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Introduction

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling



Performance Bug Workflow

Form a hypothesis

Make a change

Measure the problem

Profile with tools
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Views, Layers, and Animations

• Every UIView is backed by a CALayer
• View layout is really layer layout
• -drawRect: draws into a CALayer backing store
• Layer properties and animations handled by render server
• Changes happen in CA::Transaction::commit()

Backing StoreCALayer
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backgroundColor



Stages of an Animation
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Creating an Animation

view = [[InsideView alloc] initWithFrame:frame];
view.transform = CGAffineTransformMakeScale(0.01, 0.01);
[UIView animateWithDuration:0.5 animations:^{
  [self addSubview:view];
  view.transform = CGAffineTransformIdentity;
}];



Creating an Animation

view = [[InsideView alloc] initWithFrame:frame];
view.transform = CGAffineTransformMakeScale(0.01, 0.01);
[UIView animateWithDuration:0.5 animations:^{
  [self addSubview:view];
  view.transform = CGAffineTransformIdentity;
}];



Preparing the Animation

• Layout sets up the views
•Display draws the views
• Prepare does CoreAnimation work
• Commit packages up layers and sends them to render server



Layout

•Often has expensive view creation and layer graph management
•May need to do expensive data lookup
•May block on I/O or work done in another thread or process
• CPU (and sometimes I/O) bound



Display

• -drawRect: for any class where you’ve overridden it
• String drawing or other expensive drawing
•Usually CPU bound



Prepare

• CA does non-drawRect: work like image decoding here
•Watch out for work dispatched to another thread



Commit

• Layers are packaged up and sent to render server over IPC
•May be expensive if layer tree is especially complex



Rendering the Animation

•Usually GPU bound
• Render server CPU work contends with app work
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Layout
What Delays an Animation

• Slow layout can be caused by
■ Complex hierarchy
■ Lazy construction of views
■ Database or flash storage access 
to populate views



Drawing
What Delays an Animation

• Slow drawing can be
■  -drawRect: 
■ String drawing
■ Image decoding



Improving Responsiveness

•Do less setup
• Reduce drawing
• Be smart with images
•  -drawsAsynchronously
• Speculative preparation



• Try to avoid CPU-heavy or blocking operations during layout
•Use in-memory caches
• Ensure database has appropriate indices for perf-critical lookups
•Always reuse cells and views whenever possible

Do less setup
Improving Responsiveness



•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:
• Implement smart -drawRect: and use -setNeedsDisplayInRect:
•When possible, use CALayer properties instead

Reduce drawing
Improving Responsiveness
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•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:
• Implement smart -drawRect: and use -setNeedsDisplayInRect:
•When possible, use CALayer properties instead
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Reduce drawing—Using CALayer properties
Improving Responsiveness

-(void)drawRect:(CGRect)rect {
    [[UIColor redColor] setFill];
    UIRectFill([self bounds]);
}

[myView setBackgroundColor:[UIColor redColor]];
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Reduce drawing—Using CALayer properties
Improving Responsiveness

-(void)drawRect:(CGRect)rect {
    [[UIColor redColor] setFill];
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}
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Images and Layers
Improving Responsiveness
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UIImageView vs -[UIImage draw...]
Improving Responsiveness

•Use UIImageView instead of drawing image directly (usually)
■ CA can get the bitmap from the CGImage directly
■ Allow blending to happen on GPU
■ Built-in bitmap caching



Images—General tips
Improving Responsiveness

• Size images appropriately for the view
■ Decoded image uses 4 bytes per pixel
■ Keep thumbnails as separate images

•Use images without alpha if you can
•Use the appropriate image format for 
the type of image



Image formats—PNG
Improving Responsiveness

• Xcode-optimized PNG should be 
your default format for assets
•Great for artwork with lots of solid 
color, gradients, or repeated patterns
• Lossless compression
• Very noisy images and photos have 
poor compression and are slow
• Rule of thumb—If PNG has good 
compression, use it



PNG optimizations
Improving Responsiveness

• Xcode does some important PNG optimizations, possibly including
■ Premultiply alpha, and byte-swap
■ Turn off some PNG compression modes
■ Allow concurrent decoding of a single image

•Optimizations are primarily for performance
• Xcode won’t do lossy or not-known-safe optimizations
•Other image optimizers may help, but do Xcode optimization too



Image Formats—JPEG
Improving Responsiveness

•Great compression, small files
•Quality is good for photos or 
noisy artwork
• Relatively fast to decode
• Sometimes noticeable artifacts
• Can’t have alpha



Image formats—Other
Improving Responsiveness

•Generally, don’t use anything else
• PNG and JPEG have been 
optimized for iOS and should get 
even better
•Wins in decode time from other 
formats usually outweighed by I/O
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Images—Caching
Improving Responsiveness

•When drawing into a bitmap context
■  +[UIImage imageNamed:] caches in purgeable memory and in 
image table

■  +[UIImage imageWithContentsOfFile:] does not

•All CGImages cache when set as contents of a layer
•  kCGImageSourceShouldCache if you create CGImages directly
•Generally, don’t cache images yourself



- (void)drawRect:(CGRect)rect
{
    [self.image drawInRect:[self bounds] 
blendMode:kCGBlendModeNormal alpha:1.0];
}

Efficiently using images
Improving Responsiveness
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- (void)drawRect:(CGRect)rect
{
    [self.image drawInRect:[self bounds] 
blendMode:kCGBlendModeNormal alpha:1.0];
}

myView.layer.contents = (id)[self.image 
CGImage];
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-drawsAsynchronously
Improving Responsiveness

• CG will queue up draw commands to have the GPU fill backing store
•High setup cost
•High fixed memory hit
•Good for lots of drawing into a single view
•Always test performance before enabling

myView.layer.drawsAsynchronously = YES;



• Look up data for upcoming rows, and stuff into cache
•Do image decoding or drawing in a background thread
• Some work will be wasted, and caching means a memory hit
•Not simple to do this safely and performantly

Speculative work
Improving Responsiveness



Demo
Expensive drawing in a painting app
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Smooth Animation Requirements



60 fps
Smooth Animation Requirements



60 fps
16 ms/frame

Smooth Animation Requirements
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3. Render each frame
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• CG drawing and ImageIO work is CPU bound
• Render server does work on CPU per layer, per frame
• Rendering itself is GPU bound
• Check device utilization in OpenGL ES instrument

CPU bound vs. GPU bound



• 100% device utilization is a good indicator of GPU-bound animation

CPU bound vs. GPU bound



Color Blended Layers
Core Animation Instrument

•Green means opaque, red blended
•Deeper red means more blending
• Try to figure out why there is so 
much, or flatten view hierarchy
• Starting with iPhone 3GS, GPU can 
handle overdraw of ~2.5 at 60fps



Flattening

• Flattening view hierarchy can help 
if you’re GPU bound
•Not a magic solution!

■ More CPU up-front in client for 
less render server work

■ Hurts responsiveness

• Some CPU-bound scenarios can 
also benefit
•Measure, test, and iterate
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Strategies for flattening
Flattening

•Draw into a single view
•Use -setShouldRasterize: but with caveats

■ Limited cache space, depends on device
■ Cache invalidated when contents change
■ Verify with “Color cache hits/misses” in CoreAnimation instrument
■ Sometimes makes not-GPU-bound scenarios worse



Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a 
separate offscreen context
•Most often needed for masking, 
but might be avoidable
•Also happens at least once 
with -setShouldRasterize



Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a 
separate offscreen context
•Most often needed for masking, 
but might be avoidable
•Also happens at least once 
with -setShouldRasterize



Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a 
separate offscreen context
•Most often needed for masking, 
but might be avoidable
•Also happens at least once 
with -setShouldRasterize



Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a 
separate offscreen context
•Most often needed for masking, 
but might be avoidable
•Also happens at least once 
with -setShouldRasterize



Graphics and Animations

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling



~16ms

How Scrolling Works

• Each scroll update is its own animation



~16ms

1. Calculate new scroll position

How Scrolling Works

• Each scroll update is its own animation



~16ms

1. Calculate new scroll position

2. Prepare and commit animation (cell layout and drawing)

How Scrolling Works

• Each scroll update is its own animation



~16ms

1. Calculate new scroll position

2. Prepare and commit animation (cell layout and drawing)

3. Render frame

How Scrolling Works

• Each scroll update is its own animation



Table View Scrolling

•Must complete one new row minimum in 16ms
• Fast scrolling means possibly a full screen update in a single frame!



Preparing Cells Quickly

• Reuse cells and views
•Minimize layout and drawing time
• Speculative work
• Flatten view hierarchy, but test and iterate



Demo
Finding a scrolling bottleneck



Final Thoughts

• Test animations on a range of devices
■ Not just a matter of raw performance—limitations are different

•Different scenarios call for different solutions
•Measure, test, and iterate



More Information

Michael Jurewitz
Performance Evangelist Extraordinaire
jury@apple.com

Apple Developer Forums
http://devforums.apple.com



Related Sessions

Learning Instruments Presidio
Wednesday 4:30PM

iOS App Performance: Responsiveness Presidio
Thursday 11:30AM

iOS App Performance: Memory Presidio
Thursday 4:30PM



Labs

OS X Performance Lab Developer Tools Lab A
Friday 9:00AM



Summary

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling




