewController?

Make common tasks simpler
Why UIViewController?

• Manage a view hierarchy

• Centralize responsibility

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability

Why UIViewController?
Reusability—Larger logical unit

Why UIViewController?
Reusability—Larger logical unit

Why UIViewController?
Reusability—Larger logical unit

Why UIViewController?
Reusability—Larger logical unit

Make common tasks simpler
Why UIViewController?

• Manage a view hierarchy

Make common tasks simpler
Why UIViewController?

• Manage a view hierarchy

• Centralize responsibility

• Reusability—Larger logical unit

Using View Controllers Effectively

Using View Controllers Effectively
One window, one root view controller

Window

Using View Controllers Effectively
One window, one root view controller

Window

[window setRootViewController:rootViewController]

Using View Controllers Effectively
One window, one root view controller

WindowParent ViewRoot VC

Using View Controllers Effectively

WindowParent ViewRoot VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

Using View Controllers Effectively

Using View Controllers Effectively

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively
Presentation

Using View Controllers Effectively
Presentation

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively

WindowParent View Root VC

Using View Controllers Effectively
Custom container

Using View Controllers Effectively
Custom container

Parent VC

Parent View

Using View Controllers Effectively
Custom container

Child VC Child
View

Parent VC

Parent View

Using View Controllers Effectively
Custom container

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container
[parentViewController addChildViewController:childViewController]

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container
[parentViewController addChildViewController:childViewController]

[[parentViewController view] addSubview:[childViewController view]]

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container
[parentViewController addChildViewController:childViewController]

[[parentViewController view] addSubview:[childViewController view]]

[childViewController didMoveToParentViewController:parentViewController]

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container
[childViewController willMoveToParentViewController:nil]

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container
[childViewController willMoveToParentViewController:nil]

[[childViewController view] removeFromSuperview]

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container
[childViewController willMoveToParentViewController:nil]

[[childViewController view] removeFromSuperview]

[childViewController removeFromParentViewController]

Child VC

Parent VC

Child
View

Parent View

Using View Controllers Effectively
Custom container
[childViewController willMoveToParentViewController:nil]

[[childViewController view] removeFromSuperview]

[childViewController removeFromParentViewController]

Parent VC

Child VC Child
View

Parent View

Using View Controllers Effectively
Custom container
[childViewController willMoveToParentViewController:nil]

[[childViewController view] removeFromSuperview]

[childViewController removeFromParentViewController]

Parent VC

Parent View

Custom container
Using View Controllers Effectively

• Parents make the rules, children follow them

Custom container
Using View Controllers Effectively

• Parents make the rules, children follow them
■ Parents add children—not the other way!

Custom container
Using View Controllers Effectively

• Parents make the rules, children follow them
■ Parents add children—not the other way!
■ Parents manage their children’s views

UIViewController FTW
Summary

• Why UIViewController?
■ Manage a view hierarchy
■ Centralize responsibility
■ Reusability—larger logical unit

• Using view controllers effectively
■ One window, one root view controller
■ Build consistent view controller hierarchies

New directions
View Controllers Today

Bruce D. Nilo
View Controller Mechanic

Roadmap
View Controllers Today

Roadmap
View Controllers Today

• Discuss new and deprecated API and behaviors

Roadmap
View Controllers Today

• Discuss new and deprecated API and behaviors
■ View controller containment

Roadmap
View Controllers Today

• Discuss new and deprecated API and behaviors
■ View controller containment
■ Autorotation

Roadmap
View Controllers Today

• Discuss new and deprecated API and behaviors
■ View controller containment
■ Autorotation
■ Other stuff

Roadmap
View Controllers Today

• PhotoNotes

Roadmap
View Controllers Today

• PhotoNotes
■ An app with a custom application flow

Roadmap
View Controllers Today

• PhotoNotes
■ An app with a custom application flow

■ Best containment practices

Roadmap
View Controllers Today

• PhotoNotes
■ An app with a custom application flow

■ Best containment practices
■ How to adopt the new

autorotation behavior

Roadmap
View Controllers Today

• PhotoNotes
■ An app with a custom application flow

■ Best containment practices
■ How to adopt the new

autorotation behavior
■ How to ensure layout is

independent of interface orientation

Roadmap
View Controllers Today

• PhotoNotes
■ An app with a custom application flow

■ Best containment practices
■ How to adopt the new

autorotation behavior
■ How to ensure layout is

independent of interface orientation
■ Keyboard avoidance and more

Evolution
View Controllers Today

A primary objective
View Controller Evolution

A primary objective
View Controller Evolution

• View controllers should compose consistently with each other

A primary objective
View Controller Evolution

• View controllers should compose consistently with each other
■ New device types

A primary objective
View Controller Evolution

• View controllers should compose consistently with each other
■ New device types
■ Many view controllers on the screen at once

A primary objective
View Controller Evolution

• View controllers should compose consistently with each other
■ New device types
■ Many view controllers on the screen at once
■ Many new system view controllers are available

Containment API and behavioral changes
View Controllers Today

Containment (embedded view controllers)
View Controller Evolution

Containment (embedded view controllers)
View Controller Evolution

VC

Parent VC

Parent

VC View

Containment (embedded view controllers)
View Controller Evolution

VC

Parent VC

Parent

VC View

Containment (embedded view controllers)
View Controller Evolution

VC

Parent VC

VC View

Parent

Containment (embedded view controllers)
View Controller Evolution

Parent

Containment (embedded view controllers)
View Controller Evolution

- (BOOL)shouldAutomaticallyForwardAppearanceMethods
{

return NO; // Override default which is YES
}

Parent

Containment (embedded view controllers)
View Controller Evolution

Parent

Containment (embedded view controllers)
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

// [self.view addSubview:child.view]

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment (embedded view controllers)
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

// [self.view addSubview:child.view]

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment (embedded view controllers)
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

// [self.view addSubview:child.view]

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment (embedded view controllers)
View Controller Evolution

Parent

Containment (embedded view controllers)
View Controller Evolution

Parent - (void)viewWillAppear:(BOOL)animated {
 [self.child beginAppearanceTransition: YES
 animated: animated];
}

- (void)viewDidAppear:(BOOL)animated {
 [self.child endAppearanceTransition];
}

Containment—Best practices
View Controller Evolution

Parent

Containment—Best practices
View Controller Evolution

• The container should expose methods that use the
containment API

- addChildViewController:
- removeFromParentViewController

Parent

Containment—Best practices
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment—Best practices
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment—Best practices
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment—Best practices
View Controller Evolution

Parent

Containment—Best practices
View Controller Evolution

• The parent is responsible for the frames of its childrenParent

Containment—Best practices
View Controller Evolution

• The parent is responsible for the frames of its children
■ The child accesses its bounds in
- viewWillLayoutSubviews
- updateViewConstraints

Parent

Containment (embedded view controllers)
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment (embedded view controllers)
View Controller Evolution

Parent - (void)revealChild:(UIViewController *)child
{
 [self addChildViewController:self.child];
 [child beginAppearanceTransition: YES
 animated: YES];

[UIView animateWithDuration:.5
 animations: ^{[self adjustFrameForChild:child]; }
 completion:^(BOOL finished) {

[child endAppearanceTransition:
[child didMoveToParentViewController:self];

 }];
}

Containment—Worst practice
View Controller Evolution

Parent

Containment—Worst practice
View Controller Evolution

• Calling these methods on a class you did not implementParent

Containment (embedded view controllers)
View Controller Evolution

Containment (embedded view controllers)
View Controller Evolution

There should be a circle for that

Summary—Containment API changes
View Controller Evolution

Summary—Containment API changes
View Controller Evolution

// Deprecated in iOS 6.0
-(BOOL)automaticallyForwardAppearanceAndRotationMethodsToChildViewControllers

Summary—Containment API changes
View Controller Evolution

// Deprecated in iOS 6.0
-(BOOL)automaticallyForwardAppearanceAndRotationMethodsToChildViewControllers

// Introduced as API in iOS 6.0
- (BOOL)shouldAutomaticallyForwardRotationMethods;
- (BOOL)shouldAutomaticallyForwardAppearanceMethods;

Summary—Containment API changes
View Controller Evolution

// Deprecated in iOS 6.0
-(BOOL)automaticallyForwardAppearanceAndRotationMethodsToChildViewControllers

// Introduced as API in iOS 6.0
- (BOOL)shouldAutomaticallyForwardRotationMethods;
- (BOOL)shouldAutomaticallyForwardAppearanceMethods;

// Available in iOS 5.0 and iOS 6.0. Introduced as API in iOS 6.0
- (void)beginAppearanceTransition:(BOOL)isAppearing animated:(BOOL)animated ;
- (void)endAppearanceTransition;

Autorotation API and behavioral changes
View Controllers Today

Autorotation—iOS 5 and earlier
View Controller Evolution

Autorotation—iOS 5 and earlier
View Controller Evolution

• UIViewController’s would override
-shouldAutoRotateToInterfaceOrientation:

Autorotation—iOS 5 and earlier
View Controller Evolution

• UIViewController’s would override
-shouldAutoRotateToInterfaceOrientation:

■ Called before rotation

Autorotation—iOS 5 and earlier
View Controller Evolution

• UIViewController’s would override
-shouldAutoRotateToInterfaceOrientation:

■ Called before rotation
■ Called before presentation

Autorotation—iOS 5 and earlier
View Controller Evolution

• UIViewController’s would override
-shouldAutoRotateToInterfaceOrientation:

■ Called before rotation
■ Called before presentation

• Containers often deferred to their
children

Autorotation—Prepare to think differently
View Controller Evolution

Autorotation—Prepare to think differently
View Controller Evolution

• Problems with shouldAutorotateToInterfaceOrientation:

Autorotation—Prepare to think differently
View Controller Evolution

• Problems with shouldAutorotateToInterfaceOrientation:
■ Conflates supported interface orientations with rotation

Autorotation—Prepare to think differently
View Controller Evolution

• Problems with shouldAutorotateToInterfaceOrientation:
■ Conflates supported interface orientations with rotation
■ Allows children to veto the supported orientations of their parents

Autorotation—Prepare to think differently
View Controller Evolution

• Problems with shouldAutorotateToInterfaceOrientation:
■ Conflates supported interface orientations with rotation
■ Allows children to veto the supported orientations of their parents
■ Encourages the use of interface orientation as a way to control layout

Autorotation—Prepare to think differently
View Controller Evolution

• Problems with shouldAutorotateToInterfaceOrientation:
■ Conflates supported interface orientations with rotation
■ Allows children to veto the supported orientations of their parents
■ Encourages the use of interface orientation as a way to control layout

• Other problems
■ Interface orientation for many view controllers is meaningless

View Controller Evolution
Autorotation—Prepare to think differently

View Controller Evolution
Autorotation—Prepare to think differently

View Controller Evolution
Autorotation—Prepare to think differently

View Controller Evolution
Autorotation—Prepare to think differently

View Controller Evolution
Autorotation—Prepare to think differently

Autorotation—Prepare to think differently
View Controller Evolution

• Problems with shouldAutorotateToInterfaceOrientation:
■ Conflates supported interface orientations with rotation
■ Allows children to veto the supported orientations of their parents
■ Encourages the use of interface orientation as a way to control layout

• Other problems
■ Interface orientation for many view controllers is meaningless

Autorotation—Prepare to think differently
View Controller Evolution

• Problems with shouldAutorotateToInterfaceOrientation:
■ Conflates supported interface orientations with rotation
■ Allows children to veto the supported orientations of their parents
■ Encourages the use of interface orientation as a way to control layout

• Other problems
■ Interface orientation for many view controllers is meaningless
■ As of iOS 5, rotation cannot reliably be used for layout

Autorotation—Prepare to think differently
View Controller Evolution

Autorotation—Prepare to think differently
View Controller Evolution

Autorotation—Prepare to think differently
View Controller Evolution

Autorotation—Prepare to think differently
View Controller Evolution

willRotateToInterfaceOrientation:duration:
willAnimateRotationToInterfaceOrientation:duration
didRotateFromInterfaceOrientation:

Autorotation—Prepare to think differently
View Controller Evolution

No rotation callbacks in iOS 5 and later

Autorotation—Targeting earlier iOS releases
View Controller Evolution

Autorotation—Targeting earlier iOS releases
View Controller Evolution

• On iOS 5 and later, rotation callbacks cannot reliably be used for layout

Autorotation—Targeting earlier iOS releases
View Controller Evolution

• On iOS 5 and later, rotation callbacks cannot reliably be used for layout
■ Pre iOS 5, behavior can be determined by

NO == [UIViewController
instancesRespondToSelector:@selector(viewWillLayoutSubviews)]

Autorotation—Targeting earlier iOS releases
View Controller Evolution

• On iOS 5 and later, rotation callbacks cannot reliably be used for layout
■ Pre iOS 5, behavior can be determined by

NO == [UIViewController
instancesRespondToSelector:@selector(viewWillLayoutSubviews)]

■ Refactor layout code to be used at multiple call sites
■ On iOS 6, use updateViewConstraints
■ On iOS 5, use viewWillLayoutSubviews
■ Pre iOS 5, a selector check is required

Autorotation—Think differently
View Controller Evolution

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

• View controllers can only support an orientation different from the status
bar orientation when presented

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

• View controllers can only support an orientation different from the status
bar orientation when presented

presentViewController:animated:completion:
preferredInterfaceForPresentation

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

• View controllers can only support an orientation different from the status
bar orientation when presented

presentViewController:animated:completion:
preferredInterfaceForPresentation

• Only the root or topmost full screen controller is consulted

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

• View controllers can only support an orientation different from the status
bar orientation when presented

presentViewController:animated:completion:
preferredInterfaceForPresentation

• Only the root or topmost full screen controller is consulted

• An application should be able to indicate its supported orientations

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

• View controllers can only support an orientation different from the status
bar orientation when presented

presentViewController:animated:completion:
preferredInterfaceForPresentation

• Only the root or topmost full screen controller is consulted

• An application should be able to indicate its supported orientations
Info.plist

View Controllers Today
Autorotation—Think differently

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

• View controllers can only support an orientation different from the status
bar orientation when presented

presentViewController:animated:completion:
preferredInterfaceForPresentation

• Only the root or topmost full screen controller is consulted

• An application should be able to indicate its supported orientations
Info.plist

Autorotation—Think differently
View Controller Evolution

• View controllers should make a best effort to support ALL orientations

• A child view controller should be able to layout in any frame its parent
specifies

• View controllers can only support an orientation different from the status
bar orientation when presented

presentViewController:animated:completion:
preferredInterfaceForPresentation

• Only the root or topmost full screen controller is consulted

• An application should be able to indicate its supported orientations
Info.plist
application:supportedInterfaceOrientationsForWindow:

Summary—Autorotation API changes
View Controllers Today

Summary—Autorotation API changes
View Controllers Today

• UIViewController.h
// Deprecated in iOS 6.0.
- (BOOL)shouldAutorotateToInterfaceOrientation(UIInterfaceOrientation)toOrientation;

Summary—Autorotation API changes
View Controllers Today

• UIViewController.h
// Deprecated in iOS 6.0.
- (BOOL)shouldAutorotateToInterfaceOrientation(UIInterfaceOrientation)toOrientation;

// Introduced as API in iOS 6.0
- (NSUInteger)supportedInterfaceOrientations
- (UIInterfaceOrientation)preferredInterfaceOrientationForPresentation;

Summary—Autorotation API changes
View Controllers Today

• UIViewController.h
// Deprecated in iOS 6.0.
- (BOOL)shouldAutorotateToInterfaceOrientation(UIInterfaceOrientation)toOrientation;

// Introduced as API in iOS 6.0
- (NSUInteger)supportedInterfaceOrientations
- (UIInterfaceOrientation)preferredInterfaceOrientationForPresentation;

• UIApplication.h
// Introduced as API in iOS 6.0
UIKIT_EXTERN NSString *const UIApplicationInvalidInterfaceOrientationException;

Autorotation—Adapting to iOS 6
View Controller Evolution

Autorotation—Adapting to iOS 6
View Controller Evolution

• Pre-iOS 6 autorotation behavior can be determined by
Class UIVC = [UIViewController class];
NO == [UIVC
instancesRespondToSelector:@selector(supportedInterfaceOrientations)];

Autorotation—Adapting to iOS 6
View Controller Evolution

• Pre-iOS 6 autorotation behavior can be determined by
Class UIVC = [UIViewController class];
NO == [UIVC
instancesRespondToSelector:@selector(supportedInterfaceOrientations)];

• Provide implementations for supportedInterfaceOrientations as necessary

Autorotation—Adapting to iOS 6
View Controller Evolution

• Pre-iOS 6 autorotation behavior can be determined by
Class UIVC = [UIViewController class];
NO == [UIVC
instancesRespondToSelector:@selector(supportedInterfaceOrientations)];

• Provide implementations for supportedInterfaceOrientations as necessary

• Container view controllers may need to be subclassed to override
supportedInterfaceOrientations

Autorotation—Adapting to iOS 6
View Controller Evolution

• Pre-iOS 6 autorotation behavior can be determined by
Class UIVC = [UIViewController class];
NO == [UIVC
instancesRespondToSelector:@selector(supportedInterfaceOrientations)];

• Provide implementations for supportedInterfaceOrientations as necessary

• Container view controllers may need to be subclassed to override
supportedInterfaceOrientations

• Apps that use setStatusBarOrientation: will need to convert to
presentations

Summary—Autorotation API changes
View Controllers Today

Summary—Autorotation API changes
View Controllers Today

• UIApplication.h
// Delegate method introduced as API in iOS 6.0
- (NSUInteger)application:(UIApplication *)application

supportedInterfaceOrientationsForWindow:(UIWindow *)window;

Summary—Autorotation API changes
View Controllers Today

• UIApplication.h
// Delegate method introduced as API in iOS 6.0
- (NSUInteger)application:(UIApplication *)application

supportedInterfaceOrientationsForWindow:(UIWindow *)window;

// Deprecated in iOS 6.0
- (void)setStatusBarOrientation;
- (void)setStatusBarOrientation:animated:;

Autorotation—Think differently
View Controllers Today

Autorotation—Think differently
View Controllers Today

• Is still evolving for iOS 6
■ A few minor additions still in the works
■ Stay tuned for seed updates and release notes

View Controllers Today
Autorotation—Think differently

View Controllers Today
Autorotation—Think differently

Other API changes
View Controllers Today

Deprecations
View Controllers Today

Deprecations
View Controllers Today

• UIViewController.h
- (void)viewWillUnload;
- (void)viewDidUnload;

Deprecations
View Controllers Today

• UIViewController.h
- (void)viewWillUnload;
- (void)viewDidUnload;

- (void)didReceiveMemoryWarning {
 if([self.view window] == nil) {
 [photoMap removeAllObjects];
 self.view = nil;
 self.photoImageView = nil;
 }
}

Deprecations
View Controllers Today

Deprecations
View Controllers Today

• UIViewController.h
@property(nonatomic,readonly) UIViewController *modalViewController;
- (void)presentModalViewController:(UIViewController *)modalViewController

 animated:(BOOL)animated;
- (void)dismissModalViewControllerAnimated:(BOOL)animated;

Other new API
View Controllers Today

Other new API
View Controllers Today

• Constraint-Based Layout
// Introduced as API in iOS 6.0
- (void)updateViewConstraints;

Other new API
View Controllers Today

• Constraint-Based Layout
// Introduced as API in iOS 6.0
- (void)updateViewConstraints;

• Storyboard Support
■ Segue Unwinding

Other new API
View Controllers Today

• Constraint-Based Layout
// Introduced as API in iOS 6.0
- (void)updateViewConstraints;

• Storyboard Support
■ Segue Unwinding

• State Restoration
■ View Controllers are used to indicate what state is saved

The parent is responsible where their children play

Photo Notes—A Social App with a
Custom View Controller Container

PhotoNotes
Basic design

PhotoNotes
Basic design

Comment Container
Controller

PhotoNotes
Basic design

Comment Container
Controller

Content
Controller

PhotoNotes
Basic design

Comment Container
Controller

Content
Controller

Comment
Controller

PhotoNotes
Basic design

Comment Container
Controller

Content
Controller

Comment
Controller

PhotoNotes
Basic design—Model business

Comment Container
Controller

Comment Controller

associatedObjectDidChange:

Content Controller <CommentNotifying>
associatedCommentDidChange:

associatedComment
itemsForSharing

associatedObject

commentViewController

PNAppDelegate
<PNDataSourceProtocol>

dataSource

ALAssetsFramework

PhotoNotes
Basic design—Model business

Comment Container
Controller

Comment Controller

associatedObjectDidChange:

Content Controller <CommentNotifying>
associatedCommentDidChange:

associatedComment
itemsForSharing

associatedObject

commentViewController

PNAppDelegate
<PNDataSourceProtocol>

dataSource

ALAssetsFramework

Why a custom container controller?
PhotoNotes

Why a custom container controller?
PhotoNotes

• It defines a custom application flow
■ It is reusable in different situations
■ It interoperates with the rest of UIKit

Demo
PhotoNotes

Takeaway Thoughts

• Custom container controllers are for new application flows
■ Otherwise use system containers

Takeaway thoughts
View Controllers Today

Takeaway thoughts
View Controllers Today

Takeaway thoughts
View Controllers Today

• Don’t rely on interface orientation for layout

Takeaway thoughts
View Controllers Today

• Don’t rely on interface orientation for layout

• A parent sets its child’s frame

Takeaway thoughts
View Controllers Today

• Don’t rely on interface orientation for layout

• A parent sets its child’s frame
■ A view controller should never set its own frame

Takeaway thoughts
View Controllers Today

Takeaway thoughts
View Controllers Today

• Autorotation is evolving

Takeaway thoughts
View Controllers Today

• Autorotation is evolving
■ Support all orientations

Takeaway thoughts
View Controllers Today

• Autorotation is evolving
■ Support all orientations

■ (Except upside down on the phone)

Takeaway thoughts
View Controllers Today

• Autorotation is evolving
■ Support all orientations

■ (Except upside down on the phone)
■ Apps can easily indicate the orientations they support

Takeaway thoughts
View Controllers Today

• Autorotation is evolving
■ Support all orientations

■ (Except upside down on the phone)
■ Apps can easily indicate the orientations they support
■ Rotation callbacks are for rotation

Takeaway thoughts
View Controllers Today

Takeaway thoughts
View Controllers Today

• View controllers are the cornerstones of most iOS apps
■ More features will continue to be added
■ More system API will be vended

Takeaway thoughts
View Controllers Today

• View controllers are the cornerstones of most iOS apps
■ More features will continue to be added
■ More system API will be vended

• Design your view controllers with an eye toward reuse
■ Think of how they compose

Takeaway thoughts
View Controllers Today

• View controllers are the cornerstones of most iOS apps
■ More features will continue to be added
■ More system API will be vended

• Design your view controllers with an eye toward reuse
■ Think of how they compose

• Future-proof your apps
■ Adopt new API and avoid deprecated API

Related Sessions

Introduction to Auto Layout for iOS and OS X Mission
Tuesday 10:15AM

Saving and Restoring Application State on iOS Russian Hill
Thursday 3:15PM

Adopting Storyboards in Your App Marina
Wednesday 2:00PM

Jake Behrens
Cocoa Touch/UIKit Evangelist
behrens@apple.com

Documentation
iOS Development Center
http://developer.apple.com/ios

Apple Developer Forums
http://devforums.apple.com

More Information

