
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 302
Daniel Feldman
Engineering Manager, Mac App Store

Selling Products with Store Kit











75%
Of the 25 top grossing 

iPhone apps use In-App Purchase



Today’s Agenda

• Selling Store Content
• Using In-App Purchase 
• In Detail: The Purchase Queue 
• App Store Hosted Content
• Best Practices



Today’s Agenda

• Selling Store Content
• Using In-App Purchase 
• In Detail: The Purchase Queue 
• App Store Hosted Content
• Best Practices













Selling Store Products



Selling Store Products

• Look up item identifier 



Selling Store Products

• Look up item identifier 
■ Search API



Selling Store Products

• Look up item identifier 
■ Search API
■ Enterprise Partner Feed



Selling Store Products

• Look up item identifier 
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs



Selling Store Products

• Look up item identifier 
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs

• Configure a SKStoreProductViewController



Selling Store Products

• Look up item identifier 
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs

• Configure a SKStoreProductViewController
• Tell the view controller to load
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• Look up item identifier 
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs

• Configure a SKStoreProductViewController
• Tell the view controller to load
• Show the view controller
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- (void)showProductViewController:(UIButton *)sender {
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numberWithInteger: itemIdentifier]};

 SKStoreProductViewController *viewController = 
      [[SKStoreProductViewController alloc] init]; 

vCtrl.delegate = self;

}

How to Sell a Store Product



   [viewController loadProductWithParameters:parameters 
completionBlock: ^(BOOL result, NSError *error) {
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   [viewController loadProductWithParameters:parameters 
completionBlock: ^(BOOL result, NSError *error) {

   

   }]

   [viewController loadProductWithParameters:parameters 
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   }]

    if (result)

        [[self.window rootViewController] 
        presentModalViewController:viewController
        animated:YES];
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How to Sell a Store Product

- (void)productViewControllerDidFinish:

    (SKStoreProductViewController *)viewController
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NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1", 

                                @"com.myCompany.myApp.product2", 

                                @"com.myCompany.myApp.product3"];

        

SKProductsRequest* request = [[SKProductsRequest alloc] 

                initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];
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• Your responsibility
• Make it fit your app
• Don’t just show, sell!
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• Add an observer at launch
 [[SKPaymentQueue defaultQueue] addTransactionObserver: self];

• Implement SKPaymentTransactionObserver protocol
- (void)paymentQueue:(SKPaymentQueue *)queue 

 updatedTransactions:(NSArray *)transactions
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Restoring Transactions

• A way to get all In-App purchases back
• Important for app re-downloads, multi-device scenarios
• Applications must offer this
• Only non-consumable and auto-renew subscription types
• Don’t auto-restore on launch
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• Unlock functionality in your app
• Download additional content from your server
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  [[SKPaymentQueue defaultQueue] finishTransaction: transaction];
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The Sandbox Environment

[Environment: Sandbox]
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How
The Sandbox Environment

• Setup in iTunes Connect
■ Create a test user
■ Enter products for sale

• Build and sign
• Mac: Fetch a receipt
• Buy a product!
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App Store Hosted Content

• Don’t need to host your own content
■ Save time, money, and bugs
■ Scalable and reliable

• Easy API
■ Save development time
■ Comes with a security model
■ Take advantage of background downloads
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App Store Hosted Content

• No additional cost to use this
• Limit of 2GB
• They go through review
• No code
• Same content rules as apps
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Workflow
App Store Hosted Content

• Build and test your content
• Upload your content to iTunes Connect
• App Store will host that content
• Use new Store Kit API to download content
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for(SKPaymentTransaction* transaction in transactions)
{

}
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for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray 
*)transactions

    [[SKPaymentQueue defaultQueue] startDownloads: 

    transaction.downloads];
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- (void)paymentQueue:(SKPaymentQueue *)queue updatedDownloads:

    (NSArray *)downloads;
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- (void)paymentQueue:(SKPaymentQueue *)queue updatedDownloads:

    (NSArray *)downloads;

download.progress

download.timeRemaining

download.state 

download.error

Process
Transaction

Show
In-App UI

Make Asset 
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction



• Pausing and resuming

Process
Transaction

Show
In-App UI

Make Asset 
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

- (void) pauseDownloads:(NSArray *)downloads;
- (void) resumeDownloads:(NSArray *)downloads;
- (void) cancelDownloads:(NSArray *)downloads;

SKPaymentQueue
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Restoring App Store Hosted Content

• Just like non-hosted content
• Check for transaction.downloads
• Downloading is your decision

■ Always call finishTransaction:
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• A folder with any data you need
ContentInfo.plist at root level
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IAPProductIdentifier

• Other data in Contents subfolder



What form does it take?
App Store Hosted Content

…/
   ContentInfo.plist
   Contents/
       PieceOfContent1.mov
       PieceOfContent2.mov
       …
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Where does it get installed?
App Store Hosted Content

• On OS X
■ Special Application Support folder
■ Use API to access it

+ (NSURL *) contentURLForProductID:(NSString *)productID;

+ (void) deleteContentForProductID:(NSString *)productID;
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Updating content
App Store Hosted Content

• Edit your content
• Update version in ContentInfo.plist
• Re-upload to iTunes Connect
• Requires restore to get new content
• To determine if something has changed

■ Fetch SKProducts
■ Compare to ContentInfo.plist
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Transitioning from self-hosted content
App Store Hosted Content

• Must be added as new products in iTunes Connect



Demo



Today’s Agenda

• Selling Store Content
• Using In-App Purchase 
• In Detail: The Purchase Queue 
• App Store Hosted Content
• Best Practices
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Best Practices

• Check queue on launch
• Call finishTransaction:
• Restoring purchases is required
• iOS: Move out of ~/Caches if you want it to persist
• Test in sandbox before deploying



More Information

Paul Marcos
Application Services Evangelist
pmarcos@apple.com

Documentation
In-App Purchase Programming Guide and Validating App Store Receipts
http://developer.apple.com

Search API and Enterprise Partner Feed
http://www.apple.com/itunes/affiliates

Apple Developer Forums
http://devforums.apple.com



What's New in iTunes Connect for App Developers Nob Hill
Thursday 9:00AM

Building Great Newsstand Apps Nob Hill
Thursday 2:00PM

Managing Subscriptions with In-App Purchase Mission
Thursday 3:15PM

Related Sessions



In-App Purchase Lab App Services Lab A
Wednesday 3:15PM

iTunes Connect for App Developers Lab App Services Lab A
Thursday 11:30AM

In-App Purchase Lab App Services Lab B
Thursday 4:30PM

Newsstand Lab App Services Lab A
Friday 9:00AM

App Store Lab App Store Lab  (Level 3)
Monday-Friday 9:00AM

Labs
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