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“I love this app, but it always 
crashes after a few minutes.”

★☆☆☆☆
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iOS Memory Fundamentals
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Incident Identifier: C6CCECE6-E2B8-4426-B4D1-BE56599AE468
CrashReporter Key:   4b2eb6dfff066742d067aa5d505790a9338464cb
Hardware Model:      iPhone2,1
OS Version:          iPhone OS 6.0
UDID:                e1cbbbfbd5af450138d6c7a144900e62d171d48f
Date:                2012-06-11 09:41:00 -0700

Free pages:        507
Active pages:      1062
Inactive pages:    646
Throttled pages:   47919
Purgeable pages:   0
Wired pages:       14566
Largest process:   YourApp

Processes
Name                         <UUID>                          rpages           [reason]        (state)

      YourApp    <c6bf10738ad63bac97674e0b50d3ba55>           23197             [vm]       (frontmost) (continuous)
         afcd    <cb4f085516ba37c89a093107b0633c31>             114             [vm]       (daemon) (idle)
  MobilePhone    <baac0168db6f30b4917122274bd18450>             944             [vm]       (resume) (continuous)
         tccd    <10049f303aea3df3a4a8f26a9716fb2f>             172             [vm]       (daemon)
          kbd    <ff9db8dd78203f279706712c9d98bb6c>             375             [vm]       (daemon)
         ptpd    <efffd169c8d33a79a4ba5d30ea2962b6>            1682                        (daemon)
     powerlog    <d7555671415f3fd3800623765604b587>             524                        (daemon)
      syslogd    <7477c8ba4f0e356bb3ea615fc9976685>             147                        (daemon)
        wifid    <c84d495dee503822a1ac7d11701c526b>             497                        (daemon)
   aosnotifyd    <ead3ebb514a3339b80ea4ed739ce53c5>             401                        (daemon)
          atc    <8b3cbb041b453e3fa0521c11f52b731c>             778                        (daemon)
iaptransportd    <04a9afc8f43035b58faa81e1b3831bb9>             187                        (daemon)
    locationd    <04d2854a2b6b3a34ab5d0e0330b72e4e>            1067                        (daemon)
  SpringBoard    <ad72e5c25ca43ebbaedf427ee56d153f>            4003                         
 mediaserverd    <1e2d1bcf4f0f34c9b3e34ef34685d993>             503                          (daemon)
  dataaccessd    <4f47939424a230c2baadf47d7f492289>            2656                          (daemon)
   backboardd    <dc09b198b9313131b311afead8f497d5>            2880                          (daemon)
     BTServer    <c8ee11a9f6053574aa0276970121ed32>             205                          (daemon)
      configd    <22fb97b63b0337f7bbc3d21566089a9b>             312                          (daemon)
    fseventsd    <8b2f63ebb6ed36cc8d09150022757e58>             408                          (daemon)
        getty    <a9f84c0d78693c5c92ff3cf1053731b0>              53                          (daemon)
      imagent    <70f47a81008a3de79c11c347241488bd>             492                          (daemon)
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Address Space Fundamentals
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Do the Math

232 = 4 GB
Pointer Range



Virtual Memory

• Physical memory divided into 4 KB pages
•Not all pages in memory at once
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More Than Just Objects

•Heap memory
■ +[NSObject alloc]/malloc
■ Objects/buffers allocated by frameworks

•Other memory
■ Code and globals (__TEXT, __DATA)
■ Thread stacks 
■ Image data
■ CALayer backing stores
■ Database caches

•Additional memory outside of your application!



What you’ll learn
iOS Memory Fundamentals

•How is memory allocated and managed on iOS?
•What types of memory use matter?

■ Clean and dirty

•What happens when iOS runs low on memory?
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Evicting Memory

•Destructive if memory cannot be retrieved or recreated
■ Only recourse is to terminate the owning process

• Clean memory: memory for which a copy exists on disk
■ Code, frameworks, memory-mapped files

• Dirty memory: everything else
■ Heap allocations, decompressed images, database caches



The game show
Clean or Dirty?



- (void)displayWelcomeMessage {

NSString *welcomeMessage = [NSString stringWithUTF8String:
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[self.alertView show];
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- (void)allocateSomeMemory {
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- (void)allocateSomeMemory {
void *buf = malloc(10 * 1024 * 1024);
for (unsigned int i = 0; i < sizeof(buf), i++) {
    buf[i] = (char)random();
}
…

}
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- (void)allocateSomeMemory {
void *buf = malloc(10 * 1024 * 1024);
for (unsigned int i = 0; i < sizeof(buf), i++) {
    buf[i] = (char)random();
}
…

}

Clean or Dirty? Clean Dirty

✓



UIImage *wwdcLogo = [UIImage imageNamed:@”WWDC12Logo”];
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UIImage *wwdcLogo = [UIImage imageNamed:@”WWDC12Logo”];

Bitmap
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UIImageView *view = [[UIImageView alloc] initWithImage:wwdcLogo];
[contentView addSubview:view];
…

Clean Dirty

✓



UIGraphicsBeginImageContext();

Clean or Dirty? Clean Dirty



UIGraphicsBeginImageContext();
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UIGraphicsBeginImageContext();
[[myview layer] renderInContext:UIGraphicsGetCurrentContext()];
UIImage *snapshot = UIGraphicsGetImageFromCurrentImageContext();
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UIGraphicsBeginImageContext();
[[myview layer] renderInContext:UIGraphicsGetCurrentContext()];
UIImage *snapshot = UIGraphicsGetImageFromCurrentImageContext();

Clean or Dirty?

BitmapUIImage CGImage

Clean Dirty

✓



Most App Allocations are Dirty



What you’ll learn
iOS Memory Fundamentals

•How is memory allocated and managed on iOS?
•What types of memory use matter?

■ Clean and dirty

•What happens when iOS runs low on memory?
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A challenge
Memory Warnings

• Fact of life on memory-constrained devices
• Last chance to preserve user experience
• Ensure that your application can respond

■ Notifications arrive on main thread
■ Avoid large, rapid allocations

• Stay safe in the background
■ -[id <UIApplicationDelegate> -applicationDidEnterBackground:]
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An opportunity
Memory Warnings

• Free as much as possible
■ But don’t sacrifice user experience

•Many ways to respond
■ UIApplicationDidReceiveMemoryWarningNotification
■ -[id <UIApplicationDelegate> -applicationDidReceiveMemoryWarning:]
■ -[UIViewController didReceiveMemoryWarning]

•No longer necessary or called
■ -[UIViewController viewDidUnload]
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Memory Limits on Devices

•How much can you use?
• Test on each device
• Limit of 650 MB on the new iPad

■ Provides certainty

•Use less if possible



Demo
VM Tracker

💩



Pay Attention to Dirty Memory!
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Avoid Usage Spikes

•Memory high-water mark matters
■ Use Allocations and VM Tracker graphs to identify spikes

■ @autoreleasepool can help in Objective-C code



Finding Memory Issues

Daniel Delwood
Software Engineer



Form a hypothesis

Make a change

Reproduce the problem

Profile with tools



Memory Footprint



Most Dirty Memory is 
Related to the Heap
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What you can do
Reducing Memory Usage

•Understand your view hierarchy
■ The more pixels you draw…

•Avoid recurring heap growth
■ Doesn’t matter if the objects are small
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Top three to look for
Avoiding Memory Growth

• Leaked memory
■ Inaccessible—no more pointers to it
■ Can’t ever be used again

•Abandoned memory
■ Still referenced, but wasted
■ Won’t ever be used again

• Cached memory
■ Referenced and waiting
■ May never be used again
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How to detect it
Memory Growth

•Memory shouldn’t grow
without bound when
repeating an operation

■ For example
■ Pushing and popping a view controller
■ Scrolling in a table view
■ Performing a database search
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Repetition reveals waste
Avoiding Memory Growth

Time

Warmup
Wasted

Original State

New State
Repeated

Baseline
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A targeted tool

• Tracks all heap allocations 
•Objective-C, C++ objects
•Malloc, Free, Retain, 
Release, Autorelease
• Statistics by allocation type
• Call Trees
•Heap snapshots

Allocations Instrument

x
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A practical example

1. Launch the app
2. Push and pop a view controller
3. Take a snapshot of the heap

Heap Snapshots

Repeat!



Demo
Detecting and fixing memory growth
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Getting to know your app
Memory Tips

• Pay attention to objects holding resources
■ UIImage, UIViewController, NSOperation, etc. 
■ Anything that wraps large data or many objects

• Track your objects
■ Filter for class name prefix
■ Validate expected patterns

• Simulate memory warnings
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Memory bugs are expensive
Saving Time

• Switch to ARC!
■ Allows you to think about object relationships

• Run the static analyzer
•Use the Leaks instrument 

■ Make one fix at a time, re-run
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■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];
_document = [note object]_document

Fixing Leaks

__strong id capturedSelf = self;

capturedSelf->



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

.document = [note object]self



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures
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Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

__weak id weakNotifiedSelf = self;

.document = [note object]weakNotifiedSelf



Plugging the holes
Fixing Leaks

• Incorrect retain/release
■ Possible with incorrect ARC bridging
■ Focus on the reference counting history 
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Memory-related Crashes

Exception Type:  EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x00000010
Crashed Thread:  0

Thread 0 Crashed:
0! libobjc.dylib! 0x0000286c objc_msgSend + 16
1! Foundation! 0x0001219c!-[NSString stringByAppendingFormat:] + 84
2! Reader! 0x000031d4!-[RootViewController tableView:cellForRowAtIndexPath:] + 32
3! UIKit! 0x0007e18c!-[UITableView _createPreparedCellForGlobalRow:withIndexPath:] + 492
4! UIKit! 0x0007ded8!-[UITableView _createPreparedCellForGlobalRow:] + 28
5! UIKit! 0x000530e2!-[UITableView(_UITableViewPrivate) _updateVisibleCellsNow:] + 930
6! UIKit! 0x000514da!-[UITableView layoutSubviews] + 134
7! UIKit! 0x0000f874!-[UIView(CALayerDelegate) _layoutSublayersOfLayer:] + 20
8! CoreFoundation!0x000277f8!-[NSObject(NSObject) performSelector:withObject:] + 16
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Exception Type:  EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x00000010
Crashed Thread:  0

Thread 0 Crashed:
0! libobjc.dylib! 0x0000286c objc_msgSend + 16
1! Foundation! 0x0001219c!-[NSString stringByAppendingFormat:] + 84
2! Reader! 0x000031d4!-[RootViewController tableView:cellForRowAtIndexPath:] + 32
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4! UIKit! 0x0007ded8!-[UITableView _createPreparedCellForGlobalRow:] + 28
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6! UIKit! 0x000514da!-[UITableView layoutSubviews] + 134
7! UIKit! 0x0000f874!-[UIView(CALayerDelegate) _layoutSublayersOfLayer:] + 20
8! CoreFoundation!0x000277f8!-[NSObject(NSObject) performSelector:withObject:] + 16

  0 libobjc.dylib 0x0000286c objc_msgSend + 16
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■ NSNotificationCenter and Key-Value Observing
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Tracing Tips

•Make notes with each trace
■ Flags comments are
invaluable later

• Filter to specific time intervals
• Be conscious of snapshot intervals

■ Leaks and VM Tracker will
cause app pauses
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Summary

•Great apps are efficient 
• Use as little as possible

■ …but consider the user experience implications

•Measure, change, and iterate



More Information

Michael Jurewitz
Developer Tools & Performance Evangelist
jury@apple.com

Instruments Documentation
Instruments User Guide
Instruments User Reference
http://developer.apple.com/ “Developer Library”

Apple Developer Forums
http://devforums.apple.com



Adopting Automatic Reference Counting Nob HIll
Friday 11:30AM

Polishing Your Interface Rotations Mission
Thursday 4:30PM

iOS App Performance: Graphics and Animations Presidio
Thursday 3:15PM

iOS App Performance: Responsiveness Presidio
Thursday 11:30AM

Learning Instruments Presidio
Wednesday 4:30PM

Related Sessions

Asynchronous Design Patterns with Blocks, GCD, and XPC Pacific Heights
Friday 9:00AM



OS X Performance Lab Developer Tools Lab A
Friday 9:00AM

Labs




