
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 237

Advanced iCloud Document Storage

Mark Piccirelli
Cocoa Frameworks Engineer

What We Will Talk About

• iCloud Document Storage

What We Will Talk About

• iCloud Document Storage
■ Not key-value storage

What We Will Talk About

• iCloud Document Storage
■ Not key-value storage

•Not documents

What We Will Talk About

• iCloud Document Storage
■ Not key-value storage

•Not documents
• Shoebox apps

What Is a Shoebox App?

What Is a Shoebox App?

•Many apps do not deal in documents

What Is a Shoebox App?

•Many apps do not deal in documents
• Just show the user their data, not files

What Is a Shoebox App?

•Many apps do not deal in documents
• Just show the user their data, not files

■ iPhoto

What Is a Shoebox App?

•Many apps do not deal in documents
• Just show the user their data, not files

■ iPhoto
■ iTunes

What Is a Shoebox App?

•Many apps do not deal in documents
• Just show the user their data, not files

■ iPhoto
■ iTunes

• Like a shoebox of pictures or tapes

What Is a Shoebox App?

•Many apps do not deal in documents
• Just show the user their data, not files

■ iPhoto
■ iTunes

• Like a shoebox of pictures or tapes
•NSDocument or UIDocument are not appropriate

Today’s Example
A picture-viewing app

What We Will Talk About

What We Will Talk About

•Using Foundation APIs directly
■ NSFileCoordinator
■ NSFilePresenter
■ NSFileVersion
■ NSFileManager

What We Will Talk About

• Things that happen in iCloud apps

What We Will Talk About

• Things that happen in iCloud apps
■ Changes to your app’s files

What We Will Talk About

• Things that happen in iCloud apps
■ Changes to your app’s files
■ Conflicts

What We Will Talk About

• Things that happen in iCloud apps
■ Changes to your app’s files
■ Conflicts

• Tips and Advice

File Coordination

Multiple processes accessing the same file
iCloud Document Storage

Multiple processes accessing the same file
iCloud Document Storage

•One process writing while another is reading is bad

Multiple processes accessing the same file
iCloud Document Storage

•One process writing while another is reading is bad
■ How does a process know when it is safe?

Multiple processes accessing the same file
iCloud Document Storage

•One process writing while another is reading is bad
■ How does a process know when it is safe?

• iCloud changes files and then your app must read them

Multiple processes accessing the same file
iCloud Document Storage

•One process writing while another is reading is bad
■ How does a process know when it is safe?

• iCloud changes files and then your app must read them
■ How does a process know when it must read?

Multiple processes accessing the same file
iCloud Document Storage

•One process writing while another is reading is bad
■ How does a process know when it is safe?

• iCloud changes files and then your app must read them
■ How does a process know when it must read?

• iCloud needs your files up-to-date to do conflict detection

Multiple processes accessing the same file
iCloud Document Storage

•One process writing while another is reading is bad
■ How does a process know when it is safe?

• iCloud changes files and then your app must read them
■ How does a process know when it must read?

• iCloud needs your files up-to-date to do conflict detection
■ How does a process know when it must write?

File Coordination

File Coordination

• It is a locking mechanism

File Coordination

• It is a locking mechanism
■ Prevents your app from reading while iCloud writes

File Coordination

• It is a locking mechanism
■ Prevents your app from reading while iCloud writes
■ And vice versa

File Coordination

• It is a locking mechanism
■ Prevents your app from reading while iCloud writes
■ And vice versa

• It is a notification mechanism

File Coordination

• It is a locking mechanism
■ Prevents your app from reading while iCloud writes
■ And vice versa

• It is a notification mechanism
■ Tells your app when iCloud changes have happened

File Coordination

• It is a locking mechanism
■ Prevents your app from reading while iCloud writes
■ And vice versa

• It is a notification mechanism
■ Tells your app when iCloud changes have happened

• It is a triggering mechanism

File Coordination

• It is a locking mechanism
■ Prevents your app from reading while iCloud writes
■ And vice versa

• It is a notification mechanism
■ Tells your app when iCloud changes have happened

• It is a triggering mechanism
■ When iCloud reads or writes, your app gets a chance to do things first

File Coordination

File Coordination

•NSFileCoordinator

File Coordination

•NSFileCoordinator
■ The class you use to do coordinated file access

File Coordination

•NSFileCoordinator
■ The class you use to do coordinated file access

•NSFilePresenter

File Coordination

•NSFileCoordinator
■ The class you use to do coordinated file access

•NSFilePresenter
■ The protocol you implement to hear about coordinated file access

File Coordination

•NSFileCoordinator
■ The class you use to do coordinated file access

•NSFilePresenter
■ The protocol you implement to hear about coordinated file access
■ NSDocument and UIDocument conform to it

File Coordination

•NSFileCoordinator
■ The class you use to do coordinated file access

•NSFilePresenter
■ The protocol you implement to hear about coordinated file access
■ NSDocument and UIDocument conform to it

•OS X 10.7 and iOS 5

File Coordination

•NSFileCoordinator
■ The class you use to do coordinated file access

•NSFilePresenter
■ The protocol you implement to hear about coordinated file access
■ NSDocument and UIDocument conform to it

•OS X 10.7 and iOS 5
•Used by more than just iCloud

Tell us what you are doing, we will tell you when to do it
NSFileCoordinator

- (void)coordinateReadingItemAtURL:(NSURL *)url
 options:(NSFileCoordinatorReadingOptions)options
 error:(NSError **)outError
 byAccessor:(void (^)(NSURL *newURL))reader;
- (void)coordinateWritingItemAtURL:(NSURL *)url
 options:(NSFileCoordinatorWritingOptions)options
 error:(NSError **)outError
 byAccessor:(void (^)(NSURL *newURL))writer;

Tell us what you are doing, we will tell you when to do it
NSFileCoordinator

- (void)coordinateReadingItemAtURL:(NSURL *)url
 options:(NSFileCoordinatorReadingOptions)options
 error:(NSError **)outError
 byAccessor:(void (^)(NSURL *newURL))reader;
- (void)coordinateWritingItemAtURL:(NSURL *)url
 options:(NSFileCoordinatorWritingOptions)options
 error:(NSError **)outError
 byAccessor:(void (^)(NSURL *newURL))writer;

• You pass in a block, we invoke the block

Two ways to use it
NSFilePresenter

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file
■ Hear about the file changing and moving

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file
■ Hear about the file changing and moving
■ Get asked to save changes

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file
■ Hear about the file changing and moving
■ Get asked to save changes
■ Get asked to accommodate deletion

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file
■ Hear about the file changing and moving
■ Get asked to save changes
■ Get asked to accommodate deletion
■ Get asked to relinquish to readers and writers

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file
■ Hear about the file changing and moving
■ Get asked to save changes
■ Get asked to accommodate deletion
■ Get asked to relinquish to readers and writers

• Register a file presenter of an entire directory tree

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file
■ Hear about the file changing and moving
■ Get asked to save changes
■ Get asked to accommodate deletion
■ Get asked to relinquish to readers and writers

• Register a file presenter of an entire directory tree
■ Hear about files changing and moving

Two ways to use it
NSFilePresenter

• Register a file presenter of an individual file
■ Hear about the file changing and moving
■ Get asked to save changes
■ Get asked to accommodate deletion
■ Get asked to relinquish to readers and writers

• Register a file presenter of an entire directory tree
■ Hear about files changing and moving

• You will probably use it both ways

Get notified about an individual file
NSFilePresenter

- (void)presentedItemDidChange;
- (void)presentedItemDidMoveToURL:(NSURL *)newURL;

Get notified about an individual file
NSFilePresenter

- (void)presentedItemDidChange;
- (void)presentedItemDidMoveToURL:(NSURL *)newURL;

Get notified about an individual file
NSFilePresenter

- (void)presentedItemDidChange;
- (void)presentedItemDidMoveToURL:(NSURL *)newURL;

Get told to do important things
NSFilePresenter

- (void)savePresentedItemChangesWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;
- (void)accommodatePresentedItemDeletionWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;

Get told to do important things
NSFilePresenter

- (void)savePresentedItemChangesWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;
- (void)accommodatePresentedItemDeletionWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;

• You register when you first present the corresponding item in the UI

Get told to do important things
NSFilePresenter

- (void)savePresentedItemChangesWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;
- (void)accommodatePresentedItemDeletionWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;

• You register when you first present the corresponding item in the UI

• Stay registered until you are done letting the user view and edit it

Get told to do important things
NSFilePresenter

- (void)savePresentedItemChangesWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;
- (void)accommodatePresentedItemDeletionWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;

•When iCloud needs to write, you get a chance to write first

Get told to do important things
NSFilePresenter

- (void)savePresentedItemChangesWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;
- (void)accommodatePresentedItemDeletionWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;

•When iCloud needs to delete, you get a chance to stop presenting first

Get told to do important things
NSFilePresenter

- (void)savePresentedItemChangesWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;
- (void)accommodatePresentedItemDeletionWithCompletionHandler:
 (void (^)(NSError *errorOrNil))completionHandler;

•When iCloud needs to delete, you get a chance to stop presenting first
• Should deregister your file presenter too

Get asked to relinquish a file
NSFilePresenter

- (void)relinquishPresentedItemToReader:
 (void (^)(void (^reacquirer)(void)))reader;
- (void)relinquishPresentedItemToWriter:
 (void (^)(void (^reacquirer)(void)))writer;

Get asked to relinquish a file
NSFilePresenter

- (void)relinquishPresentedItemToReader:
 (void (^)(void (^reacquirer)(void)))reader;
- (void)relinquishPresentedItemToWriter:
 (void (^)(void (^reacquirer)(void)))writer;

• Your first and last notification that something is happening

Get asked to relinquish a file
NSFilePresenter

- (void)relinquishPresentedItemToReader:
 (void (^)(void (^reacquirer)(void)))reader;
- (void)relinquishPresentedItemToWriter:
 (void (^)(void (^reacquirer)(void)))writer;

• Your first and last notification that something is happening
•Delineate batches of the other messages

Get notified about things in your directory
NSFilePresenter

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url;
- (void)presentedSubitemAtURL:(NSURL *)oldURL didMoveToURL:(NSURL *)newURL;

Get notified about things in your directory
NSFilePresenter

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url;
- (void)presentedSubitemAtURL:(NSURL *)oldURL didMoveToURL:(NSURL *)newURL;

Get notified about things in your directory
NSFilePresenter

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url;
- (void)presentedSubitemAtURL:(NSURL *)oldURL didMoveToURL:(NSURL *)newURL;

Get notified about things in your directory
NSFilePresenter

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url;
- (void)presentedSubitemAtURL:(NSURL *)oldURL didMoveToURL:(NSURL *)newURL;

• (Ignore those other “subitem” methods you see in the header file)

A Shoebox App

1 2

User Adds an Item

1 2

User Adds an Item

1 2 3

3

App Writes a New File
Using NSFileCoordinator

1 2 3

3

App Writes a New File
Using NSFileCoordinator

1 2

3

Writing a New File with NSFileCoordinator

- (BOOL)saveAndReturnError:(NSError **)outError {
 NSURL *url = [self url];
 __block BOOL didWrite = NO;
 NSFileCoordinator* fc = [[NSFileCoordinator alloc]
 initWithFilePresenter:self];
 [fc coordinateWritingItemAtURL:url
 options:NSFileCoordinatorWritingForReplacing
 error:outError
 byAccessor:^(NSURL *updatedURL) {
 NSFileWrapper *fw = [self fileWrapper];
 didWrite = [fw writeToURL:updatedURL options:0
 originalContentsURL:nil error:outError];
 }];
 return didWrite;
}

Writing a New File with NSFileCoordinator

- (BOOL)saveAndReturnError:(NSError **)outError {
 NSURL *url = [self url];
 __block BOOL didWrite = NO;
 NSFileCoordinator* fc = [[NSFileCoordinator alloc]
 initWithFilePresenter:self];
 [fc coordinateWritingItemAtURL:url
 options:NSFileCoordinatorWritingForReplacing
 error:outError
 byAccessor:^(NSURL *updatedURL) {
 NSFileWrapper *fw = [self fileWrapper];
 didWrite = [fw writeToURL:updatedURL options:0
 originalContentsURL:nil error:outError];
 }];
 return didWrite;
}

Writing a New File with NSFileCoordinator

- (BOOL)saveAndReturnError:(NSError **)outError {
 NSURL *url = [self url];
 __block BOOL didWrite = NO;
 NSFileCoordinator* fc = [[NSFileCoordinator alloc]
 initWithFilePresenter:self];
 [fc coordinateWritingItemAtURL:url
 options:NSFileCoordinatorWritingForReplacing
 error:outError
 byAccessor:^(NSURL *updatedURL) {
 NSFileWrapper *fw = [self fileWrapper];
 didWrite = [fw writeToURL:updatedURL options:0
 originalContentsURL:nil error:outError];
 }];
 return didWrite;
}

iCloud Uploads the File

1 2

3

3

3

iCloud Uploads the File

1 2

3

3

3

Same App Running on iPad

1 2

3

3

3

1 2

iCloud Downloads File Metadata

1 2

3

3

3

1 2

3

iCloud Downloads File Metadata

1 2

3

3

3

1 2

3

App’s File Presenter Receives a Message

1 2

3

3

3

1 2

3

Responding to a New File

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url {
 NSFileCoordinator* fc = [[NSFileCoordinator alloc]
 initWithFilePresenter:self];
 [fc coordinateReadingItemAtURL:url options:0 error:outError
 byAccessor:^(NSURL *updatedURL) {
 Picture *picture = [self pictureAtURL:updatedURL];
 if (picture) {
 [picture loadFromURL:updatedURL];
 } else {
 [self addPictureWithURL:updatedURL];
 }
 }];
}

Responding to a New File

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url {
 NSFileCoordinator* fc = [[NSFileCoordinator alloc]
 initWithFilePresenter:self];
 [fc coordinateReadingItemAtURL:url options:0 error:outError
 byAccessor:^(NSURL *updatedURL) {
 Picture *picture = [self pictureAtURL:updatedURL];
 if (picture) {
 [picture loadFromURL:updatedURL];
 } else {
 [self addPictureWithURL:updatedURL];
 }
 }];
}

Responding to a New File

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url {
 NSFileCoordinator* fc = [[NSFileCoordinator alloc]
 initWithFilePresenter:self];
 [fc coordinateReadingItemAtURL:url options:0 error:outError
 byAccessor:^(NSURL *updatedURL) {
 Picture *picture = [self pictureAtURL:updatedURL];
 if (picture) {
 [picture loadFromURL:updatedURL];
 } else {
 [self addPictureWithURL:updatedURL];
 }
 }];
}

App’s Coordinated Read Triggers Downloading

1 2

3

3

3

1 2

3

3

App’s Coordinated Read Triggers Downloading

1 2

3

3

3

1 2

33

Reading the New File

- (void)presentedSubitemDidChangeAtURL:(NSURL *)url {
 NSFileCoordinator* fc = [[NSFileCoordinator alloc]
 initWithFilePresenter:self];
 [fc coordinateReadingItemAtURL:url options:0 error:outError
 byAccessor:^(NSURL *updatedURL) {
 Picture *picture = [self pictureAtURL:updatedURL];
 if (picture) {
 [picture loadFromURL:updatedURL];
 } else {
 [self addPictureWithURL:updatedURL];
 }
 }];
}

App Displays the New Item

1 2

3

3

3

1 2

3

App Displays the New Item

1 2

3

3

3

1 2 3

3

iPad and Mac Show the Same Items

1 2 3

1 2 3

File Versions

File Versions

File Versions

•Users can edit on multiple devices at once

File Versions

•Users can edit on multiple devices at once
• Conflicts!

File Versions

•Users can edit on multiple devices at once
• Conflicts!
• iCloud senses conflicts

■ Picks a winner
■ Puts the winning contents in the file
■ Even when your app is not running

■ Every file always has something decent in it

File Versions

•Users can edit on multiple devices at once
• Conflicts!
• iCloud senses conflicts

■ Picks a winner
■ Puts the winning contents in the file
■ Even when your app is not running

■ Every file always has something decent in it

• iCloud does not resolve conflicts

File Versions

• Your app must resolve conflicts

File Versions

• Your app must resolve conflicts
•Might have to look at losers

File Versions

• Your app must resolve conflicts
•Might have to look at losers
•Where did iCloud leave them?

It is what conflict losers become
NSFileVersion

+ (NSFileVersion *)currentVersionOfItemAtURL:(NSURL *)url;
+ (NSArray *)otherVersionsOfItemAtURL:(NSURL *)url;
+ (NSArray *)unresolvedConflictVersionsOfItemAtURL:(NSURL *)url;

It is what conflict losers become
NSFileVersion

+ (NSFileVersion *)currentVersionOfItemAtURL:(NSURL *)url;
+ (NSArray *)otherVersionsOfItemAtURL:(NSURL *)url;
+ (NSArray *)unresolvedConflictVersionsOfItemAtURL:(NSURL *)url;

It is what conflict losers become
NSFileVersion

+ (NSFileVersion *)currentVersionOfItemAtURL:(NSURL *)url;
+ (NSArray *)otherVersionsOfItemAtURL:(NSURL *)url;
+ (NSArray *)unresolvedConflictVersionsOfItemAtURL:(NSURL *)url;

You can present them to the user
NSFileVersion

• Properties you can use
URL
localizedName
localizedNameOfSavingComputer
modificationDate

It is what you use to resolve conflicts
NSFileVersion

- (NSURL *)replaceItemAtURL:(NSURL *)url
 options:(NSFileVersionReplacingOptions)options
 error:(NSError **)error;

•Make a real file out of a version

It is what you use to resolve conflicts
NSFileVersion

- (NSURL *)replaceItemAtURL:(NSURL *)url
 options:(NSFileVersionReplacingOptions)options
 error:(NSError **)error;

•Make a real file out of a version
•Maybe replace the file that contains the current version

It is what you use to resolve conflicts
NSFileVersion

- (NSURL *)replaceItemAtURL:(NSURL *)url
 options:(NSFileVersionReplacingOptions)options
 error:(NSError **)error;

•Make a real file out of a version
•Maybe replace the file that contains the current version
•Maybe make a new file off to the side

It is what you use to resolve conflicts
NSFileVersion

•Another property you can use
resolved

It is what you use to resolve conflicts
NSFileVersion

•Another property you can use
resolved

• This one is not read-only

It is what you use to resolve conflicts
NSFileVersion

•Another property you can use
resolved

• This one is not read-only
• Setting it to YES tells iCloud it can discard the conflict loser lazily

Conflicts can be sensed at any time
NSFilePresenter Messages About Versions

- (void)presentedItemDidGainVersion:(NSFileVersion *)version;
- (void)presentedSubitemAtURL:(NSURL *)url
 didGainVersion:(NSFileVersion *)version

Conflicts can be sensed at any time
NSFilePresenter Messages About Versions

- (void)presentedItemDidGainVersion:(NSFileVersion *)version;
- (void)presentedSubitemAtURL:(NSURL *)url
 didGainVersion:(NSFileVersion *)version

•One more property you can use
conflict

Conflicts can be resolved at any time
NSFilePresenter Messages About Versions

- (void)presentedItemDidResolveConflictVersion:(NSFileVersion *)version;
- (void)presentedSubitemAtURL:(NSURL *)url
 didResolveConflictVersion:(NSFileVersion *)version;

Conflicts can be resolved at any time
NSFilePresenter Messages About Versions

- (void)presentedItemDidResolveConflictVersion:(NSFileVersion *)version;
- (void)presentedSubitemAtURL:(NSURL *)url
 didResolveConflictVersion:(NSFileVersion *)version;

• The user might have resolved the conflict on another device

iPad in Airplane Mode

1 2 3

1 2 3

User Changes an Item on Mac

1 2 3

1 2 3

3

User Changes an Item on Mac

1 2

1 2 3

3

App Writes Changed File

1 2

1 2 3

3

3

App Writes Changed File

1 2

1 2 3
3

3

iCloud Uploads the Change

1 2

1 2 3
33

3

iCloud Uploads the Change

1 2

1 2 3
3

3

3

User Changes the Same Item on iPad

1 2

1 2
3

3

3

3

User Changes the Same Item on iPad

1 2

1 2
3

3

3

App Writes Changed File

1 2

31 2

3

3

33

31 2

3

App Writes Changed File

1 2

3

3

3

1 2

3

3

3

User Takes iPad out of Airplane Mode

Versions Are Uploaded and Downloaded

1 2

3

3

3

3

3

Versions Are Uploaded and Downloaded

1 2

3

3

3

33

App’s File Presenter Receives a Message

1 2

3

3

3

33

Responding to a Conflict

- (void)presentedSubitemAtURL:(NSURL *)url
 didGainVersion:(NSFileVersion *)version {
 if (version.isConflict) {
 Picture *picture = [self pictureAtURL:url];
 if (picture) {
 [self presentConflictVersion:version forPicture:picture];
 }
 }
}

3

App Resolved the Conflict

1 2

3

3

3

3

3

3

App Resolved the Conflict

1 2

3

3

3

Conflict Resolution Propagates to the Cloud

32

3

3

3

1

Conflict Resolution Propagates to the Cloud

32

3

3

1

Conflict Resolution Propagates to the Mac

31 2

3

3

31 2

33

Conflict Resolution Propagates to the Mac

31 2

3

3

31 2

33

Conflict Resolution Propagates to the Mac

31 2

3

3

31 2

3

Conflict Resolution Propagates to the Mac

31 2

3

3

31 2

iPad and Mac Show the Same Items

31 2

Tips and Advice

App Startup

•Use -[NSFileManager ubiquityIdentityToken] to see if iCloud is on

App Startup

•Use -[NSFileManager ubiquityIdentityToken] to see if iCloud is on
■ Fast enough to use on the main thread

App Startup

•Use -[NSFileManager ubiquityIdentityToken] to see if iCloud is on
■ Fast enough to use on the main thread
■ -URLForUbiquityContainerIdentifier: is not

App Startup

•Use -[NSFileManager ubiquityIdentityToken] to see if iCloud is on
■ Fast enough to use on the main thread
■ -URLForUbiquityContainerIdentifier: is not

• Listen for NSUbiquityIdentityDidChangeNotification

App Startup

•Use -[NSFileManager ubiquityIdentityToken] to see if iCloud is on
■ Fast enough to use on the main thread
■ -URLForUbiquityContainerIdentifier: is not

• Listen for NSUbiquityIdentityDidChangeNotification
•New in OS X 10.8 and iOS 6

Reading Files

• Coordinated reading can trigger downloading

Reading Files

• Coordinated reading can trigger downloading
■ Can take a while

Reading Files

• Coordinated reading can trigger downloading
■ Can take a while
■ Do not do it on the main thread

Reading Files

• Coordinated reading can trigger downloading
■ Can take a while
■ Do not do it on the main thread

•Do good error checking

Reading Files

• Coordinated reading can trigger downloading
■ Can take a while
■ Do not do it on the main thread

•Do good error checking
■ The file might be deleted while you are waiting to read

Reading Files

• Coordinated reading can trigger downloading
■ Can take a while
■ Do not do it on the main thread

•Do good error checking
■ The file might be deleted while you are waiting to read
■ Your app is about to get a notification about it

Resolving Conflicts

•Accessing a file’s versions is like accessing its contents

Resolving Conflicts

•Accessing a file’s versions is like accessing its contents
•Do coordinated reading when enumerating or reading versions

Resolving Conflicts

•Accessing a file’s versions is like accessing its contents
•Do coordinated reading when enumerating or reading versions
•Do coordinated writing when adding, removing, or resolving versions

When iCloud Deletes Files

• Your NSFilePresenter might be sent
-accommodatePresentedItemDeletionWithCompletionHandler:

When iCloud Deletes Files

• Your NSFilePresenter might be sent
-accommodatePresentedItemDeletionWithCompletionHandler:
•And then the file actually gets moved

■ But you only notice if you keep watching the file

When iCloud Deletes Files

• Your NSFilePresenter might be sent
-accommodatePresentedItemDeletionWithCompletionHandler:
•And then the file actually gets moved

■ But you only notice if you keep watching the file

•Do not take advantage of implementation details you will see if you
keep watching

Save Settings in the Right Place

• Preferences
■ Scroll bar and window positions
■ All of our devices support different screen sizes

Save Settings in the Right Place

• Preferences
■ Scroll bar and window positions
■ All of our devices support different screen sizes

• Some discardable settings are OK
■ For example, Keynote’s current slide
■ Saving when you’re saving for real changes is OK

Save Settings in the Right Place

• Some things are never OK
■ Time stamps

Save Settings in the Right Place

• Some things are never OK
■ Time stamps

• Keep them out of the cloud
■ False conflicts
■ Sync loops

File Format Compatibility

• Shoeboxes stay around forever

File Format Compatibility

• Shoeboxes stay around forever
•Do things that work on both platforms

File Format Compatibility

• Shoeboxes stay around forever
•Do things that work on both platforms
•Different versions of your app running at the same time

■ Editing with old versions of your app

Summary

•Use NSFileCoordinator when you read and write files
•Use NSFilePresenter to hear about changes that happened
•Use NSFileVersion to deal with conflicts

More Information

Mike Jurewitz
Developer Tools and Frameworks Evangelist
jurewitz@apple.com

iCloud Design Guide
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Using iCloud with UIDocument Marina
Wednesday 10:15AM

Using iCloud with NSDocument Marina
Wednesday 3:15PM

Using iCloud with Core Data Mission
Wednesday 4:30PM

Labs

iCloud Storage Lab Essentials Lab B
Thursday 4:30PM

iCloud Storage Lab Essentials Lab B
Friday 11:30AM

