
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Memory

Session 242

iOS App Performance

Morgan Grainger
Software Engineer



Agenda

•Memory Landscape
• iOS Memory Fundamentals
•Memory Pressure
• Finding Memory Issues
• Tools Tips and Tricks



iOS Memory Landscape









“I love this app, but it always 
crashes after a few minutes.”

★☆☆☆☆



The March of Progress



The March of Progress

iPhone 3G



The March of Progress

iPhone 3G

iPhone 3GS

iPod Touch

iPhone 4S

iPad



The March of Progress

The New iPad

iPhone 3G

iPhone 3GS

iPod Touch

iPhone 4S

iPad









iOS Memory Fundamentals



Understanding Low Memory



Understanding Low Memory

Incident Identifier: C6CCECE6-E2B8-4426-B4D1-BE56599AE468
CrashReporter Key:   4b2eb6dfff066742d067aa5d505790a9338464cb
Hardware Model:      iPhone2,1
OS Version:          iPhone OS 6.0
UDID:                e1cbbbfbd5af450138d6c7a144900e62d171d48f
Date:                2012-06-11 09:41:00 -0700

Free pages:        507
Active pages:      1062
Inactive pages:    646
Throttled pages:   47919
Purgeable pages:   0
Wired pages:       14566
Largest process:   YourApp

Processes
Name                         <UUID>                          rpages           [reason]        (state)

      YourApp    <c6bf10738ad63bac97674e0b50d3ba55>           23197             [vm]       (frontmost) (continuous)
         afcd    <cb4f085516ba37c89a093107b0633c31>             114             [vm]       (daemon) (idle)
  MobilePhone    <baac0168db6f30b4917122274bd18450>             944             [vm]       (resume) (continuous)
         tccd    <10049f303aea3df3a4a8f26a9716fb2f>             172             [vm]       (daemon)
          kbd    <ff9db8dd78203f279706712c9d98bb6c>             375             [vm]       (daemon)
         ptpd    <efffd169c8d33a79a4ba5d30ea2962b6>            1682                        (daemon)
     powerlog    <d7555671415f3fd3800623765604b587>             524                        (daemon)
      syslogd    <7477c8ba4f0e356bb3ea615fc9976685>             147                        (daemon)
        wifid    <c84d495dee503822a1ac7d11701c526b>             497                        (daemon)
   aosnotifyd    <ead3ebb514a3339b80ea4ed739ce53c5>             401                        (daemon)
          atc    <8b3cbb041b453e3fa0521c11f52b731c>             778                        (daemon)
iaptransportd    <04a9afc8f43035b58faa81e1b3831bb9>             187                        (daemon)
    locationd    <04d2854a2b6b3a34ab5d0e0330b72e4e>            1067                        (daemon)
  SpringBoard    <ad72e5c25ca43ebbaedf427ee56d153f>            4003                         
 mediaserverd    <1e2d1bcf4f0f34c9b3e34ef34685d993>             503                          (daemon)
  dataaccessd    <4f47939424a230c2baadf47d7f492289>            2656                          (daemon)
   backboardd    <dc09b198b9313131b311afead8f497d5>            2880                          (daemon)
     BTServer    <c8ee11a9f6053574aa0276970121ed32>             205                          (daemon)
      configd    <22fb97b63b0337f7bbc3d21566089a9b>             312                          (daemon)
    fseventsd    <8b2f63ebb6ed36cc8d09150022757e58>             408                          (daemon)
        getty    <a9f84c0d78693c5c92ff3cf1053731b0>              53                          (daemon)
      imagent    <70f47a81008a3de79c11c347241488bd>             492                          (daemon)



What you’ll learn
iOS Memory Fundamentals

•How is memory allocated and managed on iOS?
•What types of memory use matter?

■ Clean and dirty

•What happens when iOS runs low on memory?



What you’ll learn
iOS Memory Fundamentals

•How is memory allocated and managed on iOS?
•What types of memory use matter?

■ Clean and dirty

•What happens when iOS runs low on memory?



Address Space Fundamentals

Safari Mail Calendar Contacts

0x00000000

.

.

.

0xFFFFFFFF

0x00000000

.

.

.

0xFFFFFFFF

0x00000000

.

.

.

0xFFFFFFFF

0x00000000

.

.

.

0xFFFFFFFF



Do the Math



Do the Math

232 = 4 GB
Pointer Range



Virtual Memory

• Physical memory divided into 4 KB pages
•Not all pages in memory at once



Virtual Memory

Physical MemFree Memory …4K 4K 4K 4K 4K 4K

Resident Memory



Virtual Memory

Heap
NSString

NSData
UIImage

MyObject512KB BufferCGImage

Physical MemFree Memory …4K 4K 4K 4K 4K 4K

Resident Memory



Virtual Memory

Heap
NSString

NSData
UIImage

MyObject512KB BufferCGImage

Physical MemFree Memory …4K 4K 4K 4K 4K 4K

Resident Memory

App VMMalloc RegionMalloc RegionImageIO Region



Virtual Memory

Heap
NSString

NSData
UIImage

MyObject512KB BufferCGImage

Physical MemFree Memory …4K 4K 4K 4K 4K 4K

Resident Memory

App VMMalloc RegionMalloc RegionImageIO Region



KernelVM Object VM Object VM Object …

Virtual Memory

Heap
NSString

NSData
UIImage

MyObject512KB BufferCGImage

Physical MemFree Memory …4K 4K 4K 4K 4K 4K

Resident Memory

App VMMalloc RegionMalloc RegionImageIO Region



KernelVM Object VM Object VM Object …

Virtual Memory

Heap
NSString

NSData
UIImage

MyObject512KB BufferCGImage

Physical MemFree Memory …4K 4K 4K 4K 4K 4K

Resident Memory

App VMMalloc RegionMalloc RegionImageIO Region



Memory Footprint



Memory Footprint



Memory Footprint



More Than Just Objects

•Heap memory
■ +[NSObject alloc]/malloc
■ Objects/buffers allocated by frameworks

•Other memory
■ Code and globals (__TEXT, __DATA)
■ Thread stacks 
■ Image data
■ CALayer backing stores
■ Database caches

•Additional memory outside of your application!



What you’ll learn
iOS Memory Fundamentals

•How is memory allocated and managed on iOS?
•What types of memory use matter?

■ Clean and dirty

•What happens when iOS runs low on memory?



Not Enough to Go Around

•Memory on iOS is limited

OS X

iOS



Not Enough to Go Around

•Memory on iOS is limited
•How can the system reclaim memory?

OS X

iOS



Not Enough to Go Around

•Memory on iOS is limited
•How can the system reclaim memory?

Persist it (page it out)OS X

iOS



Not Enough to Go Around

•Memory on iOS is limited
•How can the system reclaim memory?

Persist it (page it out)OS X

iOS



Not Enough to Go Around

•Memory on iOS is limited
•How can the system reclaim memory?

Persist it (page it out)
Evict it without storing

OS X

iOS



Not Enough to Go Around

•Memory on iOS is limited
•How can the system reclaim memory?

Persist it (page it out)
Evict it without storing

OS X

iOS



Evicting Memory



Evicting Memory

•Destructive if memory cannot be retrieved or recreated
■ Only recourse is to terminate the owning process



Evicting Memory

•Destructive if memory cannot be retrieved or recreated
■ Only recourse is to terminate the owning process

• Clean memory: memory for which a copy exists on disk
■ Code, frameworks, memory-mapped files



Evicting Memory

•Destructive if memory cannot be retrieved or recreated
■ Only recourse is to terminate the owning process

• Clean memory: memory for which a copy exists on disk
■ Code, frameworks, memory-mapped files

• Dirty memory: everything else
■ Heap allocations, decompressed images, database caches



The game show
Clean or Dirty?



- (void)displayWelcomeMessage {

NSString *welcomeMessage = [NSString stringWithUTF8String:
! ! ! ! ! ! ! ! ! ! “Welcome to WWDC!”];

self.alertView.title = welcomeMessage;
[self.alertView show];

}

Clean or Dirty? Clean Dirty



- (void)displayWelcomeMessage {

NSString *welcomeMessage = [NSString stringWithUTF8String:
! ! ! ! ! ! ! ! ! ! “Welcome to WWDC!”];

self.alertView.title = welcomeMessage;
[self.alertView show];

}

Clean or Dirty? Clean Dirty

✓



- (void)displayWelcomeMessage {

NSString *welcomeMessage = @”Welcome to WWDC!”;

self.alertView.title = welcomeMessage;
[self.alertView show];

}

Clean or Dirty? Clean Dirty



- (void)displayWelcomeMessage {

NSString *welcomeMessage = @”Welcome to WWDC!”;

self.alertView.title = welcomeMessage;
[self.alertView show];

}

Clean or Dirty? Clean Dirty

✓



- (void)allocateSomeMemory {
void *buf = malloc(10 * 1024 * 1024);
…

}

Clean or Dirty? Clean Dirty



- (void)allocateSomeMemory {
void *buf = malloc(10 * 1024 * 1024);
…

}

Clean or Dirty? Clean Dirty

✓



- (void)allocateSomeMemory {
void *buf = malloc(10 * 1024 * 1024);
for (unsigned int i = 0; i < sizeof(buf), i++) {
    buf[i] = (char)random();
}
…

}

Clean or Dirty? Clean Dirty



- (void)allocateSomeMemory {
void *buf = malloc(10 * 1024 * 1024);
for (unsigned int i = 0; i < sizeof(buf), i++) {
    buf[i] = (char)random();
}
…

}

Clean or Dirty? Clean Dirty

✓



UIImage *wwdcLogo = [UIImage imageNamed:@”WWDC12Logo”];

Clean or Dirty? Clean Dirty



UIImage *wwdcLogo = [UIImage imageNamed:@”WWDC12Logo”];

Clean or Dirty?

UIImage

JPEG

CGImage

Clean Dirty



UIImage *wwdcLogo = [UIImage imageNamed:@”WWDC12Logo”];

Bitmap

Clean or Dirty?

UIImage

JPEG

CGImage

UIImageView *view = [[UIImageView alloc] initWithImage:wwdcLogo];
[contentView addSubview:view];
…

Clean Dirty



UIImage *wwdcLogo = [UIImage imageNamed:@”WWDC12Logo”];

Bitmap

Clean or Dirty?

UIImage

JPEG

CGImage

UIImageView *view = [[UIImageView alloc] initWithImage:wwdcLogo];
[contentView addSubview:view];
…

Clean Dirty

✓



UIGraphicsBeginImageContext();

Clean or Dirty? Clean Dirty



UIGraphicsBeginImageContext();
[[myview layer] renderInContext:UIGraphicsGetCurrentContext()];

Clean or Dirty?

Bitmap

Clean Dirty



UIGraphicsBeginImageContext();
[[myview layer] renderInContext:UIGraphicsGetCurrentContext()];
UIImage *snapshot = UIGraphicsGetImageFromCurrentImageContext();

Clean or Dirty?

BitmapUIImage CGImage

Clean Dirty



UIGraphicsBeginImageContext();
[[myview layer] renderInContext:UIGraphicsGetCurrentContext()];
UIImage *snapshot = UIGraphicsGetImageFromCurrentImageContext();

Clean or Dirty?

BitmapUIImage CGImage

Clean Dirty

✓



Most App Allocations are Dirty



What you’ll learn
iOS Memory Fundamentals

•How is memory allocated and managed on iOS?
•What types of memory use matter?

■ Clean and dirty

•What happens when iOS runs low on memory?



Managing System-Wide Memory

Clean Dirty Free



Managing System-Wide Memory

Clean Dirty Free

Launch Your App



Managing System-Wide Memory

Clean Dirty Free

Memory Pressure



Managing System-Wide Memory

Clean Dirty Free

Terminate Background AppsRun Some Other Apps



Managing System-Wide Memory

Clean Dirty Free

Run Some Other Apps



A challenge
Memory Warnings

• Fact of life on memory-constrained devices



A challenge
Memory Warnings

• Fact of life on memory-constrained devices
• Last chance to preserve user experience



A challenge
Memory Warnings

• Fact of life on memory-constrained devices
• Last chance to preserve user experience
• Ensure that your application can respond



A challenge
Memory Warnings

• Fact of life on memory-constrained devices
• Last chance to preserve user experience
• Ensure that your application can respond

■ Notifications arrive on main thread



A challenge
Memory Warnings

• Fact of life on memory-constrained devices
• Last chance to preserve user experience
• Ensure that your application can respond

■ Notifications arrive on main thread
■ Avoid large, rapid allocations



A challenge
Memory Warnings

• Fact of life on memory-constrained devices
• Last chance to preserve user experience
• Ensure that your application can respond

■ Notifications arrive on main thread
■ Avoid large, rapid allocations

• Stay safe in the background



A challenge
Memory Warnings

• Fact of life on memory-constrained devices
• Last chance to preserve user experience
• Ensure that your application can respond

■ Notifications arrive on main thread
■ Avoid large, rapid allocations

• Stay safe in the background
■ -[id <UIApplicationDelegate> -applicationDidEnterBackground:]



An opportunity
Memory Warnings



An opportunity
Memory Warnings

• Free as much as possible
■ But don’t sacrifice user experience



An opportunity
Memory Warnings

• Free as much as possible
■ But don’t sacrifice user experience

•Many ways to respond
■ UIApplicationDidReceiveMemoryWarningNotification
■ -[id <UIApplicationDelegate> -applicationDidReceiveMemoryWarning:]
■ -[UIViewController didReceiveMemoryWarning]



An opportunity
Memory Warnings

• Free as much as possible
■ But don’t sacrifice user experience

•Many ways to respond
■ UIApplicationDidReceiveMemoryWarningNotification
■ -[id <UIApplicationDelegate> -applicationDidReceiveMemoryWarning:]
■ -[UIViewController didReceiveMemoryWarning]

•No longer necessary or called
■ -[UIViewController viewDidUnload]



Memory Limits on Devices



Memory Limits on Devices

•How much can you use?



Memory Limits on Devices

•How much can you use?
• Test on each device



Memory Limits on Devices

•How much can you use?
• Test on each device
• Limit of 650 MB on the new iPad

■ Provides certainty



Memory Limits on Devices

•How much can you use?
• Test on each device
• Limit of 650 MB on the new iPad

■ Provides certainty

•Use less if possible



Demo
VM Tracker

💩



Pay Attention to Dirty Memory!



Avoid Usage Spikes



Avoid Usage Spikes

•Memory high-water mark matters



Avoid Usage Spikes

•Memory high-water mark matters
■ Use Allocations and VM Tracker graphs to identify spikes



Avoid Usage Spikes

•Memory high-water mark matters
■ Use Allocations and VM Tracker graphs to identify spikes

■ @autoreleasepool can help in Objective-C code



Finding Memory Issues

Daniel Delwood
Software Engineer



Form a hypothesis

Make a change

Reproduce the problem

Profile with tools



Memory Footprint



Most Dirty Memory is 
Related to the Heap



What you can do
Reducing Memory Usage



What you can do
Reducing Memory Usage

•Understand your view hierarchy
■ The more pixels you draw…



What you can do
Reducing Memory Usage

•Understand your view hierarchy
■ The more pixels you draw…

•Avoid recurring heap growth
■ Doesn’t matter if the objects are small



Top three to look for
Avoiding Memory Growth



Top three to look for
Avoiding Memory Growth

• Leaked memory
■ Inaccessible—no more pointers to it
■ Can’t ever be used again



Top three to look for
Avoiding Memory Growth

• Leaked memory
■ Inaccessible—no more pointers to it
■ Can’t ever be used again

•Abandoned memory
■ Still referenced, but wasted
■ Won’t ever be used again



Top three to look for
Avoiding Memory Growth

• Leaked memory
■ Inaccessible—no more pointers to it
■ Can’t ever be used again

•Abandoned memory
■ Still referenced, but wasted
■ Won’t ever be used again

• Cached memory
■ Referenced and waiting
■ May never be used again



How to detect it
Memory Growth

•Memory shouldn’t grow
without bound when
repeating an operation



How to detect it
Memory Growth

•Memory shouldn’t grow
without bound when
repeating an operation

■ For example
■ Pushing and popping a view controller
■ Scrolling in a table view
■ Performing a database search



Repetition reveals waste
Avoiding Memory Growth

Time



Repetition reveals waste
Avoiding Memory Growth

Time

Baseline



Repetition reveals waste
Avoiding Memory Growth

Time

New State

Baseline



Repetition reveals waste
Avoiding Memory Growth

Time

Original State

New State

Baseline



Repetition reveals waste
Avoiding Memory Growth

Time

Warmup

Original State

New State

Baseline



Repetition reveals waste
Avoiding Memory Growth

Time

Warmup

Original State

New State
Repeated

Baseline



Repetition reveals waste
Avoiding Memory Growth

Time

Warmup
Wasted

Original State

New State
Repeated

Baseline



A targeted tool
Allocations Instrument



A targeted tool

• Tracks all heap allocations 

Allocations Instrument



A targeted tool

• Tracks all heap allocations 
•Objective-C, C++ objects

Allocations Instrument

x



A targeted tool

• Tracks all heap allocations 
•Objective-C, C++ objects
•Malloc, Free, Retain, 
Release, Autorelease

Allocations Instrument

x



A targeted tool

• Tracks all heap allocations 
•Objective-C, C++ objects
•Malloc, Free, Retain, 
Release, Autorelease
• Statistics by allocation type

Allocations Instrument

x



A targeted tool

• Tracks all heap allocations 
•Objective-C, C++ objects
•Malloc, Free, Retain, 
Release, Autorelease
• Statistics by allocation type
• Call Trees

Allocations Instrument

x



A targeted tool

• Tracks all heap allocations 
•Objective-C, C++ objects
•Malloc, Free, Retain, 
Release, Autorelease
• Statistics by allocation type
• Call Trees
•Heap snapshots

Allocations Instrument

x



A practical example
Heap Snapshots



A practical example

1. Launch the app

Heap Snapshots



A practical example

1. Launch the app
2. Push and pop a view controller

Heap Snapshots



A practical example

1. Launch the app
2. Push and pop a view controller
3. Take a snapshot of the heap

Heap Snapshots



A practical example

1. Launch the app
2. Push and pop a view controller
3. Take a snapshot of the heap

Heap Snapshots

Repeat!



A practical example

1. Launch the app
2. Push and pop a view controller
3. Take a snapshot of the heap

Heap Snapshots

Repeat!



Demo
Detecting and fixing memory growth



Tools Tips and Tricks



Getting to know your app
Memory Tips



Getting to know your app
Memory Tips

• Pay attention to objects holding resources
■ UIImage, UIViewController, NSOperation, etc. 
■ Anything that wraps large data or many objects



Getting to know your app
Memory Tips

• Pay attention to objects holding resources
■ UIImage, UIViewController, NSOperation, etc. 
■ Anything that wraps large data or many objects

• Track your objects
■ Filter for class name prefix
■ Validate expected patterns



Getting to know your app
Memory Tips

• Pay attention to objects holding resources
■ UIImage, UIViewController, NSOperation, etc. 
■ Anything that wraps large data or many objects

• Track your objects
■ Filter for class name prefix
■ Validate expected patterns

• Simulate memory warnings



Memory bugs are expensive
Saving Time

• Switch to ARC!
■ Allows you to think about object relationships



Memory bugs are expensive
Saving Time

• Switch to ARC!
■ Allows you to think about object relationships

• Run the static analyzer



Memory bugs are expensive
Saving Time

• Switch to ARC!
■ Allows you to think about object relationships

• Run the static analyzer
•Use the Leaks instrument 

■ Make one fix at a time, re-run



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

Fixing Leaks



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

.document = [note object]self



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

.document = [note object]selfself



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

__strong id capturedSelf = self;

.document = [note object]capturedSelf



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];
_document = [note object]

Fixing Leaks



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];
_document = [note object]_document

Fixing Leaks



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];
_document = [note object]_document

Fixing Leaks

__strong id capturedSelf = self;

capturedSelf->



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

.document = [note object]self



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

__weak id weakNotifiedSelf = self;

.document = [note object]self



Plugging the holes

• Retain cycles
■ Use the “Cycles & Roots” view
■ Be aware of ^block captures

_observer = [center addObserverForName:@“MyNotification” 
                object:nil
                 queue:[NSOperationQueue mainQueue] 
            usingBlock:^(NSNotification *note) {

}];

Fixing Leaks

__weak id weakNotifiedSelf = self;

.document = [note object]weakNotifiedSelf



Plugging the holes
Fixing Leaks

• Incorrect retain/release
■ Possible with incorrect ARC bridging
■ Focus on the reference counting history 



In case of emergency
Memory-related Crashes



In case of emergency
Memory-related Crashes

Exception Type:  EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x00000010
Crashed Thread:  0

Thread 0 Crashed:
0! libobjc.dylib! 0x0000286c objc_msgSend + 16
1! Foundation! 0x0001219c!-[NSString stringByAppendingFormat:] + 84
2! Reader! 0x000031d4!-[RootViewController tableView:cellForRowAtIndexPath:] + 32
3! UIKit! 0x0007e18c!-[UITableView _createPreparedCellForGlobalRow:withIndexPath:] + 492
4! UIKit! 0x0007ded8!-[UITableView _createPreparedCellForGlobalRow:] + 28
5! UIKit! 0x000530e2!-[UITableView(_UITableViewPrivate) _updateVisibleCellsNow:] + 930
6! UIKit! 0x000514da!-[UITableView layoutSubviews] + 134
7! UIKit! 0x0000f874!-[UIView(CALayerDelegate) _layoutSublayersOfLayer:] + 20
8! CoreFoundation!0x000277f8!-[NSObject(NSObject) performSelector:withObject:] + 16



In case of emergency
Memory-related Crashes

Exception Type:  EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x00000010
Crashed Thread:  0

Thread 0 Crashed:
0! libobjc.dylib! 0x0000286c objc_msgSend + 16
1! Foundation! 0x0001219c!-[NSString stringByAppendingFormat:] + 84
2! Reader! 0x000031d4!-[RootViewController tableView:cellForRowAtIndexPath:] + 32
3! UIKit! 0x0007e18c!-[UITableView _createPreparedCellForGlobalRow:withIndexPath:] + 492
4! UIKit! 0x0007ded8!-[UITableView _createPreparedCellForGlobalRow:] + 28
5! UIKit! 0x000530e2!-[UITableView(_UITableViewPrivate) _updateVisibleCellsNow:] + 930
6! UIKit! 0x000514da!-[UITableView layoutSubviews] + 134
7! UIKit! 0x0000f874!-[UIView(CALayerDelegate) _layoutSublayersOfLayer:] + 20
8! CoreFoundation!0x000277f8!-[NSObject(NSObject) performSelector:withObject:] + 16

  0 libobjc.dylib 0x0000286c objc_msgSend + 16



In case of emergency
Memory Crashers

• Zombies template in iOS Simulator



In case of emergency
Memory Crashers

• Zombies template in iOS Simulator
•Messages to deallocated objects



In case of emergency
Memory Crashers

• Zombies template in iOS Simulator
•Messages to deallocated objects

■ NSNotificationCenter and Key-Value Observing



In case of emergency
Memory Crashers

• Zombies template in iOS Simulator
•Messages to deallocated objects

■ NSNotificationCenter and Key-Value Observing
■ Incorrect bridging



In case of emergency
Memory Crashers

• Zombies template in iOS Simulator
•Messages to deallocated objects

■ NSNotificationCenter and Key-Value Observing
■ Incorrect bridging
■ __unsafe_unretained references



In case of emergency
Memory Crashers

• Zombies template in iOS Simulator
•Messages to deallocated objects

■ NSNotificationCenter and Key-Value Observing
■ Incorrect bridging
■ __unsafe_unretained references
■ __autoreleasing NSError* and @autoreleasepool



In case of emergency
Memory Crashers

• Zombies template in iOS Simulator
•Messages to deallocated objects

■ NSNotificationCenter and Key-Value Observing
■ Incorrect bridging
■ __unsafe_unretained references
■ __autoreleasing NSError* and @autoreleasepool



Tracing Tips



Tracing Tips

•Make notes with each trace



Tracing Tips

•Make notes with each trace
■ Flags comments are
invaluable later



Tracing Tips

•Make notes with each trace
■ Flags comments are
invaluable later

• Filter to specific time intervals



Tracing Tips

•Make notes with each trace
■ Flags comments are
invaluable later

• Filter to specific time intervals
• Be conscious of snapshot intervals



Tracing Tips

•Make notes with each trace
■ Flags comments are
invaluable later

• Filter to specific time intervals
• Be conscious of snapshot intervals

■ Leaks and VM Tracker will
cause app pauses



Summary



Summary

•Great apps are efficient 



Summary

•Great apps are efficient 
• Use as little as possible



Summary

•Great apps are efficient 
• Use as little as possible

■ …but consider the user experience implications



Summary

•Great apps are efficient 
• Use as little as possible

■ …but consider the user experience implications

•Measure, change, and iterate



More Information

Michael Jurewitz
Developer Tools & Performance Evangelist
jury@apple.com

Instruments Documentation
Instruments User Guide
Instruments User Reference
http://developer.apple.com/ “Developer Library”

Apple Developer Forums
http://devforums.apple.com



Adopting Automatic Reference Counting Nob HIll
Friday 11:30AM

Polishing Your Interface Rotations Mission
Thursday 4:30PM

iOS App Performance: Graphics and Animations Presidio
Thursday 3:15PM

iOS App Performance: Responsiveness Presidio
Thursday 11:30AM

Learning Instruments Presidio
Wednesday 4:30PM

Related Sessions

Asynchronous Design Patterns with Blocks, GCD, and XPC Pacific Heights
Friday 9:00AM



OS X Performance Lab Developer Tools Lab A
Friday 9:00AM

Labs




