
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Subtitle for Rent

Session 245

Advanced Tips and Tricks for
High Resolution on OS X

Patrick Heynen

Introduction

• Diving deeper into high resolution for OS X
• Taking full advantage of new APIs to achieve pixel precision
• Leveraging advanced Quartz technologies under high resolution
• Optimizing visual quality and performance

What You Will Learn

What You Will Learn

• How to work with OpenGL contexts

What You Will Learn

• How to work with OpenGL contexts
• Managing custom Core Animation layer trees

What You Will Learn

• How to work with OpenGL contexts
• Managing custom Core Animation layer trees
• Drawing into off-screen bitmaps

What You Will Learn

• How to work with OpenGL contexts
• Managing custom Core Animation layer trees
• Drawing into off-screen bitmaps
• Cooperating with dynamic display resolution changes

What You Will Learn

• How to work with OpenGL contexts
• Managing custom Core Animation layer trees
• Drawing into off-screen bitmaps
• Cooperating with dynamic display resolution changes
• Working with screen fonts and text rendering

What You Will Learn

• How to work with OpenGL contexts
• Managing custom Core Animation layer trees
• Drawing into off-screen bitmaps
• Cooperating with dynamic display resolution changes
• Working with screen fonts and text rendering
• Best practices for achieving quality and performance
under high resolution

Technology Overview

Technology Overview

• New high-resolution display modes for Retina displays

Technology Overview

• New high-resolution display modes for Retina displays
• Screens and windows have a 2:1 pixel per point density ratio

Technology Overview

• New high-resolution display modes for Retina displays
• Screens and windows have a 2:1 pixel per point density ratio
• Frameworks provide automatic scaling to ensure consistent
coordinate systems between 1x and 2x operation

Technology Overview

• New high-resolution display modes for Retina displays
• Screens and windows have a 2:1 pixel per point density ratio
• Frameworks provide automatic scaling to ensure consistent
coordinate systems between 1x and 2x operation

• Quartz Window Manager ensures consistent presentation
across multiple displays

NSImage and High Resolution

Chris Dreessen

NSImageRep Selection

• NSImage can contain many NSImageReps

NSImageRep Selection

• NSImage can contain many NSImageReps
• There is no notion of high or low resolution—It’s all about pixels

NSImageRep Selection

• NSImage can contain many NSImageReps
• There is no notion of high or low resolution—It’s all about pixels
• NSImage will prefer the smallest bitmap representation that has
more pixels than the destination

NSImage
Image Representations

cake.png (1x)

cake@2x.png (2x)

NSImage
Image Representations

cake.png (1x)

cake@2x.png (2x)

NSImage
Image Representations

cake.png (1x)

cake@2x.png (2x)

NSImage
Image Representations Destination

200 pixels

100 pixels

cake.png (1x)

cake@2x.png (2x)

NSImage
Image Representations Destination

200 pixels

100 pixels

cake.png (1x)

cake@2x.png (2x)

NSImage
Image Representations Destination

100 pixels

cake.png (1x)

cake@2x.png (2x)

NSImage
Image Representations Destination

100 pixels

cake.png (1x)

cake@2x.png (2x)

NSImage
Image Representations Destination

100 pixels

cake.png (1x)

cake@2x.png (2x)

150 pixels

NSImage
Image Representations Destination

100 pixels

cake.png (1x)

cake@2x.png (2x)

150 pixels

Stretching Images

• Consider a button made of two end caps and a resizable center

Stretching Images

• Consider a button made of two end caps and a resizable center

• Because of the stretch, NSImage will choose a 2x representation

Stretching Images

Stretching Images

• Use these functions instead
NSDrawThreePartImage
NSDrawNinePartImage

• These tile the middle image instead of stretching it

Stretching Images

• Use these functions instead
NSDrawThreePartImage
NSDrawNinePartImage

• These tile the middle image instead of stretching it

Stretching Images

• Use these functions instead
NSDrawThreePartImage
NSDrawNinePartImage

• These tile the middle image instead of stretching it

Stretching Images

• Use these functions instead
NSDrawThreePartImage
NSDrawNinePartImage

• These tile the middle image instead of stretching it

Stretching Images

• If you really can’t tile but want to avoid the 2x rep being used:
 -[NSImage setMatchesOnlyOnBestFittingAxis:YES]

Off-Screen Images

Off-Screen Images

Off-Screen Images

• Do not use -[NSImage lockFocus]
■ It will flatten your image into a single bitmap

Off-Screen Images

• Do not use -[NSImage lockFocus]
■ It will flatten your image into a single bitmap

• Use the new block-based API
+[NSImage imageWithSize:flipped:drawingHandler:]

Off-Screen Images

• Do not use -[NSImage lockFocus]
■ It will flatten your image into a single bitmap

• Use the new block-based API
+[NSImage imageWithSize:flipped:drawingHandler:]

• The code in the block is what you would normally call between
-lockFocus and -unlockFocus
NSImage *image = [NSImage imageWithSize:NSMakeRect(0, 0, 10, 10)
 flipped:NO
 drawingHandler:^BOOL(NSRect dstRect)
 {
 [[NSColor redColor] set];
 NSRectFill(dstRect);
 return YES;
 }];

Off-Screen Images

• Do not use -[NSImage lockFocus]
■ It will flatten your image into a single bitmap

• Use the new block-based API
+[NSImage imageWithSize:flipped:drawingHandler:]

• The code in the block is what you would normally call between
-lockFocus and -unlockFocus
NSImage *image = [NSImage imageWithSize:NSMakeRect(0, 0, 10, 10)
 flipped:NO
 drawingHandler:^BOOL(NSRect dstRect)
 {
 [[NSColor redColor] set];
 NSRectFill(dstRect);
 return YES;
 }];

Off-Screen Images

• Create and render bitmaps explicitly

 NSBitmapImageRep *myRep = [[NSBitmapImageRep alloc]
 initWithBitmapDataPlanes: NULL
 pixelsWide: width * scaleFactor
 pixelsHigh: height * scaleFactor
 bitsPerSample: 8
 samplesPerPixel: 4
 hasAlpha: YES
 isPlanar: NO
 colorSpaceName: NSCalibratedRGBColorSpace
 bytesPerRow: 0
 bitsPerPixel: 0];
 [myRep setSize: NSMakeSize(width, height)]; // Communicates DPI

Off-Screen Images

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:
 [NSGraphicsContext graphicsContextWithBitmapImageRep: bitmapImageRep]];

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:
 [NSGraphicsContext graphicsContextWithBitmapImageRep: bitmapImageRep]];
[[NSColor redColor] set];

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:
 [NSGraphicsContext graphicsContextWithBitmapImageRep: bitmapImageRep]];
[[NSColor redColor] set];
[NSBezierPath bezierPathWithRect:NSMakeRect(0, 0, 10, 10) fill];

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:
 [NSGraphicsContext graphicsContextWithBitmapImageRep: bitmapImageRep]];
[[NSColor redColor] set];
[NSBezierPath bezierPathWithRect:NSMakeRect(0, 0, 10, 10) fill];
[NSGraphicsContext restoreGraphicsState];

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:
 [NSGraphicsContext graphicsContextWithBitmapImageRep: bitmapImageRep]];
[[NSColor redColor] set];
[NSBezierPath bezierPathWithRect:NSMakeRect(0, 0, 10, 10) fill];
[NSGraphicsContext restoreGraphicsState];

• NSGraphicsContext automatically sets up the context transformation
matrix based on the pixel dimensions and size of the destination
image rep

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:
 [NSGraphicsContext graphicsContextWithBitmapImageRep: bitmapImageRep]];
[[NSColor redColor] set];
[NSBezierPath bezierPathWithRect:NSMakeRect(0, 0, 10, 10) fill];
[NSGraphicsContext restoreGraphicsState];

• NSGraphicsContext automatically sets up the context transformation
matrix based on the pixel dimensions and size of the destination
image rep

• You can create and render to multiple bitmap image reps—
One for each scale factor or screen

Off-Screen Images

• Use NSGraphicsContext to render to a bitmap
[NSGraphicsContext saveGraphicsState];
[NSGraphicsContext setCurrentContext:
 [NSGraphicsContext graphicsContextWithBitmapImageRep: bitmapImageRep]];
[[NSColor redColor] set];
[NSBezierPath bezierPathWithRect:NSMakeRect(0, 0, 10, 10) fill];
[NSGraphicsContext restoreGraphicsState];

• NSGraphicsContext automatically sets up the context transformation
matrix based on the pixel dimensions and size of the destination
image rep

• You can create and render to multiple bitmap image reps—
One for each scale factor or screen

Obsolete NSImage methods

-[NSImage compositeToPoint:]
-[NSImage dissolveToPoint:]

• These don’t fully respect the context transformation matrix

Obsolete NSImage methods

-[NSImage compositeToPoint:]
-[NSImage dissolveToPoint:]

• These don’t fully respect the context transformation matrix
• If it doesn’t begin with “draw” don’t use it for drawing

Obsolete NSImage methods

-[NSImage compositeToPoint:]
-[NSImage dissolveToPoint:]

• These don’t fully respect the context transformation matrix
• If it doesn’t begin with “draw” don’t use it for drawing
• Use -[NSImage drawInRect:fromRect:operation:fraction:respectFlipped:hints:]
instead

Obsolete NSImage methods

-[NSImage compositeToPoint:]
-[NSImage dissolveToPoint:]

• These don’t fully respect the context transformation matrix
• If it doesn’t begin with “draw” don’t use it for drawing
• Use -[NSImage drawInRect:fromRect:operation:fraction:respectFlipped:hints:]
instead

[image drawInRect:NSMakeRect(0, 0, 10, 10) fromRect:NSZeroRect
operation:NSCompositeSourceOver fraction:1 respectFlipped:NO hints:nil]

OpenGL and High Resolution

OpenGL and High Resolution

OpenGL and High Resolution

• By default, all OpenGL surfaces are created at low resolution

OpenGL and High Resolution

• By default, all OpenGL surfaces are created at low resolution
• Surface resolution is identical to 1x operation for compatibility

OpenGL and High Resolution

• By default, all OpenGL surfaces are created at low resolution
• Surface resolution is identical to 1x operation for compatibility
• Applications must adapt their code to work properly under
high resolution

OpenGL and High Resolution

OpenGL and High Resolution

• Request high resolution on a per view basis
-[NSView setWantsBestResolutionOpenGLSurface:YES]

OpenGL and High Resolution

• Request high resolution on a per view basis
-[NSView setWantsBestResolutionOpenGLSurface:YES]

• Adjust glViewPort code to use correct pixel bounds
 NSRect pixelBounds = [self convertRectToBacking:[self bounds]];
 glViewPort(0, 0, pixelBounds.size.width, pixelBounds.size.height);

OpenGL and High Resolution

• Request high resolution on a per view basis
-[NSView setWantsBestResolutionOpenGLSurface:YES]

• Adjust glViewPort code to use correct pixel bounds
 NSRect pixelBounds = [self convertRectToBacking:[self bounds]];
 glViewPort(0, 0, pixelBounds.size.width, pixelBounds.size.height);

• Incorporate UI scale into model-view transform if necessary

OpenGL and High Resolution

• Request high resolution on a per view basis
-[NSView setWantsBestResolutionOpenGLSurface:YES]

• Adjust glViewPort code to use correct pixel bounds
 NSRect pixelBounds = [self convertRectToBacking:[self bounds]];
 glViewPort(0, 0, pixelBounds.size.width, pixelBounds.size.height);

• Incorporate UI scale into model-view transform if necessary
• Update texture resources if needed

Demo
Adapting OpenGL for High Resolution

Chess

Special considerations
OpenGL and High Resolution

Special considerations
OpenGL and High Resolution

• Device dependent geometry

Special considerations
OpenGL and High Resolution

• Device dependent geometry
■ Viewport, scissor, and stencil rectangles are always in pixels

Special considerations
OpenGL and High Resolution

• Device dependent geometry
■ Viewport, scissor, and stencil rectangles are always in pixels
■ Convert inputs to view backing space for consistency across resolutions

Special considerations
OpenGL and High Resolution

• Device dependent geometry
■ Viewport, scissor, and stencil rectangles are always in pixels
■ Convert inputs to view backing space for consistency across resolutions

• Text and graphical user interaction elements may need to be generated
and managed at multiple resolutions

Special considerations
OpenGL and High Resolution

• Device dependent geometry
■ Viewport, scissor, and stencil rectangles are always in pixels
■ Convert inputs to view backing space for consistency across resolutions

• Text and graphical user interaction elements may need to be generated
and managed at multiple resolutions

• MSAA can be costly with marginal benefit at Retina resolutions

Full screen operation
OpenGL and High Resolution

Full screen operation
OpenGL and High Resolution

• Avoid changing the display mode of the system

Full screen operation
OpenGL and High Resolution

• Avoid changing the display mode of the system
• Create an application window covering the entire screen

Full screen operation
OpenGL and High Resolution

• Avoid changing the display mode of the system
• Create an application window covering the entire screen

■ System will provide optimized context performance

Full screen operation
OpenGL and High Resolution

• Avoid changing the display mode of the system
• Create an application window covering the entire screen

■ System will provide optimized context performance
■ Enables critical system dialogs to present above your content

Backing Coordinate Systems

Backing Coordinate Systems

Coordinate System ConversionCoordinate System Conversion

-convertRectToBacking: NSView, NSWindow, NSScreen

-convertRectFromBacking: NSView, NSWindow, NSScreen

Backing Coordinate Systems

Backing Coordinate Systems

• Key principles about backing coordinate systems

Backing Coordinate Systems

• Key principles about backing coordinate systems
■ Units are pixels

Backing Coordinate Systems

• Key principles about backing coordinate systems
■ Units are pixels
■ Values ascend from lower left to upper right

Backing Coordinate Systems

• Key principles about backing coordinate systems
■ Units are pixels
■ Values ascend from lower left to upper right
■ Integral values are pixel aligned

Backing Coordinate Systems

• Key principles about backing coordinate systems
■ Units are pixels
■ Values ascend from lower left to upper right
■ Integral values are pixel aligned

• No guarantees regarding the relationship between
local coordinates and backing coordinates

Backing Coordinate Systems

• Key principles about backing coordinate systems
■ Units are pixels
■ Values ascend from lower left to upper right
■ Integral values are pixel aligned

• No guarantees regarding the relationship between
local coordinates and backing coordinates

• Unique for each view, window, and screen

Backing Coordinate Systems

• Key principles about backing coordinate systems
■ Units are pixels
■ Values ascend from lower left to upper right
■ Integral values are pixel aligned

• No guarantees regarding the relationship between
local coordinates and backing coordinates

• Unique for each view, window, and screen
■ Always use the same object to convert to and from backing

Core Animation

Custom CALayer content
Core Animation and High Resolution

Custom CALayer content
Core Animation and High Resolution

• Layer bounds and position use points

Custom CALayer content
Core Animation and High Resolution

• Layer bounds and position use points
• Layer contents and contentsScale must be explicitly managed
for sharp results

Custom CALayer content
Core Animation and High Resolution

• Layer bounds and position use points
• Layer contents and contentsScale must be explicitly managed
for sharp results

• Layer contentsGravity also affects positioning

Custom CALayer content
Core Animation and High Resolution

• Layer bounds and position use points
• Layer contents and contentsScale must be explicitly managed
for sharp results

• Layer contentsGravity also affects positioning
• CGContexts provided to layer delegates already include scaling

Custom CALayer content
Core Animation and High Resolution

• Layer bounds and position use points
• Layer contents and contentsScale must be explicitly managed
for sharp results

• Layer contentsGravity also affects positioning
• CGContexts provided to layer delegates already include scaling

■ layer.contentsScale must be set correctly!

Custom CALayer content
Core Animation and High Resolution

• Layer bounds and position use points
• Layer contents and contentsScale must be explicitly managed
for sharp results

• Layer contentsGravity also affects positioning
• CGContexts provided to layer delegates already include scaling

■ layer.contentsScale must be set correctly!
■ No need to change -drawLayer:inContext:

NSImage as layer.contents
Core Animation and High Resolution

NSImage as layer.contents
Core Animation and High Resolution

• You can set the contents of a layer to an NSImage
layer.contents = [NSImage imageNamed:@”MyImage”]

NSImage as layer.contents
Core Animation and High Resolution

• You can set the contents of a layer to an NSImage
layer.contents = [NSImage imageNamed:@”MyImage”]

• Automatically chooses the best representation for
the screen the layer is on
■ Standard resolution screen will use the 1x rep
■ High resolution screen will use the 2x rep

NSImage as layer.contents
Core Animation and High Resolution

• You can set the contents of a layer to an NSImage
layer.contents = [NSImage imageNamed:@”MyImage”]

• Automatically chooses the best representation for
the screen the layer is on
■ Standard resolution screen will use the 1x rep
■ High resolution screen will use the 2x rep

• There are some edge cases…

NSImage
Image Representations

Standard Resolution Display High Resolution Display

cake.png

cake@2x.png

NSImage will pick the representation that matches the resolution…

CALayer CALayer

NSImage
Image Representations

Standard Resolution Display High Resolution Display

cake.png

cake@2x.png

NSImage will pick the representation that matches the resolution…

CALayer CALayer

NSImage
Image Representations

Standard Resolution Display High Resolution Display

cake.png

cake@2x.png

…but it doesn’t account for scaling of the CALayer

CALayer CALayer

NSImage
Image Representations

Standard Resolution Display High Resolution Display

cake.png

cake@2x.png

Contents gravity values that don’t resize will yield surprising results

layer.contentsGravity = kCAContentsGravityTopLeft

NSImage
Image Representations

Standard Resolution Display High Resolution Display

cake.png

cake@2x.png

Contents gravity values that don’t resize will yield surprising results

layer.contentsGravity = kCAContentsGravityTopRight

NSImage as layer.contents
Core Animation and High Resolution

NSImage as layer.contents
Core Animation and High Resolution

• Scales added by layer bounds or transforms are not accounted
for during representation selection

NSImage as layer.contents
Core Animation and High Resolution

• Scales added by layer bounds or transforms are not accounted
for during representation selection

• Doesn’t work for contents gravity other than
kCAContentsGravityResize, kCAContentsGravityResizeAspect,
and kCAContentsGravityResizeFill

NSImage as layer.contents
Core Animation and High Resolution

• Scales added by layer bounds or transforms are not accounted
for during representation selection

• Doesn’t work for contents gravity other than
kCAContentsGravityResize, kCAContentsGravityResizeAspect,
and kCAContentsGravityResizeFill

• For these cases use:
-[NSImage recommendedLayerContentsScale:]
-[NSImage layerContentsForContentsScale:]

Managing contents scale
Core Animation and High Resolution

Managing contents scale
Core Animation and High Resolution

• New convenience API (on the layer delegate)
-(BOOL)[id<CALayerDelegate> layer:(CALayer *)layer
 shouldInheritContentsScale:(CGFloat)scale
 fromWindow:(NSWindow *)window]

Managing contents scale
Core Animation and High Resolution

• New convenience API (on the layer delegate)
-(BOOL)[id<CALayerDelegate> layer:(CALayer *)layer
 shouldInheritContentsScale:(CGFloat)scale
 fromWindow:(NSWindow *)window]

• If you return YES from this, you also need to implement displayLayer:
or drawLayer:inContext:

Managing contents scale
Core Animation and High Resolution

• New convenience API (on the layer delegate)
-(BOOL)[id<CALayerDelegate> layer:(CALayer *)layer
 shouldInheritContentsScale:(CGFloat)scale
 fromWindow:(NSWindow *)window]

• If you return YES from this, you also need to implement displayLayer:
or drawLayer:inContext:

• The delegate method is not invoked when a sublayer is added

Managing contents scale
Core Animation and High Resolution

• New convenience API (on the layer delegate)
-(BOOL)[id<CALayerDelegate> layer:(CALayer *)layer
 shouldInheritContentsScale:(CGFloat)scale
 fromWindow:(NSWindow *)window]

• If you return YES from this, you also need to implement displayLayer:
or drawLayer:inContext:

• The delegate method is not invoked when a sublayer is added
• When a CALayer is created, its contentsScale should be synchronized
to backing scale of window it is contained in

Demo
Managing Custom CALayer Content

Responding to Resolution Changes

Responding to Resolution Changes

Responding to Resolution Changes

• Display size and resolution can change at any time!
■ Hot plug to external display
■ Mirroring to projector
■ Extended desktop

Responding to Resolution Changes

• Display size and resolution can change at any time!
■ Hot plug to external display
■ Mirroring to projector
■ Extended desktop

• Just because the machine has Retina doesn’t mean software
does not need to worry about 1x

Responding to Resolution Changes

• Display size and resolution can change at any time!
■ Hot plug to external display
■ Mirroring to projector
■ Extended desktop

• Just because the machine has Retina doesn’t mean software
does not need to worry about 1x

• Windows dragged between displays will change resolution
automatically

Notifications
Responding to Resolution Changes

Notifications
Responding to Resolution Changes

• NSWindow will adjust backing resolution to match associated NSScreen

Notifications
Responding to Resolution Changes

• NSWindow will adjust backing resolution to match associated NSScreen
■ Off-screen windows get “highest” available resolution by default

Notifications
Responding to Resolution Changes

• NSWindow will adjust backing resolution to match associated NSScreen
■ Off-screen windows get “highest” available resolution by default

• Notification sent when window becomes associated with a new screen

Notifications
Responding to Resolution Changes

• NSWindow will adjust backing resolution to match associated NSScreen
■ Off-screen windows get “highest” available resolution by default

• Notification sent when window becomes associated with a new screen
NSWindowDidChangeBackingPropertiesNotification

Notifications
Responding to Resolution Changes

• NSWindow will adjust backing resolution to match associated NSScreen
■ Off-screen windows get “highest” available resolution by default

• Notification sent when window becomes associated with a new screen
NSWindowDidChangeBackingPropertiesNotification
-[id<NSWindowDelegate> windowDidChangeBackingProperties:]

Views
Responding to Resolution Changes

• Also new API on NSView (for subclassers)
-[NSView viewDidChangeBackingProperties]

• Called when the view is added to a window, or when the window scale
factor or colorspace changes
- (void)viewDidChangeBackingProperties {
 [super viewDidChangeBackingProperties];
 self.layer.contentsScale =
 [image recommendedLayerContentsScale:self.window.backingScale];
 self.layer.contents =
 [image layerContentsForContentsScale:self.layer.contentsScale];
}

• Properties do not change when a view is removed from a window
• Initial properties for a view reflect the highest resolution screen

Text Rendering in High Resolution

Aki “I ⍰ Unicode” Inoue
Cocoa Engineer

What’s New in 10.8

What’s New in 10.8

No New API!

What’s New in 10.8

What’s New in 10.8

Screen Fonts

What’s New in 10.8

Screen Fonts
Deprecated

• Integer glyph-spacing
• Sharp rendering with low resolution display
• Quartz rendering time bitmap caching
• Work nicely with hand-tuned bitmap fonts

Screen Fonts Explained

• Integer glyph-spacing
• Sharp rendering with low resolution display
• Quartz rendering time bitmap caching
• Work nicely with hand-tuned bitmap fonts

• Integer glyph-spacing

Screen Fonts Explained

Screen Fonts Explained
“Base” font instance

Text

Screen Fonts Explained
“Base” font instance

Text
3.8 3.4 4.1 3.2

Screen Fonts Explained
Screen font instance

Text
4.0 3.0 4.0 3.0

• Integer glyph-spacing
• Sharp rendering with low resolution display
• Quartz rendering time bitmap caching
• Work nicely with hand-tuned bitmap fonts

• Sharp rendering with low resolution display

Screen Fonts Explained

• Integer glyph-spacing
• Sharp rendering with low resolution display
• Quartz rendering time bitmap caching
• Work nicely with hand-tuned bitmap fonts
• Quartz rendering time bitmap caching

Screen Fonts Explained

• Integer glyph-spacing
• Sharp rendering with low resolution display
• Quartz rendering time bitmap caching
• Work nicely with hand-tuned bitmap fonts• Work nicely with hand-tuned bitmap fonts

Screen Fonts Explained

• Integer glyph-spacing
• Sharp rendering with low resolution display
• Quartz rendering time bitmap caching
• Work nicely with hand-tuned bitmap fonts

Screen Fonts Explained

• Uneven glyph-spacing
• Incompatible with kerning and ligature
• Inconsistent and non-linear width

• Integer glyph-spacing
• Sharp rendering with low resolution display
• Quartz rendering time bitmap caching
• Work nicely with hand-tuned bitmap fonts

Screen Fonts Explained

Ideal glyph advancement
Floating-Point Advancement Fonts

Ideal glyph advancement
Floating-Point Advancement Fonts

• Utilizing the higher pixel density

Ideal glyph advancement
Floating-Point Advancement Fonts

• Utilizing the higher pixel density
• Allowing kerning and ligature in smaller point sizes

Ideal glyph advancement
Floating-Point Advancement Fonts

• Utilizing the higher pixel density
• Allowing kerning and ligature in smaller point sizes
• Layout as the font designer intended

Ideal glyph advancement
Floating-Point Advancement Fonts

• Utilizing the higher pixel density
• Allowing kerning and ligature in smaller point sizes
• Layout as the font designer intended
• Uniform transformation in scaled coordinates

10.7 Text Layout

10.7 Text Layout

10.8 Text Layout

10.8 Text Layout

10.8 Text Layout

10.7

Layout Comparison

10.8

10.7

Layout Comparison

10.8

Text System API

• NSLayoutManager
• NSStringDrawing
• NSCell

Text System API

• NSLayoutManager

• NSStringDrawing
• NSCell

Text System API

• Document contents
NSLayoutManager

• User Interface Elements
NSStringDrawing
NSCell

Screen Font API

• Document contents
-[NSLayoutManager usesScreenFonts]

• User Interface Elements
NSStringDrawingDisableScreenFontSubstitution

Screen Font API

• Document contents
-[NSLayoutManager usesScreenFonts]

• User Interface Elements
NSStringDrawingDisableScreenFontSubstitution
for -drawWithRect:options: and -boundingRectWithSize:options:

Screen Font API

• Document contents
-[NSLayoutManager usesScreenFonts] = YES

• User Interface Elements
NSStringDrawingDisableScreenFontSubstitution = NO

10.7 default setting

Screen Font API

• Document contents
-[NSLayoutManager usesScreenFonts] = NO

• User Interface Elements
NSStringDrawingDisableScreenFontSubstitution = YES

10.8 default setting

Screen Font Substitution
Anatomy of screen fonts

NSFont

NSLayoutManager NSStringDrawing NSCell

Text System APIs

Screen Font Substitution
Anatomy of screen fonts

NSFont
Helvetica

NSLayoutManager NSStringDrawing NSCell

Text System APIs

+fontWithName:size:

Screen Font Substitution
Anatomy of screen fonts

NSFont

Helvetica

NSLayoutManager NSStringDrawing NSCell

Text System APIs-setFont:

Screen Font Substitution
Anatomy of screen fonts

NSFont

NSLayoutManager NSStringDrawing NSCell

Text System APIs

Anatomy of screen fonts
Screen Font Substitution

• Dynamically swaps with screen font behind the scene

Anatomy of screen fonts
Screen Font Substitution

• Dynamically swaps with screen font behind the scene
-[NSLayoutManager substituteFontForFont:]
-[NSFont screenFont]

Anatomy of screen fonts
Screen Font Substitution

• Dynamically swaps with screen font behind the scene
-[NSLayoutManager substituteFontForFont:]
-[NSFont screenFont]

@implementation NSLayoutManager

- (NSFont *)substituteFontForFont:(NSFont)aFont {
! if ([self usesScreenFonts]) aFont = [aFont screenFont];

! return aFont;
}

@end

Anatomy of screen fonts
Screen Font Substitution

• Dynamically swaps with screen font behind the scene
-[NSLayoutManager substituteFontForFont:]
-[NSFont screenFont]

@implementation NSLayoutManager

- (NSFont *)substituteFontForFont:(NSFont)aFont {
! if ([self usesScreenFonts]) aFont = [aFont screenFont];

! return aFont;
}

@end

Anatomy of screen fonts
Screen Font Substitution

Screen Font Substitution
10.7 behavior

NSFont

NSLayoutManager NSStringDrawing NSCell

Text System APIsHelvetica

Screen Font Substitution
10.7 behavior

NSFont

NSLayoutManager NSStringDrawing NSCell

Text System APIsHelvetica-substituteFontForFont:

Screen Font Substitution
10.7 behavior

NSFont

NSLayoutManager NSStringDrawing NSCell

Text System APIs

Helvetica

Screen
Helvetica

High Resolution Checklist
Anything to do?

High Resolution Checklist
Anything to do?

10.7

10.8

High Resolution Checklist
Anything to do?

10.7

10.8

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

Document Compatibility Strategy

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

Document Compatibility Strategy

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

Document Compatibility Strategy

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

Document Compatibility Strategy

• Retain the screen font setting per document
-[NSLayoutManager usesScreenFonts]
NSUsesScreenFontsDocumentAttribute

• Deciding the screen font default setting
NSFontDefaultScreenFontSubstitutionEnabled

■ 10.8 SDK -> NO
■ Previous SDKs -> YES

Or, how math conspires against us
Subtle Artwork Alignment Issues

Dan Schimpf
Pixel Aligner

Alignment Issues

Alignment Issues

• Situations that worked perfectly well at 1x seem to fail at 2x

Alignment Issues

• Situations that worked perfectly well at 1x seem to fail at 2x
• Rounding differences cause unsuspecting layout to change at 2x

Alignment Issues

• Situations that worked perfectly well at 1x seem to fail at 2x
• Rounding differences cause unsuspecting layout to change at 2x
• There are no odd pixels at 2x!

Even Inside Even
1x

y=1.0 pt y=1.0 px

2x

y=1.0 pt y=2.0 px

Even Inside Even
1x

y=1.0 pt y=1.0 px

2x

y=1.0 pt y=2.0 px

Odd Inside Odd
1x 2x

y=1.0 pt y=1.0 px y=1.0 pt y=2.0 px

Odd Inside Odd
1x 2x

y=1.0 pt y=1.0 px y=1.0 pt y=2.0 px

Even Inside Odd
1x 2x

y=1.5 pt y=2.0 px y=1.5 pt y=3.0 px

Even Inside Odd
1x 2x

y=1.5 pt y=2.0 px y=1.5 pt y=3.0 px

Odd Inside Even
1x 2x

y=1.5 pt y=2.0 px y=1.5 pt y=3.0 px

Odd Inside Even
1x 2x

y=1.5 pt y=2.0 px y=1.5 pt y=3.0 px

Squinting helps
Recognizing Pixel Shifts

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth
■ The window switches to 2x at the midpoint

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth
■ The window switches to 2x at the midpoint
■ Observe any visual shifts

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth
■ The window switches to 2x at the midpoint
■ Observe any visual shifts

• If you have one display only:

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth
■ The window switches to 2x at the midpoint
■ Observe any visual shifts

• If you have one display only:
■ Take screenshots in both modes

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth
■ The window switches to 2x at the midpoint
■ Observe any visual shifts

• If you have one display only:
■ Take screenshots in both modes
■ Open both in Preview in same window

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth
■ The window switches to 2x at the midpoint
■ Observe any visual shifts

• If you have one display only:
■ Take screenshots in both modes
■ Open both in Preview in same window
■ Scale the 1x screenshot to 200%

Squinting helps
Recognizing Pixel Shifts

• Easiest way to see issues is to test in both environments
• If you have two displays:

■ Set one to 2x and drag window back and forth
■ The window switches to 2x at the midpoint
■ Observe any visual shifts

• If you have one display only:
■ Take screenshots in both modes
■ Open both in Preview in same window
■ Scale the 1x screenshot to 200%
■ Flip back and forth

Pixel Shifts in the Wild

1x
1,000%

Pixel Shifts in the Wild

2x
500%

Where’s the Problem?

Where’s the Problem?

• This time, maybe it’s the design

Where’s the Problem?

• This time, maybe it’s the design
• See if you can redesign the 1x appearance to avoid this

Where’s the Problem?

• This time, maybe it’s the design
• See if you can redesign the 1x appearance to avoid this
• If you can’t change, you’ll have to tweak just 2x appearance

Fixing the Problem

Fixing the Problem

• Experiment with rounding direction

Fixing the Problem

• Experiment with rounding direction
■ Use backingAlignedRect:options:, which provides explicit control

Fixing the Problem

• Experiment with rounding direction
■ Use backingAlignedRect:options:, which provides explicit control

• You may have to add 0.5 points explicitly when running at 2x

Fixing the Problem

• Experiment with rounding direction
■ Use backingAlignedRect:options:, which provides explicit control

• You may have to add 0.5 points explicitly when running at 2x
■ Do this only if absolutely necessary

Or, don’t use scale factors
Scale Factors

Coordinate Spaces

Coordinate Spaces

• Cocoa is awash in coordinate spaces

Coordinate Spaces

• Cocoa is awash in coordinate spaces
■ NSWindow

Coordinate Spaces

• Cocoa is awash in coordinate spaces
■ NSWindow
■ NSView

Coordinate Spaces

• Cocoa is awash in coordinate spaces
■ NSWindow
■ NSView
■ CALayer

Coordinate Spaces

• Cocoa is awash in coordinate spaces
■ NSWindow
■ NSView
■ CALayer
■ Bitmap contexts

Coordinate Spaces

• Cocoa is awash in coordinate spaces
■ NSWindow
■ NSView
■ CALayer
■ Bitmap contexts
■ OpenGL contexts

Coordinate Spaces

• Cocoa is awash in coordinate spaces
■ NSWindow
■ NSView
■ CALayer
■ Bitmap contexts
■ OpenGL contexts

• By dealing in the correct coordinate space, your code stays clean

Coordinate Spaces

• Cocoa is awash in coordinate spaces
■ NSWindow
■ NSView
■ CALayer
■ Bitmap contexts
■ OpenGL contexts

• By dealing in the correct coordinate space, your code stays clean
• Scale factor is already accounted for in these contexts

Converting Coordinates

Source Destination Method

NSView NSView convertRect:toView:

NSView NSWindow convertRect:toView:
with nil view

NSWindow NSScreen convertRectToScreen:

NSView CALayer convertRectToLayer:

Anything Backing convertRectToBacking:

Converting Coordinates

Source Destination Method

NSView NSView convertRect:toView:

NSView NSWindow convertRect:toView:
with nil view

NSWindow NSScreen convertRectToScreen:

NSView CALayer convertRectToLayer:

Anything Backing convertRectToBacking:

Converting Coordinates

Source Destination Method

NSView NSView convertRect:toView:

NSView NSWindow convertRect:toView:
with nil view

NSWindow NSScreen convertRectToScreen:

NSView CALayer convertRectToLayer:

Anything Backing convertRectToBacking:

Converting Coordinates

Source Destination Method

NSView NSView convertRect:toView:

NSView NSWindow convertRect:toView:
with nil view

NSWindow NSScreen convertRectToScreen:

NSView CALayer convertRectToLayer:

Anything Backing convertRectToBacking:

Converting Coordinates

Source Destination Method

NSView NSView convertRect:toView:

NSView NSWindow convertRect:toView:
with nil view

NSWindow NSScreen convertRectToScreen:

NSView CALayer convertRectToLayer:

Anything Backing convertRectToBacking:

Using Scale Factors Incorrectly

- (void)drawRect:(NSRect)dirtyRect {
CGFloat pixelX = self.frame.origin.x * self.window.backingScaleFactor;

Using Scale Factors Incorrectly

- (void)drawRect:(NSRect)dirtyRect {
CGFloat pixelX = self.frame.origin.x * self.window.backingScaleFactor;

Recommended Coordinate Handling

- (void)drawRect:(NSRect)dirtyRect {
NSRect pixelRect = [self convertRectToBacking:self.bounds];
CGFloat pixelX = pixelRect.origin.x;

Recommended Coordinate Handling

- (void)drawRect:(NSRect)dirtyRect {
NSRect pixelRect = [self convertRectToBacking:self.bounds];
CGFloat pixelX = pixelRect.origin.x;

Tips

Tips

• Work in points wherever possible

Tips

• Work in points wherever possible
■ Be prepared for fractional points at 2x; they’re okay!

Tips

• Work in points wherever possible
■ Be prepared for fractional points at 2x; they’re okay!

• Convert coordinates to appropriate space before using them

Tips

• Work in points wherever possible
■ Be prepared for fractional points at 2x; they’re okay!

• Convert coordinates to appropriate space before using them
• Never ask for the current scale factor

Tips

• Work in points wherever possible
■ Be prepared for fractional points at 2x; they’re okay!

• Convert coordinates to appropriate space before using them
• Never ask for the current scale factor

■ If you absolutely need to, use your current window

Tips

• Work in points wherever possible
■ Be prepared for fractional points at 2x; they’re okay!

• Convert coordinates to appropriate space before using them
• Never ask for the current scale factor

■ If you absolutely need to, use your current window
■ If you have no window or screen, it might be time to rethink
your design

Capturing On-Screen Content

Patrick Heynen

Creating images of your App’s user interface
Capturing On-Screen Content

Creating images of your App’s user interface
Capturing On-Screen Content

• Typically used to temporarily cache expensive drawing
■ Animations
■ Drag images

Creating images of your App’s user interface
Capturing On-Screen Content

• Typically used to temporarily cache expensive drawing
■ Animations
■ Drag images

• You are creating bitmaps (indirectly)

Capturing On-Screen Content

• Different techniques for different goals
■ Windows and Views vs. Displays

Capturing View Hierarchies

Capturing View Hierarchies

• Create bitmap to use as backing store for your capture
-(NSBitmapImageRep*)bitmapImageRepForCachingDisplayInRect:(NSRect)rect

Capturing View Hierarchies

• Create bitmap to use as backing store for your capture
-(NSBitmapImageRep*)bitmapImageRepForCachingDisplayInRect:(NSRect)rect

• Redraw view into new bitmap representation
-(void)cacheDisplayInRect:(NSRect)rect
 toBitmapImageRep:(NSBitmapImageRep*)bitmapImageRep

Capturing View Hierarchies

• Create bitmap to use as backing store for your capture
-(NSBitmapImageRep*)bitmapImageRepForCachingDisplayInRect:(NSRect)rect

• Redraw view into new bitmap representation
-(void)cacheDisplayInRect:(NSRect)rect
 toBitmapImageRep:(NSBitmapImageRep*)bitmapImageRep

• Create an NSImage
NSImage *captureImage = [[NSImage alloc] initWithSize:rect.size];
[captureImage addRepresentation:capturedBitmapRep];

Special Considerations

• Resolution of capture images will match original window

Special Considerations

• Resolution of capture images will match original window
• Resolution of off-screen view captures will match highest
available screen

Special Considerations

• Resolution of capture images will match original window
• Resolution of off-screen view captures will match highest
available screen

• Single resolution only!

Capturing Screen Content

Capturing Screen Content

• Need to use Quartz Display Services
CGImageRef CGDisplayCreateImageForRect(CGDirectDisplayID display,
 CGRect rect)

Capturing Screen Content

• Need to use Quartz Display Services
CGImageRef CGDisplayCreateImageForRect(CGDirectDisplayID display,
 CGRect rect)

• Calculate image size in points before constructing NSImage
NSSize sizeInPixels = NSMakeSize(CGImageGetWidth(cgImage),
 CGImageGetHeight(cgImage));

NSSize sizeInPoints = [screen convertSizeFromBacking:sizeInPixels;
NSImage *screenImage = [[NSImage alloc] initWithCGImage:cgImage
 size:sizeInPoints];

Capturing Screen Content

• Use NSScreen deviceDescription to get Quartz Display ID

NSNumber *screenNumber = [[aScreen deviceDescription]
 objectForKey:@”NSScreenNumber”];
CGDirectDisplayID displayID = [screenNumber intValue];

App Performance
Under High Resolution

How to think about it

Your application will be processing 4–7x
the amount of pixels under high resolution

Don’t despair, the hardware is there

Make sure your app leverages system
graphics technologies as much as possible

Be aware of time/space trade-offs

More Information

Jake Behrens
UI Frameworks Evangelist
behrens@apple.com

Documentation
High Resolution Guidelines for OS X
http://developer.apple.com/

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Introduction to High Resolution on OS X Presidio
Wednesday 9:00AM

Delivering Web Content on High Resolution Displays Nob Hill
Wednesday 11:30AM

Advances in OpenGL and OpenGL ES Pacific Heights
Wednesday 2:00PM

Labs

Cocoa and XPC Lab Essentials Lab A
Friday 10:15AM

Summary

Summary

• Avoid using bitmaps when possible
■ Use the new NSImage block-based API

Summary

• Avoid using bitmaps when possible
■ Use the new NSImage block-based API

• Opt-in to high resolution OpenGL
Use setWantsBestResolutionOpenGLSurface:
Remember calls like glViewPort need to be in pixels!

Summary

• Avoid using bitmaps when possible
■ Use the new NSImage block-based API

• Opt-in to high resolution OpenGL
Use setWantsBestResolutionOpenGLSurface:
Remember calls like glViewPort need to be in pixels!

• Be aware of the contentsScale property when using CA layers
Use the new layer:shouldInheritContentsScale:fromWindow:
delegate method

Summary

• Avoid using bitmaps when possible
■ Use the new NSImage block-based API

• Opt-in to high resolution OpenGL
Use setWantsBestResolutionOpenGLSurface:
Remember calls like glViewPort need to be in pixels!

• Be aware of the contentsScale property when using CA layers
Use the new layer:shouldInheritContentsScale:fromWindow:
delegate method

• Screen fonts are deprecated

Summary

• Avoid using bitmaps when possible
■ Use the new NSImage block-based API

• Opt-in to high resolution OpenGL
Use setWantsBestResolutionOpenGLSurface:
Remember calls like glViewPort need to be in pixels!

• Be aware of the contentsScale property when using CA layers
Use the new layer:shouldInheritContentsScale:fromWindow:
delegate method

• Screen fonts are deprecated
• Pixel alignment may produce visually different results in high resolution

