
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 412

Debugging in Xcode

Ken Orr
Xcode Debugger UI Manager

Control Flow

Correctness

Breakpoints

Variables

Breakpoints and Breakpoint Actions

NSLog(@"%ld", foo);

Creating and Deleting Breakpoints

Creating and Deleting Breakpoints

Creating and Deleting Breakpoints

⌘\
Add Or Remove

Breakpoint At Current Line

Creating and Deleting Breakpoints

Managing Your Breakpoints

Managing Your Breakpoints

Managing Your Breakpoints

⌘6
Breakpoint Navigator

Managing Your Breakpoints

Managing Your Breakpoints

Change a Breakpoint Group
Control-click a breakpoint to
move it to a different group

Managing Your Breakpoints

Managing Your Breakpoints

Project Breakpoint Group
Contains breakpoints that

belong to the listed project

Managing Your Breakpoints

Project Breakpoint Group
Contains breakpoints that

belong to the listed project

Managing Your Breakpoints

Managing Your Breakpoints

Shared Breakpoint Group
Shared breakpoints are available

to all users who open the project

Managing Your Breakpoints

Managing Your Breakpoints

Managing Your Breakpoints

User Breakpoint Group
User breakpoints are available

from all of your projects
and workspaces

Exception and Symbolic Breakpoints

Exception and Symbolic Breakpoints

Add Breakpoint
Allows you to add an exception

or symbolic breakpoint

Exception and Symbolic Breakpoints

Add Breakpoint
Allows you to add an exception

or symbolic breakpoint

Exception and Symbolic Breakpoints

Exception and Symbolic Breakpoints

Type of Exception Breakpoint
Allows you to stop on all

exceptions, Objective-C
exceptions, or C++ exceptions

Exception and Symbolic Breakpoints

When to Break
Allows you to specify whether you

want to break on catch or throw

Exception and Symbolic Breakpoints

Exception and Symbolic Breakpoints

Symbol Name
Execution will pause when a

symbol with this name is called

Exception and Symbolic Breakpoints

Module Name
Lets you restrict what libraries

with the specified symbol name
should result in a pause

Editing Breakpoints

Editing Breakpoints

Edit Breakpoint

⌥⌘

Editing Breakpoints

Condition to Evaluate
An expression to evaluate in order

to determine if the breakpoint
should be stopped at

Editing Breakpoints

Ignore Count
The number of times to ignore the

breakpoint before stopping

Editing Breakpoints

Automatically Continue
Continues program execution

after all of the breakpoint’s
actions have completed

Breakpoint Actions

Breakpoint Actions

Breakpoint Actions

Breakpoint Actions

Breakpoint Actions

Debugger Command Breakpoint Action

Debugger Command Breakpoint Action

po myVariable

Debugger Command Breakpoint Action

po myVariable

expr (void)NSLog(@“%f“, myVariable)

Debugger Command Breakpoint Action

po myVariable

breakpoint set -f SKTWindowController.m -l 100

expr (void)NSLog(@“%f“, myVariable)

Log Message Breakpoint Action

Log Message Breakpoint Action

myVariable = @myVariable@, hit %H times

Shell Command Breakpoint Action

Shell Command Breakpoint Action

screencaptureCommand:
/tmp/screenShot.pngArguments:

Sound Breakpoint Action

Sound Breakpoint Action

~/Library/Sounds
Sounds put in your home

directory show up in Xcode

AppleScript Breakpoint Action

AppleScript Breakpoint Action

tell application "Mail"
 set myMessage to make new outgoing message with properties
 {visible:false, subject:"Test Failed", content:"The test failed"}
 tell myMessage
 make new to recipient at end of to recipients with properties
 {name:"Ken Orr", address:"orr@apple.com"}
 myMessage send
 end tell
end tell

Demo
Breakpoints and breakpoint actions

Alex Raftis
Xcode Debugger UI Engineer

The Variables View

Viewing Your Variables

Viewing Your Variables

Viewing Your Variables

Viewing Mode
Auto - variables around the line of code you’re paused at
Local - all variables in local scope
All - all variables including globals and registers

Viewing Your Variables

Variable Kind
Local Variable
Argument
Static Variable
Global Variable

Register
Instance Variable
Expression

Viewing Your Variables

Variable Name
The name of the variable as it appears in your code

Viewing Your Variables

Dynamic Type
Runtime type of the variable

Viewing Your Variables

Variable Value
Current value of the variable

Viewing Your Variables

Variable Summary
Summary for the variable, if there is one

Return Value When Stepping Out

- (void)updateLabel
{
 [_textField setStringValue:[self currentProcessNameString]];
}

- (NSString *)currentProcessNameString
{
 return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];
}

Return Value When Stepping Out

- (void)updateLabel
{
 [_textField setStringValue:[self currentProcessNameString]];
}

- (NSString *)currentProcessNameString
{
 return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];
}

Return Value When Stepping Out

- (void)updateLabel
{
 [_textField setStringValue:[self currentProcessNameString]];
}

- (NSString *)currentProcessNameString
{
 return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];
}

return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];

Return Value When Stepping Out

- (void)updateLabel
{
 [_textField setStringValue:[self currentProcessNameString]];
}

- (NSString *)currentProcessNameString
{
 return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];
}

return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];

Return Value When Stepping Out

- (void)updateLabel
{
 [_textField setStringValue:[self currentProcessNameString]];
}

- (NSString *)currentProcessNameString
{
 return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];
}

[_textField setStringValue:[self currentProcessNameString]];

Return Value When Stepping Out

- (void)updateLabel
{
 [_textField setStringValue:[self currentProcessNameString]];
}

- (NSString *)currentProcessNameString
{
 return [NSString stringWithFormat:@"Current process is %@",
 [[NSProcessInfo processInfo] processName]];
}

[_textField setStringValue:[self currentProcessNameString]];

A Bit About Variable Summaries

title = (__NSCFString *) 0x1234 @”WWDC12”

A Bit About Variable Summaries

title = (__NSCFString *) 0x1234 @”WWDC12”

[title description]Previously implemented with expressions:

A Bit About Variable Summaries

 = (__NSCFString *) 0x1234 @”WWDC12”

[title description]Previously implemented with expressions:

A Bit About Variable Summaries

A Bit About Variable Summaries

Can change the state
of your program

A Bit About Variable Summaries

Can change the state
of your program

May not always work

A Bit About Variable Summaries LLDB

Block of memory representing
__NSCFString

A Bit About Variable Summaries LLDB

Block of memory representing
__NSCFString

Character Data
LLDB looks inside the object
and reads the memory of the
specific data it wants

Creating Custom Summaries

import lldb

LLDB

Creating Custom Summaries

import lldb

LLDB

Creating Custom Summaries

import lldb

LLDB

Creating Custom Summaries

import lldb
def circle_summary(valueObject, dictionary):

LLDB

Creating Custom Summaries

import lldb

def circle_summary(valueObject, dictionary):
grab the bounds of the SKTCircle.

bounds = valueObject.GetChildMemberWithName('_bounds')

size = bounds.GetChildMemberWithName('size')

…

return 'Major Radius = ' + majorRadiusAsString + ', Minor Radius =

 ' + minorRadiusAsString + ', Area = ' + areaAsString

LLDB

Creating Custom Summaries

import lldb

def circle_summary(valueObject, dictionary):

SBValue

grab the bounds of the SKTCircle.

bounds = valueObject.GetChildMemberWithName('_bounds')

size = bounds.GetChildMemberWithName('size')

…

return 'Major Radius = ' + majorRadiusAsString + ', Minor Radius =

 ' + minorRadiusAsString + ', Area = ' + areaAsString

LLDB

Creating Custom Summaries

import lldb

def circle_summary(valueObject, dictionary):

Don’t use this
parameter

grab the bounds of the SKTCircle.

bounds = valueObject.GetChildMemberWithName('_bounds')

size = bounds.GetChildMemberWithName('size')

…

return 'Major Radius = ' + majorRadiusAsString + ', Minor Radius =

 ' + minorRadiusAsString + ', Area = ' + areaAsString

LLDB

Creating Custom Summaries

import lldb

def circle_summary(valueObject, dictionary):

grab the bounds of the SKTCircle.

bounds = valueObject.GetChildMemberWithName('_bounds')

size = bounds.GetChildMemberWithName('size')

…

return 'Major Radius = ' + majorRadiusAsString + ', Minor Radius =

 ' + minorRadiusAsString + ', Area = ' + areaAsString

LLDB

Demo
Variables view and custom LLDB summaries

Troy Koelling
Xcode Debugger UI Engineer

Advanced Debugging

Debugging as Root

Debugging as Root

Edit Scheme
⌘<

Debugging as Root

What Is an XPC Service

Privileged Bits

Your App Process

App Logic

Crashy Bits

What Is an XPC Service

Crashy Bits

Privileged Bits

Your App Process

App Logic

XPC Services
(separate processes)

Demo
Advanced debugging

Han Ming Ong
Xcode Debugger UI Engineer

More Information

Michael Jurewitz
Developer Tools Evangelist
jury@apple.com

Documentation
LLDB Custom Summaries
http://lldb.llvm.org/varformats.html

Documentation
LLDB Scripting
http://lldb.llvm.org/scripting.html

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Debugging with LLDB Presidio
Friday 10:15AM

Cocoa Interprocess Communication with XPC Russian Hill
Thursday 4:30PM

OpenGL ES Tools and Techniques Pacific Heights
Wednesday 3:15PM

Learning Instruments Presidio
Wednesday 4:30PM

Labs

Xcode Lab Developer Tools Lab B
Ongoing

LLDB Lab Developer Tools Lab C
Friday 11:30AM

