
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 506

Optimizing 2D Graphics and
Animation Performance

Tim Oriol
Mike Funk

Overview of topics for this session
Agenda

• Supporting Retina Display
• Optimizing 2D graphics (Quartz 2D + Core Animation)
• Identify and fix common Retina Display pitfalls
• Using CGDisplayStream to get real-time display updates

What you should know
Prerequisites

• Core Animation framework
• Quartz 2D drawing techniques
• Basic knowledge of UIView and NSView

What Changes with Retina Displays?

Retina Displays
Today’s Retina Displays have 4x the pixels of previous displays

What’s the point
Points Versus Pixels

• Points have nothing to do with typographer’s “points”
• Points are logical coordinates
• Pixels are actual device display coordinates
• One point is not always equal to one pixel
• The “scale factor” is the number of pixels per point
• Use points with Quartz 2D, UIKit, AppKit, and Core Animation

Set up your scale factor
Retina Displays

• Set the contentsScale property of layers that you would like to provide
high-resolution content

• Text, shapes, Quartz 2D drawing, and any layers that you have provided
high-resolution images as content

• UIKit/AppKit will set the appropriate contentsScale for layers they create

layer.contentsScale = [UIScreen mainScreen].scale;

Set up your scale factor
Retina Displays

• The CGContext provided to you via CALayer’s drawInContext will
be set up correctly according to its contentsScale property

• Any CGContextBitmap you create yourself should be set up
with pixel dimensions and scale your drawing appropriately

• On iOS, use this method to draw to a bitmap context:

void UIGraphicsBeginImageContextWithOptions(
 CGSize size, //size in Points
 BOOL opaque, //opaque drawing is much faster
 CGFloat scale //the scale factor
);

What do you need to do?
Retina Displays

• Quartz 2D and CALayer based drawing is scaled using a scale factor
• This includes lines, text, shadows, and paths
• Make sure to set the scale factor for any contexts you create yourself
that should provide high-resolution content

• Higher resolution images should to be provided (use “@2x” suffix)

Optimize
Retina Displays

• Having 4x the pixels magnifies any drawing performance issues
• You simply can’t afford not to optimize your drawing code anymore

Performance Tools
Core Animation in Instruments

Performance Tools
Core Animation in Instruments

Demo
Finger painting app for iPad and Instruments

See what’s happening
Useful Tools for Performance Optimization

• Instruments, particularly the Core Animation tool
• Quartz Debug (only on the Mac)

■ How to get Quartz Debug
■ Xcode->OpenDeveloperTool->MoreDeveloperTools…
■ Download and install the “Graphics Tools for Xcode” package

Quartz 2D Drawing Optimization

The Golden Rule

• Never draw more than you actually need to

General Graphics Optimization

Quartz 2D
Redraw only what has changed

Redraw only what has changed
Quartz 2D

• Call setNeedsDisplayInRect: with the area you know as changed
• This will set up the clipRect for your drawRect: code
• You don’t need to change your drawing code
• Quartz 2D will automatically cull any drawing outside of the clipRect

Quartz 2D
Set up once and reuse

Create state outside of drawRect:
Quartz 2D

• Don’t set up the same CGColors, CGPaths, clipShapes every draw call
• Make them once on initialization and reuse when drawing
• Even nonstatic items can benefit

Use offscreen buffers to flatten content
Quartz 2D

• Drawing complex CGPaths can be slow
• When appending to a large CGPath, don’t redraw the entire path
• Flatten existing drawing to a bitmap
• Only draw the new elements

Use offscreen buffers to flatten content
Quartz 2D

• Drawing complex CGPaths can be slow
• When appending to a large CGPath, don’t redraw the entire path
• Flatten existing drawing to a bitmap
• Only draw the new elements

Demo
Finger painting app for iPad with optimizations

Core Animation Optimization

Place Static Content into a Separate View

• Items that you expect to change rarely or not at all
• Core Animation maintains a bitmap cache and composites in hardware

Layer subtree bitmap caching
CALayer.shouldRasterize

• This can also be done on a per-layer basis
• Setting the shouldRasterize property on the base
CALayer containing the static content subtree

• Rasterizing locks the layer image to a particular size
• Always set the rasterizationScale whenever you use shouldRasterize

layer.rasterizationScale = layer.contentsScale;

Screen Buffer

Bitmap Caching

hello,
world

Layer Tree

Scale ½

Screen Buffer

hello, world

Bitmap Caching

hello,
world

Layer Tree

Scale ½

Screen Buffer

Cache Buffer

Bitmap Caching

shouldRasterize=YES

hello,
world

Layer Tree

Scale ½

Screen Buffer

Cache Buffer

Bitmap Caching

hello, world

shouldRasterize=YES

hello,
world

Layer Tree

Scale ½

Screen Buffer

Cache Buffer

Bitmap Caching

hello, world

hello, world

shouldRasterize=YES

hello,
world

Layer Tree

Scale ½

Screen Buffer

Bitmap Caching

Cache Buffer

hello, world

hello,
world

Layer Tree

Scale ½

Screen Buffer

Bitmap Caching

Cache Buffer

hello, world

hello, world

hello,
world

Layer Tree

Scale ½

Screen Buffer

Bitmap Caching

Cache Buffer

hello, world

hello, world

hello,
world

Layer Tree

Scale ¼

Screen Buffer

Bitmap Caching

Cache Buffer

hello, world

hello, world

hello,
world

Layer Tree

Scale ¼

Layer subtree bitmap caching
CALayer.shouldRasterize

• Rasterization occurs before the mask is applied
• Caching and not reusing is more expensive than not caching at all
• This is a time vs. memory trade-off

Alpha blending
Core Animation

• Alpha blending is much slower than drawing opaque content
• Always use opaque images if possible

Strip Alpha Channels from Opaque Images

Strip Alpha Channels from Opaque Images

Drop shadows
Core Animation

• Shadows are expensive to generate
• Use shadowPath to define the opaque regions
• Generate once and use shouldRasterize

Drop shadows
Core Animation

• Shadows are expensive to generate
• Use shadowPath to define the opaque regions
• Generate once and use shouldRasterize

layer.shadowPath = myOutlinePath;

Use shadowPath to specify opaque areas
Core Animation

Use shadowPath to specify opaque areas
Core Animation

When should this be used
CALayer.drawsAsynchronously

• When supplying content to a CALayer via -drawInContext: method
there are two ways Core Animation can render
■ Normal drawing will block the calling thread until complete
■ Asynchronous drawing will render in the background
freeing up the caller to perform other tasks

layer.drawsAsynchronously = YES;

CALayer Normal Drawing Mode

My Custom CALayer Subclass

Quartz2D

CALayer Normal Drawing Mode

My Custom CALayer Subclass

Quartz2D

-drawInContext:

CALayer Normal Drawing Mode

My Custom CALayer Subclass

Quartz2D

-drawInContext:

CGContextDrawImage()

CALayer Normal Drawing Mode

My Custom CALayer Subclass

Quartz2D

-drawInContext:

CGContextDrawImage()

Perform Rendering

CALayer Normal Drawing Mode

My Custom CALayer Subclass

Quartz2D

-drawInContext:

CGContextDrawImage()

Other Work

Perform Rendering

CALayer.drawsAsynchronously

My Custom CALayer Subclass

Quartz2D

CALayer.drawsAsynchronously

My Custom CALayer Subclass

Quartz2D

-drawInContext:

CALayer.drawsAsynchronously

CGContextDrawImage()
CGContextStrokePath()
CGContextFillRect()

My Custom CALayer Subclass

Quartz2D

-drawInContext:

CALayer.drawsAsynchronously

CGContextDrawImage()

Other Work

Perform Rendering

CGContextStrokePath()
CGContextFillRect()

My Custom CALayer Subclass

Quartz2D

-drawInContext:

When should this be used
CALayer.drawsAsynchronously

• Not always a win, disabled by default
• Usually helpful with large regions of the context
being drawn with images, rectangles, shadings, etc.

• Really a case-by-case basis
• Measure, measure, measure

Demo
Final version of Finger Painting app for iPad

CGDisplayStream

Display capture performance issues
CGDisplayStream

• Round-trip copies from VRAM to RAM to VRAM kill performance
• 4x pixels greatly exacerbates this problem
• Ideally, captures should stay in VRAM for GPU-based processing:
YUV conversion, scaling, etc.

Traditional display capture scenario
CGDisplayStream

VRAM

RAM

CGDisplayStream

VRAM

RAM

Step 1: Framebuffer content starts in VRAM

Traditional display capture scenario

Traditional display capture scenario
CGDisplayStream

VRAM

RAM

Step 2: Display capture copies framebuffer data into RAM

Traditional display capture scenario
CGDisplayStream

VRAM

RAM

Step 3: Capture data sent back to VRAM for processing

Traditional display capture scenario
CGDisplayStream

VRAM

RAM

Step 4: Process the capture data in the GPU

Traditional display capture scenario
CGDisplayStream

VRAM

RAM

Step 5: Pull processed data back out of VRAM

Traditional display capture scenario
CGDisplayStream

VRAM

RAM

Step 6: Capture data is ready for use by application

High-performance display capture scenario
CGDisplayStream

VRAM

RAM

High-performance display capture scenario
CGDisplayStream

VRAM

RAM

Step 1: Framebuffer content starts in VRAM

High-performance display capture scenario
CGDisplayStream

VRAM

RAM

Step 2: Data is captured and processed without leaving VRAM

High-performance display capture scenario
CGDisplayStream

VRAM

RAM

Step 3: Pull processed data out of VRAM

High-performance display capture scenario
CGDisplayStream

VRAM

RAM

Step 4: Capture data is ready for use by application

Traditional display capture scenario
CGDisplayStream

VRAM

RAM

Step 6: Capture data is ready for use by application

High-performance display capture scenario
CGDisplayStream

VRAM

RAM

Step 4: Capture data is ready for use by application

Existing display capture techniques
CGDisplayStream

• CGDisplayCreateImage for capturing single frames

Existing display capture techniques
CGDisplayStream

• CGDisplayCreateImage for capturing single frames
• AV Foundation for recording to a QuickTime file

Existing display capture techniques
CGDisplayStream

• CGDisplayCreateImage for capturing single frames
• AV Foundation for recording to a QuickTime file
• Raw framebuffer access: Highly deprecated, highly unreliable

Existing display capture techniques
CGDisplayStream

• CGDisplayCreateImage for capturing single frames
• AV Foundation for recording to a QuickTime file
• Raw framebuffer access: Highly deprecated, highly unreliable

Existing display capture techniques
CGDisplayStream

• CGDisplayCreateImage for capturing single frames
• AV Foundation for recording to a QuickTime file
• Raw framebuffer access: Highly deprecated, highly unreliable

Introducing CGDisplayStream
CGDisplayStream

• New real-time display capture API
• OS X Mountain Lion only
• Can be used for non-interactive applications:
One-shot screen captures, screen recording

• Can be used for interactive, real-time applications:
Remote display, USB projectors

When to use CGDisplayStream
CGDisplayStream

• Real-time processing of screen updates
• Integrated with CFRunLoop and dispatch queues
• GPU-based image scaling and colorspace conversion
• Provides update rects for each captured frame

Creating the DisplayStream
CGDisplayStream

CGDisplayStreamRef CGDisplayStreamCreate(CGDirectDisplayID display,
 size_t outputWidth,
 size_t outputHeight,
 int32_t pixelFormat,
 CFDictionaryRef properties,

 CGDisplayStreamFrameAvailableHandler handler)

CGDisplayStream properties
CGDisplayStream

• kCGDisplayStreamQueueDepth—defaults to 3, should be no more than 8
• kCGDisplayStreamSourceRect
• kCGDisplayStreamPreserveAspectRatio
• kCGDisplayStreamColorSpace

Managing the DisplayStream
CGDisplayStream

CFRunLoopSourceRef
CGDisplayStreamGetRunLoopSource(CGDisplayStreamRef displayStream)

CGError
CGDisplayStreamStart(CGDisplayStreamRef displayStream)

CGError
CGDisplayStreamStop(CGDisplayStreamRef displayStream)

Processing the DisplayStream
CGDisplayStream

void
^CGDisplayStreamFrameAvailableHandler(CGDisplayStreamFrameStatus status,

 uint64_t displayTime,
 IOSurfaceRef frameSurface,
 CGDisplayStreamUpdateRef updateRef);

Examining the DisplayStream
CGDisplayStream

const CGRect *
CGDisplayStreamUpdateGetRects(CGDisplayStreamUpdateRef updateRef,
 CGDisplayStreamUpdateRectType rectType,
 size_t *rectCount)

CGDisplayStreamUpdateRef
CGDisplayStreamUpdateCreateMergedUpdate(CGDisplayStreamUpdateRef firstUpdate,
 CGDisplayStreamUpdateRef secondUpdate)

IOSurface basics

• Defined in IOSurface.framework, which became public API in
Snow Leopard

• High-performance representation of an image that may be in
VRAM, main memory, or both

• Can be shared between processes via IOSurfaceLookup
• Interoperable with OpenGL, OpenCL, Core Image, and Core Video
• Use CGLTexImageIOSurface2D to initialize an OpenGL texture with
an IOSurface

CGDisplayStream

Demo
CGDisplayStream in practice

More Information

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Mailing List
quartz-dev@lists.apple.com

Documentation
https://developer.apple.com/technologies/mac/graphics-and-animation.html

High-Resolution Guidelines for OS X
http://developer.apple.com/library/mac/#documentation/GraphicsAnimation/Conceptual/
HighResolutionOSX

Apple Developer Forums
http://devforums.apple.com

Introduction to High Resolution on OS X Presidio
Wednesday 9:00AM

Layer-Backed Views: AppKit + Core Animation Nob Hill
Wednesday 10:15AM

Delivering Web Content on High Resolution Displays Nob Hill
Wednesday 11:30AM

Related Sessions

High Resolution on OS X Lab Essentials Lab B
Wednesday 11:30AM

Labs

Quartz 2D Lab Graphics, Media & Games Lab B
Wednesday 9:00AM

Quartz 2D Lab Graphics, Media & Games Lab C
Thursday 9:00AM

Core Animation Lab Graphics, Media & Games Lab A
Wednesday 9:00AM

Core Animation Lab Graphics, Media & Games Lab C
Thursday 11:30AM

