
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 302
Daniel Feldman
Engineering Manager, Mac App Store

Selling Products with Store Kit

75%
Of the 25 top grossing

iPhone apps use In-App Purchase

Today’s Agenda

• Selling Store Content
• Using In-App Purchase
• In Detail: The Purchase Queue
• App Store Hosted Content
• Best Practices

Today’s Agenda

• Selling Store Content
• Using In-App Purchase
• In Detail: The Purchase Queue
• App Store Hosted Content
• Best Practices

Selling Store Products

Selling Store Products

• Look up item identifier

Selling Store Products

• Look up item identifier
■ Search API

Selling Store Products

• Look up item identifier
■ Search API
■ Enterprise Partner Feed

Selling Store Products

• Look up item identifier
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs

Selling Store Products

• Look up item identifier
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs

• Configure a SKStoreProductViewController

Selling Store Products

• Look up item identifier
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs

• Configure a SKStoreProductViewController
• Tell the view controller to load

Selling Store Products

• Look up item identifier
■ Search API
■ Enterprise Partner Feed
■ Parse iTunes Preview URLs

• Configure a SKStoreProductViewController
• Tell the view controller to load
• Show the view controller

How to Sell a Store Product

- (void)showProductViewController:(UIButton *)sender {

}

- (void)showProductViewController:(UIButton *)sender {

}

How to Sell a Store Product

- (void)showProductViewController:(UIButton *)sender {

}

- (void)showProductViewController:(UIButton *)sender {

}

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

How to Sell a Store Product

- (void)showProductViewController:(UIButton *)sender {

}

- (void)showProductViewController:(UIButton *)sender {

}

viewController.delegate = self;

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

How to Sell a Store Product

- (void)showProductViewController:(UIButton *)sender {

}

- (void)showProductViewController:(UIButton *)sender {

}

NSDictionary *parameters =
@{SKStoreProductParameterITunesItemIdentifier: [NSNumber
numberWithInteger: itemIdentifier]};

NSDictionary *parameters =
@{SKStoreProductParameterITunesItemIdentifier: [NSNumber
numberWithInteger: itemIdentifier]};

viewController.delegate = self;viewController.delegate = self;

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

How to Sell a Store Product

- (void)showProductViewController:(UIButton *)sender {

NSDictionary *parameters =
@{SKStoreProductParameterITunesItemIdentifier: [NSNumber
numberWithInteger: itemIdentifier]};

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

viewController.delegate = self;

}

How to Sell a Store Product

- (void)showProductViewController:(UIButton *)sender {

NSDictionary *parameters =
@{SKStoreProductParameterITunesItemIdentifier: [NSNumber
numberWithInteger: itemIdentifier]};

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

viewController.delegate = self;

}

How to Sell a Store Product

- (void)showProductViewController:(UIButton *)sender {

NSDictionary *parameters =
@{SKStoreProductParameterITunesItemIdentifier: [NSNumber
numberWithInteger: itemIdentifier]};

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

vCtrl.delegate = self;

}

How to Sell a Store Product

 [viewController loadProductWithParameters:parameters
completionBlock: ^(BOOL result, NSError *error) {

 }]

- (void)showProductViewController:(UIButton *)sender {

NSDictionary *parameters =
@{SKStoreProductParameterITunesItemIdentifier: [NSNumber
numberWithInteger: itemIdentifier]};

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

vCtrl.delegate = self;

}

How to Sell a Store Product

 [viewController loadProductWithParameters:parameters
completionBlock: ^(BOOL result, NSError *error) {

 }]

 [viewController loadProductWithParameters:parameters
completionBlock: ^(BOOL result, NSError *error) {

 }]

 if (result)

 [[self.window rootViewController]
 presentModalViewController:viewController
 animated:YES];

- (void)showProductViewController:(UIButton *)sender {

NSDictionary *parameters =
@{SKStoreProductParameterITunesItemIdentifier: [NSNumber
numberWithInteger: itemIdentifier]};

 SKStoreProductViewController *viewController =
 [[SKStoreProductViewController alloc] init];

vCtrl.delegate = self;

}

How to Sell a Store Product

How to Sell a Store Product

- (void)productViewControllerDidFinish:

 (SKStoreProductViewController *)viewController

Today’s Agenda

• Selling Store Content
• Using In-App Purchase
• In Detail: The Purchase Queue
• App Store Hosted Content
• Best Practices

In-App Purchase Types

In-App Purchase Types

• Consumable

In-App Purchase Types

• Consumable
• Non-consumable

In-App Purchase Types

• Consumable
• Non-consumable
• Auto-renewing subscription

In-App Purchase Types

• Consumable
• Non-consumable
• Auto-renewing subscription
• Non-renewing subscription

In-App Process Overview

In-App Process Overview

Set Up
Content

Verify
Purchases

Purchase
Process

In-App Process Overview

Set Up
Content

Verify
Purchases

Purchase
Process

In Xcode/
iTunes Connect

In-App Process Overview

Set Up
Content

Verify
Purchases

Purchase
Process

On DeviceIn Xcode/
iTunes Connect

In-App Process Overview

Set Up
Content

Verify
Purchases

Purchase
Process

On DeviceIn Xcode/
iTunes Connect On Mac/Server

In-App Process Overview

Purchase
Process

In-App Process Overview

In-App Process Overview

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

• From within your app
NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1",

 @"com.myCompany.myApp.product2",

 @"com.myCompany.myApp.product3"];

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

• From within your app
NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1",

 @"com.myCompany.myApp.product2",

 @"com.myCompany.myApp.product3"];

 • From your server
■ Develop your own client/server communication

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1",

 @"com.myCompany.myApp.product2",

 @"com.myCompany.myApp.product3"];

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1",

 @"com.myCompany.myApp.product2",

 @"com.myCompany.myApp.product3"];

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1",

 @"com.myCompany.myApp.product2",

 @"com.myCompany.myApp.product3"];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1",

 @"com.myCompany.myApp.product2",

 @"com.myCompany.myApp.product3"];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

- (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:

(SKProductsResponse *)response

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

- (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:

(SKProductsResponse *)response

response.products: description, name, price

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

- (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:

(SKProductsResponse *)response

response.products: description, name, price

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

response.invalidProductIdentifiers

- (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:

(SKProductsResponse *)response

response.products: description, name, price

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

response.invalidProductIdentifiers

- (void)request:(SKRequest *)request didFailWithError:(NSError *)error

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

• Your responsibility

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

• Your responsibility
• Make it fit your app

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

• Your responsibility
• Make it fit your app
• Don’t just show, sell!

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

 SKPayment *payment = [SKPayment paymentWithProduct:product];

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

 SKPayment *payment = [SKPayment paymentWithProduct:product];
 [[SKPaymentQueue defaultQueue] addPayment:payment];

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Register
Observer

• Add an observer at launch
 [[SKPaymentQueue defaultQueue] addTransactionObserver: self];

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Register
Observer

• Add an observer at launch
 [[SKPaymentQueue defaultQueue] addTransactionObserver: self];

• Implement SKPaymentTransactionObserver protocol
- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedTransactions:(NSArray *)transactions

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Register
Observer

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

switch(transaction.transactionState) {

}

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

switch(transaction.transactionState) {

}

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

case SKPaymentTransactionStatePurchased:

…

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

switch(transaction.transactionState) {

}

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

case SKPaymentTransactionStatePurchased:

…

case SKPaymentTransactionStateFailed:

…

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

• Unlock functionality in your app

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

• Unlock functionality in your app
• Download additional content from your server

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

 [[SKPaymentQueue defaultQueue] finishTransaction: transaction];

Restoring Transactions

Restoring Transactions

• A way to get all In-App purchases back

Restoring Transactions

• A way to get all In-App purchases back
• Important for app re-downloads, multi-device scenarios

Restoring Transactions

• A way to get all In-App purchases back
• Important for app re-downloads, multi-device scenarios
• Applications must offer this

Restoring Transactions

• A way to get all In-App purchases back
• Important for app re-downloads, multi-device scenarios
• Applications must offer this
• Only non-consumable and auto-renew subscription types

Restoring Transactions

• A way to get all In-App purchases back
• Important for app re-downloads, multi-device scenarios
• Applications must offer this
• Only non-consumable and auto-renew subscription types
• Don’t auto-restore on launch

Make Asset
Available

Process
Transaction

Finish
Transaction

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

Start
Restore

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Make Asset
Available

Process
Transaction

Finish
Transaction

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

switch(transaction.transactionState) {

}

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

switch(transaction.transactionState) {

}

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

case SKPaymentTransactionStateRestored:

…

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

• Unlock functionality in your app

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

• Unlock functionality in your app
• Download additional content from your server

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

Start
Restore

Make Asset
Available

Process
Transaction

Finish
Transaction

 [[SKPaymentQueue defaultQueue] finishTransaction: transaction];

The Sandbox Environment

The Sandbox Environment

Production

The Sandbox Environment

SandboxProduction

The Sandbox Environment

SandboxProduction

The Sandbox Environment

SandboxProduction

The Sandbox Environment

SandboxProduction

The Sandbox Environment

[Environment: Sandbox]

How
The Sandbox Environment

How
The Sandbox Environment

• Setup in iTunes Connect

How
The Sandbox Environment

• Setup in iTunes Connect
■ Create a test user

How
The Sandbox Environment

• Setup in iTunes Connect
■ Create a test user
■ Enter products for sale

How
The Sandbox Environment

• Setup in iTunes Connect
■ Create a test user
■ Enter products for sale

• Build and sign

How
The Sandbox Environment

• Setup in iTunes Connect
■ Create a test user
■ Enter products for sale

• Build and sign
• Mac: Fetch a receipt

How
The Sandbox Environment

• Setup in iTunes Connect
■ Create a test user
■ Enter products for sale

• Build and sign
• Mac: Fetch a receipt
• Buy a product!

Today’s Agenda

• Selling Store Content
• Using In-App Purchase
• In Detail: The Purchase Queue
• App Store Hosted Content
• Best Practices

Your app

SKPaymentQueue

StoreKitYour app

SKPaymentQueue

StoreKitYour app

SKPaymentQueue

SKPaymentQueue

StoreKitYour app

SKPaymentQueue

SKPaymentQueueObserver

SKPaymentQueue

StoreKitYour app

SKPaymentQueue

iTunes Store

SKPaymentQueueObserver

SKPaymentQueue

StoreKitYour app

SKPaymentQueue

iTunes Store

SKPaymentQueueObserver

SKPaymentQueue

SKPayment

StoreKitYour app

SKPaymentQueue

iTunes Store

SKPaymentQueueObserver

SKPaymentQueue

SKPayment

StoreKitYour app

SKPaymentQueue

iTunes Store

SKPaymentQueueObserver

SKPaymentQueue

SKTransaction

SKPayment

StoreKit

SKPaymentQueueObserver

Your app

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

StoreKit

SKPaymentQueueObserver

Your app

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

StoreKit

SKPaymentQueueObserver

Your app

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

StoreKit

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

StoreKit

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

StoreKitYour App

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

StoreKitYour App

SKPaymentQueueObserver

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

StoreKitYour App

SKPaymentQueueObserver

SKPaymentQueue

iTunes Store
SKPaymentQueue

SKTransaction

SKPayment

Today’s Agenda

• Selling Store Content
• Using In-App Purchase
• In Detail: The Purchase Queue
• App Store Hosted Content
• Best Practices

The App Store will now host your
In-App content for you!

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

The App Store will now host your
In-App content for you!

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

App Store Hosted Content

App Store Hosted Content

• Don’t need to host your own content

App Store Hosted Content

• Don’t need to host your own content
■ Save time, money, and bugs

App Store Hosted Content

• Don’t need to host your own content
■ Save time, money, and bugs
■ Scalable and reliable

App Store Hosted Content

• Don’t need to host your own content
■ Save time, money, and bugs
■ Scalable and reliable

• Easy API

App Store Hosted Content

• Don’t need to host your own content
■ Save time, money, and bugs
■ Scalable and reliable

• Easy API
■ Save development time

App Store Hosted Content

• Don’t need to host your own content
■ Save time, money, and bugs
■ Scalable and reliable

• Easy API
■ Save development time
■ Comes with a security model

App Store Hosted Content

• Don’t need to host your own content
■ Save time, money, and bugs
■ Scalable and reliable

• Easy API
■ Save development time
■ Comes with a security model
■ Take advantage of background downloads

App Store Hosted Content

App Store Hosted Content

• No additional cost to use this

App Store Hosted Content

• No additional cost to use this
• Limit of 2GB

App Store Hosted Content

• No additional cost to use this
• Limit of 2GB
• They go through review

App Store Hosted Content

• No additional cost to use this
• Limit of 2GB
• They go through review
• No code

App Store Hosted Content

• No additional cost to use this
• Limit of 2GB
• They go through review
• No code
• Same content rules as apps

Workflow
App Store Hosted Content

Workflow
App Store Hosted Content

• Build and test your content

Workflow
App Store Hosted Content

• Build and test your content
• Upload your content to iTunes Connect

Workflow
App Store Hosted Content

• Build and test your content
• Upload your content to iTunes Connect
• App Store will host that content

Workflow
App Store Hosted Content

• Build and test your content
• Upload your content to iTunes Connect
• App Store will host that content
• Use new Store Kit API to download content

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

No Change

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

SKProduct has new properties

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

SKProduct has new properties
■ BOOL downloadable;

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

SKProduct has new properties
■ BOOL downloadable;
■ NSString* contentVersion;

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

SKProduct has new properties
■ BOOL downloadable;
■ NSString* contentVersion;
■ NSArray* contentLengths;

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

No Change

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

No Change

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Process
Transaction

Load In-App
Identifiers

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

if(transaction.downloads)

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue updatedTransactions:(NSArray
*)transactions

 [[SKPaymentQueue defaultQueue] startDownloads:

 transaction.downloads];

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

if(transaction.downloads)

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

- (void)paymentQueue:(SKPaymentQueue *)queue updatedDownloads:

 (NSArray *)downloads;

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

SKDownload

SKDownload

download.progress

download.timeRemaining

download.state

download.error

download.contentURL

0.128

213 (seconds)

SKDownloadStateActive
SKDownloadStateWaiting
SKDownloadStateFinished
SKDownloadStateFailed
SKDownloadStatePaused
SKDownloadStateCancelled

NSError

file:// URL

SKDownload

download.progress

download.timeRemaining

download.state

download.error

download.contentURL

0.128

213 (seconds)

SKDownloadStateActive
SKDownloadStateWaiting
SKDownloadStateFinished
SKDownloadStateFailed
SKDownloadStatePaused
SKDownloadStateCancelled

NSError

file:// URL

SKDownload

download.progress

download.timeRemaining

download.state

download.error

download.contentURL

0.128

213 (seconds)

SKDownloadStateActive
SKDownloadStateWaiting
SKDownloadStateFinished
SKDownloadStateFailed
SKDownloadStatePaused
SKDownloadStateCancelled

NSError

file:// URL

SKDownload

download.progress

download.timeRemaining

download.state

download.error

download.contentURL

0.128

213 (seconds)

SKDownloadStateActive
SKDownloadStateWaiting
SKDownloadStateFinished
SKDownloadStateFailed
SKDownloadStatePaused
SKDownloadStateCancelled

NSError

file:// URL

SKDownload

download.progress

download.timeRemaining

download.state

download.error

download.contentURL

0.128

213 (seconds)

SKDownloadStateActive
SKDownloadStateWaiting
SKDownloadStateFinished
SKDownloadStateFailed
SKDownloadStatePaused
SKDownloadStateCancelled

NSError

file:// URL

• Showing progress

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

• Showing progress

- (void)paymentQueue:(SKPaymentQueue *)queue updatedDownloads:

 (NSArray *)downloads;

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

• Showing progress

- (void)paymentQueue:(SKPaymentQueue *)queue updatedDownloads:

 (NSArray *)downloads;

download.progress

download.timeRemaining

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

• Showing progress

- (void)paymentQueue:(SKPaymentQueue *)queue updatedDownloads:

 (NSArray *)downloads;

download.progress

download.timeRemaining

download.state

download.error

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

• Pausing and resuming

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

- (void) pauseDownloads:(NSArray *)downloads;
- (void) resumeDownloads:(NSArray *)downloads;
- (void) cancelDownloads:(NSArray *)downloads;

SKPaymentQueue

• Accessing the content

download.contentURL

When SKDownload is in the SKDownloadStateFinished state:

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

No Change

Restoring App Store Hosted Content

Restoring App Store Hosted Content

• Just like non-hosted content

Restoring App Store Hosted Content

• Just like non-hosted content
• Check for transaction.downloads

Restoring App Store Hosted Content

• Just like non-hosted content
• Check for transaction.downloads
• Downloading is your decision

Restoring App Store Hosted Content

• Just like non-hosted content
• Check for transaction.downloads
• Downloading is your decision

■ Always call finishTransaction:

What form does it take?
App Store Hosted Content

What form does it take?
App Store Hosted Content

• A folder with any data you need

What form does it take?
App Store Hosted Content

• A folder with any data you need
ContentInfo.plist at root level

What form does it take?
App Store Hosted Content

• A folder with any data you need
ContentInfo.plist at root level
ContentVersion

What form does it take?
App Store Hosted Content

• A folder with any data you need
ContentInfo.plist at root level
ContentVersion
IAPProductIdentifier

What form does it take?
App Store Hosted Content

• A folder with any data you need
ContentInfo.plist at root level
ContentVersion
IAPProductIdentifier

• Other data in Contents subfolder

What form does it take?
App Store Hosted Content

…/
 ContentInfo.plist
 Contents/
 PieceOfContent1.mov
 PieceOfContent2.mov
 …

Where does it get installed?
App Store Hosted Content

• On iOS

Where does it get installed?
App Store Hosted Content

• On iOS

Purgeable Stays Local Backed Up

Caches

Documents

Documents (with backup flag set)

Where does it get installed?
App Store Hosted Content

• On iOS

Purgeable Stays Local Backed Up

Caches

Documents

Documents (with backup flag set)

Where does it get installed?
App Store Hosted Content

• On iOS

Purgeable Stays Local Backed Up

Caches

Documents

Documents (with backup flag set)

Where does it get installed?
App Store Hosted Content

Where does it get installed?
App Store Hosted Content

• On OS X

Where does it get installed?
App Store Hosted Content

• On OS X
■ Special Application Support folder

Where does it get installed?
App Store Hosted Content

• On OS X
■ Special Application Support folder
■ Use API to access it

Where does it get installed?
App Store Hosted Content

• On OS X
■ Special Application Support folder
■ Use API to access it

+ (NSURL *) contentURLForProductID:(NSString *)productID;

Where does it get installed?
App Store Hosted Content

• On OS X
■ Special Application Support folder
■ Use API to access it

+ (NSURL *) contentURLForProductID:(NSString *)productID;

+ (void) deleteContentForProductID:(NSString *)productID;

Updating content
App Store Hosted Content

Updating content
App Store Hosted Content

• Edit your content

Updating content
App Store Hosted Content

• Edit your content
• Update version in ContentInfo.plist

Updating content
App Store Hosted Content

• Edit your content
• Update version in ContentInfo.plist
• Re-upload to iTunes Connect

Updating content
App Store Hosted Content

• Edit your content
• Update version in ContentInfo.plist
• Re-upload to iTunes Connect
• Requires restore to get new content

Updating content
App Store Hosted Content

• Edit your content
• Update version in ContentInfo.plist
• Re-upload to iTunes Connect
• Requires restore to get new content
• To determine if something has changed

Updating content
App Store Hosted Content

• Edit your content
• Update version in ContentInfo.plist
• Re-upload to iTunes Connect
• Requires restore to get new content
• To determine if something has changed

■ Fetch SKProducts

Updating content
App Store Hosted Content

• Edit your content
• Update version in ContentInfo.plist
• Re-upload to iTunes Connect
• Requires restore to get new content
• To determine if something has changed

■ Fetch SKProducts
■ Compare to ContentInfo.plist

Transitioning from self-hosted content
App Store Hosted Content

Transitioning from self-hosted content
App Store Hosted Content

• Must be added as new products in iTunes Connect

Demo

Today’s Agenda

• Selling Store Content
• Using In-App Purchase
• In Detail: The Purchase Queue
• App Store Hosted Content
• Best Practices

Best Practices

Best Practices

• Check queue on launch

Best Practices

• Check queue on launch
• Call finishTransaction:

Best Practices

• Check queue on launch
• Call finishTransaction:
• Restoring purchases is required

Best Practices

• Check queue on launch
• Call finishTransaction:
• Restoring purchases is required
• iOS: Move out of ~/Caches if you want it to persist

Best Practices

• Check queue on launch
• Call finishTransaction:
• Restoring purchases is required
• iOS: Move out of ~/Caches if you want it to persist
• Test in sandbox before deploying

More Information

Paul Marcos
Application Services Evangelist
pmarcos@apple.com

Documentation
In-App Purchase Programming Guide and Validating App Store Receipts
http://developer.apple.com

Search API and Enterprise Partner Feed
http://www.apple.com/itunes/affiliates

Apple Developer Forums
http://devforums.apple.com

What's New in iTunes Connect for App Developers Nob Hill
Thursday 9:00AM

Building Great Newsstand Apps Nob Hill
Thursday 2:00PM

Managing Subscriptions with In-App Purchase Mission
Thursday 3:15PM

Related Sessions

In-App Purchase Lab App Services Lab A
Wednesday 3:15PM

iTunes Connect for App Developers Lab App Services Lab A
Thursday 11:30AM

In-App Purchase Lab App Services Lab B
Thursday 4:30PM

Newsstand Lab App Services Lab A
Friday 9:00AM

App Store Lab App Store Lab (Level 3)
Monday-Friday 9:00AM

Labs

The last 3 slides
after the logo are
intentionally left
blank for all
presentations.

The last 3 slides
after the logo are
intentionally left
blank for all
presentations.

The last 3 slides
after the logo are
intentionally left
blank for all
presentations.

