
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Graphics and Animations

Session 238

iOS App Performance

Dan Crosby
iOS Performance Team

Introduction

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling

Performance Bug Workflow

Form a hypothesis

Make a change

Measure the problem

Profile with tools

Graphics and Animations

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling

Views, Layers, and Animations

• Every UIView is backed by a CALayer
• View layout is really layer layout
• -drawRect: draws into a CALayer backing store
• Layer properties and animations handled by render server
• Changes happen in CA::Transaction::commit()

Backing StoreCALayer

contents

MyView

layer

backgroundColor

Stages of an Animation

1. Create animation and update view hierarchy

Stages of an Animation

1. Create animation and update view hierarchy
2. Prepare and commit animation

Stages of an Animation

1. Create animation and update view hierarchy
2. Prepare and commit animation

3. Render each frame

Stages of an Animation

Creating an Animation

view = [[InsideView alloc] initWithFrame:frame];
view.transform = CGAffineTransformMakeScale(0.01, 0.01);
[UIView animateWithDuration:0.5 animations:^{
 [self addSubview:view];
 view.transform = CGAffineTransformIdentity;
}];

Creating an Animation

view = [[InsideView alloc] initWithFrame:frame];
view.transform = CGAffineTransformMakeScale(0.01, 0.01);
[UIView animateWithDuration:0.5 animations:^{
 [self addSubview:view];
 view.transform = CGAffineTransformIdentity;
}];

Preparing the Animation

• Layout sets up the views
•Display draws the views
• Prepare does CoreAnimation work
• Commit packages up layers and sends them to render server

Layout

•Often has expensive view creation and layer graph management
•May need to do expensive data lookup
•May block on I/O or work done in another thread or process
• CPU (and sometimes I/O) bound

Display

• -drawRect: for any class where you’ve overridden it
• String drawing or other expensive drawing
•Usually CPU bound

Prepare

• CA does non-drawRect: work like image decoding here
•Watch out for work dispatched to another thread

Commit

• Layers are packaged up and sent to render server over IPC
•May be expensive if layer tree is especially complex

Rendering the Animation

•Usually GPU bound
• Render server CPU work contends with app work

Graphics and Animations

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling

1. Create animation and update view hierarchy
2. Prepare and commit animation

3. Render each frame

Responsiveness

1. Create animation and update view hierarchy
2. Prepare and commit animation

3. Render each frame

Responsiveness

Layout
What Delays an Animation

• Slow layout can be caused by
■ Complex hierarchy
■ Lazy construction of views
■ Database or flash storage access
to populate views

Drawing
What Delays an Animation

• Slow drawing can be
■ -drawRect:
■ String drawing
■ Image decoding

Improving Responsiveness

•Do less setup
• Reduce drawing
• Be smart with images
• -drawsAsynchronously
• Speculative preparation

• Try to avoid CPU-heavy or blocking operations during layout
•Use in-memory caches
• Ensure database has appropriate indices for perf-critical lookups
•Always reuse cells and views whenever possible

Do less setup
Improving Responsiveness

•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:
• Implement smart -drawRect: and use -setNeedsDisplayInRect:
•When possible, use CALayer properties instead

Reduce drawing
Improving Responsiveness

Backing StoreCALayer

contents

MyView

layer

backgroundColor

-drawRect:

Dirty

•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:
• Implement smart -drawRect: and use -setNeedsDisplayInRect:
•When possible, use CALayer properties instead

Reduce drawing
Improving Responsiveness

Backing StoreCALayer

contents

MyView

layer

backgroundColor

-drawRect:

•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:

Reduce drawing
Improving Responsiveness

Backing StoreCALayer

contents

MyView

layer

backgroundColor

-drawRect:

•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:

Reduce drawing
Improving Responsiveness

CALayer

contents

MyView

layer

backgroundColor

•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:
• Implement smart -drawRect: and use -setNeedsDisplayInRect:

Reduce drawing
Improving Responsiveness

CALayer

contents

MyView

layer

backgroundColor

•Only call -setNeedsDisplay when needed
•Avoid overriding -drawRect:
• Implement smart -drawRect: and use -setNeedsDisplayInRect:
•When possible, use CALayer properties instead

Reduce drawing
Improving Responsiveness

CALayer

contents

MyView

layer

backgroundColor

Reduce drawing—Using CALayer properties
Improving Responsiveness

-(void)drawRect:(CGRect)rect {
 [[UIColor redColor] setFill];
 UIRectFill([self bounds]);
}

[myView setBackgroundColor:[UIColor redColor]];

Reduce drawing—Using CALayer properties
Improving Responsiveness

-(void)drawRect:(CGRect)rect {
 [[UIColor redColor] setFill];
 UIRectFill([self bounds]);
}

[myView setBackgroundColor:[UIColor redColor]];

Reduce drawing—Using CALayer properties
Improving Responsiveness

-(void)drawRect:(CGRect)rect {
 [[UIColor redColor] setFill];
 UIRectFill([self bounds]);
}

[myView setBackgroundColor:[UIColor redColor]];

Images and Layers
Improving Responsiveness

UIImage

UIImageView

Images and Layers
Improving Responsiveness

•UIImage is a lightweight wrapper around CGImage

UIImage

CGImageUIImageView

Images and Layers
Improving Responsiveness

•UIImage is a lightweight wrapper around CGImage

UIImage

CGImage

CALayer

UIImageView

Images and Layers
Improving Responsiveness

•UIImage is a lightweight wrapper around CGImage
• CALayer also has CGImage as contents

UIImage

CGImage

CALayer

UIImageView

Images and Layers
Improving Responsiveness

•UIImage is a lightweight wrapper around CGImage
• CALayer also has CGImage as contents
• CGImage backed by file or data, eventually by bitmap

UIImage

CGImage

CALayer

UIImageView

Images and Layers
Improving Responsiveness

•UIImage is a lightweight wrapper around CGImage
• CALayer also has CGImage as contents
• CGImage backed by file or data, eventually by bitmap

UIImage

CGImage

CALayer

UIImageView

Images and Layers
Improving Responsiveness

•UIImage is a lightweight wrapper around CGImage
• CALayer also has CGImage as contents
• CGImage backed by file or data, eventually by bitmap

UIImage

CGImage

CALayer

UIImageView

UIImageView vs -[UIImage draw...]
Improving Responsiveness

•Use UIImageView instead of drawing image directly (usually)
■ CA can get the bitmap from the CGImage directly
■ Allow blending to happen on GPU
■ Built-in bitmap caching

Images—General tips
Improving Responsiveness

• Size images appropriately for the view
■ Decoded image uses 4 bytes per pixel
■ Keep thumbnails as separate images

•Use images without alpha if you can
•Use the appropriate image format for
the type of image

Image formats—PNG
Improving Responsiveness

• Xcode-optimized PNG should be
your default format for assets
•Great for artwork with lots of solid
color, gradients, or repeated patterns
• Lossless compression
• Very noisy images and photos have
poor compression and are slow
• Rule of thumb—If PNG has good
compression, use it

PNG optimizations
Improving Responsiveness

• Xcode does some important PNG optimizations, possibly including
■ Premultiply alpha, and byte-swap
■ Turn off some PNG compression modes
■ Allow concurrent decoding of a single image

•Optimizations are primarily for performance
• Xcode won’t do lossy or not-known-safe optimizations
•Other image optimizers may help, but do Xcode optimization too

Image Formats—JPEG
Improving Responsiveness

•Great compression, small files
•Quality is good for photos or
noisy artwork
• Relatively fast to decode
• Sometimes noticeable artifacts
• Can’t have alpha

Image formats—Other
Improving Responsiveness

•Generally, don’t use anything else
• PNG and JPEG have been
optimized for iOS and should get
even better
•Wins in decode time from other
formats usually outweighed by I/O

Image formats—Other
Improving Responsiveness

•Generally, don’t use anything else
• PNG and JPEG have been
optimized for iOS and should get
even better
•Wins in decode time from other
formats usually outweighed by I/O

Images—Caching
Improving Responsiveness

•When drawing into a bitmap context
■ +[UIImage imageNamed:] caches in purgeable memory and in
image table

■ +[UIImage imageWithContentsOfFile:] does not

•All CGImages cache when set as contents of a layer
• kCGImageSourceShouldCache if you create CGImages directly
•Generally, don’t cache images yourself

- (void)drawRect:(CGRect)rect
{
 [self.image drawInRect:[self bounds]
blendMode:kCGBlendModeNormal alpha:1.0];
}

Efficiently using images
Improving Responsiveness

- (void)drawRect:(CGRect)rect
{
 [self.image drawInRect:[self bounds]
blendMode:kCGBlendModeNormal alpha:1.0];
}

myView.layer.contents = (id)[self.image
CGImage];

Efficiently using images
Improving Responsiveness

- (void)drawRect:(CGRect)rect
{
 [self.image drawInRect:[self bounds]
blendMode:kCGBlendModeNormal alpha:1.0];
}

myView.layer.contents = (id)[self.image
CGImage];

Efficiently using images
Improving Responsiveness

-drawsAsynchronously
Improving Responsiveness

• CG will queue up draw commands to have the GPU fill backing store
•High setup cost
•High fixed memory hit
•Good for lots of drawing into a single view
•Always test performance before enabling

myView.layer.drawsAsynchronously = YES;

• Look up data for upcoming rows, and stuff into cache
•Do image decoding or drawing in a background thread
• Some work will be wasted, and caching means a memory hit
•Not simple to do this safely and performantly

Speculative work
Improving Responsiveness

Demo
Expensive drawing in a painting app

Graphics and Animations

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling

Smooth Animation Requirements

60 fps
Smooth Animation Requirements

60 fps
16 ms/frame

Smooth Animation Requirements

1. Create animation and update view hierarchy
2. Prepare and commit animation

3. Render each frame

Smoothness

1. Create animation and update view hierarchy
2. Prepare and commit animation

3. Render each frame

Smoothness

• CG drawing and ImageIO work is CPU bound
• Render server does work on CPU per layer, per frame
• Rendering itself is GPU bound
• Check device utilization in OpenGL ES instrument

CPU bound vs. GPU bound

• 100% device utilization is a good indicator of GPU-bound animation

CPU bound vs. GPU bound

Color Blended Layers
Core Animation Instrument

•Green means opaque, red blended
•Deeper red means more blending
• Try to figure out why there is so
much, or flatten view hierarchy
• Starting with iPhone 3GS, GPU can
handle overdraw of ~2.5 at 60fps

Flattening

• Flattening view hierarchy can help
if you’re GPU bound
•Not a magic solution!

■ More CPU up-front in client for
less render server work

■ Hurts responsiveness

• Some CPU-bound scenarios can
also benefit
•Measure, test, and iterate

Flattening

• Flattening view hierarchy can help
if you’re GPU bound
•Not a magic solution!

■ More CPU up-front in client for
less render server work

■ Hurts responsiveness

• Some CPU-bound scenarios can
also benefit
•Measure, test, and iterate

Strategies for flattening
Flattening

•Draw into a single view
•Use -setShouldRasterize: but with caveats

■ Limited cache space, depends on device
■ Cache invalidated when contents change
■ Verify with “Color cache hits/misses” in CoreAnimation instrument
■ Sometimes makes not-GPU-bound scenarios worse

Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a
separate offscreen context
•Most often needed for masking,
but might be avoidable
•Also happens at least once
with -setShouldRasterize

Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a
separate offscreen context
•Most often needed for masking,
but might be avoidable
•Also happens at least once
with -setShouldRasterize

Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a
separate offscreen context
•Most often needed for masking,
but might be avoidable
•Also happens at least once
with -setShouldRasterize

Offscreen Rendering
Core Animation Instrument

• Yellow means drawn into a
separate offscreen context
•Most often needed for masking,
but might be avoidable
•Also happens at least once
with -setShouldRasterize

Graphics and Animations

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling

~16ms

How Scrolling Works

• Each scroll update is its own animation

~16ms

1. Calculate new scroll position

How Scrolling Works

• Each scroll update is its own animation

~16ms

1. Calculate new scroll position

2. Prepare and commit animation (cell layout and drawing)

How Scrolling Works

• Each scroll update is its own animation

~16ms

1. Calculate new scroll position

2. Prepare and commit animation (cell layout and drawing)

3. Render frame

How Scrolling Works

• Each scroll update is its own animation

Table View Scrolling

•Must complete one new row minimum in 16ms
• Fast scrolling means possibly a full screen update in a single frame!

Preparing Cells Quickly

• Reuse cells and views
•Minimize layout and drawing time
• Speculative work
• Flatten view hierarchy, but test and iterate

Demo
Finding a scrolling bottleneck

Final Thoughts

• Test animations on a range of devices
■ Not just a matter of raw performance—limitations are different

•Different scenarios call for different solutions
•Measure, test, and iterate

More Information

Michael Jurewitz
Performance Evangelist Extraordinaire
jury@apple.com

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Learning Instruments Presidio
Wednesday 4:30PM

iOS App Performance: Responsiveness Presidio
Thursday 11:30AM

iOS App Performance: Memory Presidio
Thursday 4:30PM

Labs

OS X Performance Lab Developer Tools Lab A
Friday 9:00AM

Summary

• Introduction to Animations
• Responsive Animations
• Smooth Animations
• Scrolling

