
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

iOS 6 API enhancements and performance improvements

Session 520

What’s New In Camera Capture

Brad Ford
Core Media Engineering

What You Will Learn

• Performance improvements in Mac OS X 10.8

What You Will Learn

• Performance improvements in Mac OS X 10.8
• Camera ecosystem

What You Will Learn

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6

What You Will Learn

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app

What You Will Learn

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video

What You Will Learn

What You Will Not Learn

What You Will Not Learn

•AV Foundation and CoreMedia basics

What You Will Not Learn

•AV Foundation and CoreMedia basics
•AV Foundation class hierarchy

What You Will Not Learn

•AV Foundation and CoreMedia basics
•AV Foundation class hierarchy
• Review last year’s WWDC capture sessions at developer.apple.com

Sample Code for This Session

•AVRecorder (OS X)
•AVScreenShack (OS X)
• ‘StacheCam 2 (iOS)
• VideoSnake (iOS)
•AVCam (iOS)

Materials available at:
https://developer.apple.com/library/wwdc/mac/
https://developer.apple.com/library/wwdc/ios/

Mac OS X 10.8 (Mountain Lion) enhancements
New AV Foundation Capture APIs

Mac OS X 10.8 Capture Enhancements

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients
■ Better frame rates for AVCaptureVideoDataOutput clients

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients
■ Better frame rates for AVCaptureVideoDataOutput clients
■ ‘BGRA’ output with no intermediate ‘2vuy’ conversion

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients
■ Better frame rates for AVCaptureVideoDataOutput clients
■ ‘BGRA’ output with no intermediate ‘2vuy’ conversion
■ Opt out for drawing the mouse cursor

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients
■ Better frame rates for AVCaptureVideoDataOutput clients
■ ‘BGRA’ output with no intermediate ‘2vuy’ conversion
■ Opt out for drawing the mouse cursor
■ Mouse position metadata attached to video sample buffers

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients
■ Better frame rates for AVCaptureVideoDataOutput clients
■ ‘BGRA’ output with no intermediate ‘2vuy’ conversion
■ Opt out for drawing the mouse cursor
■ Mouse position metadata attached to video sample buffers
■ Opt out for duplicate frame removal

Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients
■ Better frame rates for AVCaptureVideoDataOutput clients
■ ‘BGRA’ output with no intermediate ‘2vuy’ conversion
■ Opt out for drawing the mouse cursor
■ Mouse position metadata attached to video sample buffers
■ Opt out for duplicate frame removal

See (updated) AVScreenShack sample code!

Mac OS X 10.8 Capture Enhancements

Mac OS X 10.8 Capture Enhancements

• Support for hardware accelerated H.264 encoding

Mac OS X 10.8 Capture Enhancements

• Support for hardware accelerated H.264 encoding
■ 2011 and newer Macs with SandyBridge / IvyBridge chipset

Mac OS X 10.8 Capture Enhancements

• Support for hardware accelerated H.264 encoding
■ 2011 and newer Macs with SandyBridge / IvyBridge chipset
■ Up to 1920x1088

Mac OS X 10.8 Capture Enhancements

• Support for hardware accelerated H.264 encoding
■ 2011 and newer Macs with SandyBridge / IvyBridge chipset
■ Up to 1920x1088
■ AVCaptureMovieFileOutput and AVAssetWriter (in real-time mode)

Mac OS X 10.8 Capture Enhancements

• Support for hardware accelerated H.264 encoding
■ 2011 and newer Macs with SandyBridge / IvyBridge chipset
■ Up to 1920x1088
■ AVCaptureMovieFileOutput and AVAssetWriter (in real-time mode)
■ No code changes required!

Mac OS X 10.8 Capture Enhancements

Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression

Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression
■ AVCaptureMovieFileOutput supports frame accurate start and stop

Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression
■ AVCaptureMovieFileOutput supports frame accurate start and stop
■ In Mac OS X 10.7, output compresses all the time

Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression
■ AVCaptureMovieFileOutput supports frame accurate start and stop
■ In Mac OS X 10.7, output compresses all the time
■ In Mac OS X 10.8, you must opt in for frame accurate start

Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression
■ AVCaptureMovieFileOutput supports frame accurate start and stop
■ In Mac OS X 10.7, output compresses all the time
■ In Mac OS X 10.8, you must opt in for frame accurate start

-(BOOL)captureOutputShouldProvideSampleAccurateRecordingStart:

Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression
■ AVCaptureMovieFileOutput supports frame accurate start and stop
■ In Mac OS X 10.7, output compresses all the time
■ In Mac OS X 10.8, you must opt in for frame accurate start

-(BOOL)captureOutputShouldProvideSampleAccurateRecordingStart:

■ Lowers power consumption when previewing

Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression
■ AVCaptureMovieFileOutput supports frame accurate start and stop
■ In Mac OS X 10.7, output compresses all the time
■ In Mac OS X 10.8, you must opt in for frame accurate start

-(BOOL)captureOutputShouldProvideSampleAccurateRecordingStart:

■ Lowers power consumption when previewing

See (updated) AVRecorder sample code

Mac OS X 10.8 Capture Enhancements

Mac OS X 10.8 Capture Enhancements

•Newly published CoreMediaIO “DAL” SDK

Mac OS X 10.8 Capture Enhancements

•Newly published CoreMediaIO “DAL” SDK
• Includes sample device

Mac OS X 10.8 Capture Enhancements

•Newly published CoreMediaIO “DAL” SDK
• Includes sample device
•Makes life easier for video driver writers

Mac OS X 10.8 Capture Enhancements

•Newly published CoreMediaIO “DAL” SDK
• Includes sample device
•Makes life easier for video driver writers
• See us in the labs for more details!

Mac OS X 10.8 Capture Enhancements

•Newly published CoreMediaIO “DAL” SDK
• Includes sample device
•Makes life easier for video driver writers
• See us in the labs for more details!

SDK available at:
http://developer.apple.com/library/mac/samplecode/CoreMediaIO/index.html

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video

What You Will Learn

How your app fits into the big picture
The iOS Camera Ecosystem

iOS Camera Ecosystem

iOS Camera Ecosystem

•Apple’s Camera app saves photos and videos to a central library

iOS Camera Ecosystem

•Apple’s Camera app saves photos and videos to a central library
•AssetsLibrary APIs allow your app to access this library

iOS Camera Ecosystem

•Apple’s Camera app saves photos and videos to a central library
•AssetsLibrary APIs allow your app to access this library

■ Camera roll

iOS Camera Ecosystem

•Apple’s Camera app saves photos and videos to a central library
•AssetsLibrary APIs allow your app to access this library

■ Camera roll
■ Synced assets from iTunes

iOS Camera Ecosystem

•Apple’s Camera app saves photos and videos to a central library
•AssetsLibrary APIs allow your app to access this library

■ Camera roll
■ Synced assets from iTunes
■ Saved assets from Mail, your app, etc.

iOS Camera Ecosystem

•Apple’s Camera app saves photos and videos to a central library
•AssetsLibrary APIs allow your app to access this library

■ Camera roll
■ Synced assets from iTunes
■ Saved assets from Mail, your app, etc.
■ Photo streams

iOS Camera Ecosystem

iOS Camera Ecosystem

• Photos and videos are personal, sensitive data

iOS Camera Ecosystem

• Photos and videos are personal, sensitive data
• iOS 6 devices now prompt user to grant access to the library

iOS Camera Ecosystem

• Photos and videos are personal, sensitive data
• iOS 6 devices now prompt user to grant access to the library

•Handle errors!

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video

What You Will Learn

iOS 6 enhancements
New AV Foundation Capture APIs

New in iOS 6

New in iOS 6

• Video stabilization

New in iOS 6

• Video stabilization
• Real-time face detection

New in iOS 6

• Video stabilization
• Real-time face detection
•AVCaptureVideoPreviewLayer enhancements

New in iOS 6

• Video stabilization
• Real-time face detection
•AVCaptureVideoPreviewLayer enhancements

Video Stabilization

• Video stabilization steadies shaky shots

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts

Video Stabilization

Demo
Video stabilization

Video Stabilization

Before After

Video Stabilization
Why use it?

Video Stabilization

• Camera phones are susceptible to shake

Why use it?

Video Stabilization

• Camera phones are susceptible to shake
•HD resolution recordings are especially susceptible to rolling shutter

Why use it?

Video Stabilization

• Camera phones are susceptible to shake
•HD resolution recordings are especially susceptible to rolling shutter
• Stabilization saves otherwise unusable footage

Why use it?

Video Stabilization

• Camera phones are susceptible to shake
•HD resolution recordings are especially susceptible to rolling shutter
• Stabilization saves otherwise unusable footage
• It works in real-time

Why use it?

Video Stabilization
Why not use stabilization?

Video Stabilization

• Stabilization alters the pixels

Why not use stabilization?

Video Stabilization

• Stabilization alters the pixels
•Output no longer matches preview layer

Why not use stabilization?

Video Stabilization

• Stabilization alters the pixels
•Output no longer matches preview layer
• It may not interoperate well with other pixel processing algorithms

Why not use stabilization?

Video Stabilization

• Stabilization alters the pixels
•Output no longer matches preview layer
• It may not interoperate well with other pixel processing algorithms
• Stabilization adds latency to video data output

Why not use stabilization?

Supported platforms
Video Stabilization

iPhone 4S

The new iPad

Compatibility
Video Stabilization

Compatibility

•All HD video resolutions are compatible
AVCaptureSessionPresetHigh
AVCaptureSessionPreset1920x1080
AVCaptureSessionPreset1280x720
AVCaptureSessionPresetiFrame1280x720
AVCaptureSessionPresetiFrame960x540

Video Stabilization

Compatibility
Video Stabilization

Compatibility

•Does NOT work with front camera

Video Stabilization

Compatibility

•Does NOT work with front camera
•Does NOT work with AVCaptureStillImageOutput

Video Stabilization

Compatibility

•Does NOT work with front camera
•Does NOT work with AVCaptureStillImageOutput
•Does NOT work with AVCaptureVideoPreviewLayer

Video Stabilization

iOS 5 behavior
Video Stabilization

iOS 5 behavior
Video Stabilization

•AVCaptureMovieFileOutput always stabilizes 1080p video

iOS 5 behavior
Video Stabilization

•AVCaptureMovieFileOutput always stabilizes 1080p video
•AVCaptureMovieFileOutput never stabilizes any other resolution

iOS 5 behavior
Video Stabilization

•AVCaptureMovieFileOutput always stabilizes 1080p video
•AVCaptureMovieFileOutput never stabilizes any other resolution
•AVCaptureVideoDataOutput never stabilizes video

iOS 5 behavior
Video Stabilization

•AVCaptureMovieFileOutput always stabilizes 1080p video
•AVCaptureMovieFileOutput never stabilizes any other resolution
•AVCaptureVideoDataOutput never stabilizes video
•No API to opt in or out

iOS 6 behavior
Video Stabilization

iOS 6 behavior
Video Stabilization

•Apps linked before iOS 6 continue to get the iOS 5 behavior

iOS 6 behavior
Video Stabilization

•Apps linked before iOS 6 continue to get the iOS 5 behavior
•Apps linked on or after iOS 6 must opt in for stabilization

iOS 6 behavior
Video Stabilization

•Apps linked before iOS 6 continue to get the iOS 5 behavior
•Apps linked on or after iOS 6 must opt in for stabilization
• Both movie file output and video data output support stabilization

Opting in
Video Stabilization

Opting in
Video Stabilization

• Create an AVCaptureSession

Opting in
Video Stabilization

• Create an AVCaptureSession
•Add an AVCaptureDeviceInput

Opting in
Video Stabilization

• Create an AVCaptureSession
•Add an AVCaptureDeviceInput
•Add an AVCaptureMovieFileOutput or AVCaptureVideoDataOutput

Opting in
Video Stabilization

• Create an AVCaptureSession
•Add an AVCaptureDeviceInput
•Add an AVCaptureMovieFileOutput or AVCaptureVideoDataOutput
•Get the output’s video connection
AVCaptureConnection *c = [output connectionWithMediaType:AVMediaTypeVideo];

Opting in
Video Stabilization

• Create an AVCaptureSession
•Add an AVCaptureDeviceInput
•Add an AVCaptureMovieFileOutput or AVCaptureVideoDataOutput
•Get the output’s video connection
AVCaptureConnection *c = [output connectionWithMediaType:AVMediaTypeVideo];

•Opt in for video stabilization when available
if ([c isVideoStabilizationSupported])
 [c setEnablesVideoStabilizationWhenAvailable:YES];

Opting in
Video Stabilization

• Create an AVCaptureSession
•Add an AVCaptureDeviceInput
•Add an AVCaptureMovieFileOutput or AVCaptureVideoDataOutput
•Get the output’s video connection
AVCaptureConnection *c = [output connectionWithMediaType:AVMediaTypeVideo];

•Opt in for video stabilization when available
if ([c isVideoStabilizationSupported])
 [c setEnablesVideoStabilizationWhenAvailable:YES];

• Key-value observe the connection’s @”videoStabilizationEnabled” property

Gotchas
Video Stabilization

•When inputs or outputs are added, connections are implicitly formed
between compatible input ports and outputs

Gotchas
Video Stabilization

•When inputs or outputs are added, connections are implicitly formed
between compatible input ports and outputs

AVCaptureMovieFileOutput

AVCaptureSession

Gotchas
Video Stabilization

•When inputs or outputs are added, connections are implicitly formed
between compatible input ports and outputs

AVCaptureMovieFileOutput

AVCaptureSession

AVCaptureDeviceInput

AVCaptureDevice
(Camera)

Gotchas
Video Stabilization

•When inputs or outputs are added, connections are implicitly formed
between compatible input ports and outputs

AVCaptureMovieFileOutput

AVCaptureSession

AVCaptureDeviceInput

AVCaptureDevice
(Camera)

AVCaptureConnection
(video)

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed

AVCaptureMovieFileOutput

AVCaptureSession

AVCaptureDeviceInput

AVCaptureDevice
(Camera)

AVCaptureConnection
(video)

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed

AVCaptureMovieFileOutput

AVCaptureSession

AVCaptureDeviceInput

AVCaptureDevice
(Camera)

AVCaptureConnection
(video)

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed

AVCaptureMovieFileOutput

AVCaptureSession

AVCaptureDeviceInput

AVCaptureDevice
(Camera)

AVCaptureConnection
(video)

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed

AVCaptureMovieFileOutput

AVCaptureSession

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed
•When you switch cameras, all your connection settings are lost

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed
•When you switch cameras, all your connection settings are lost
•After adding your new input, you must configure its new connection

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed
•When you switch cameras, all your connection settings are lost
•After adding your new input, you must configure its new connection
•Use AVCaptureSession’s -beginConfiguration / -commitConfiguration when
reconfiguring inputs or outputs to a session

Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed
•When you switch cameras, all your connection settings are lost
•After adding your new input, you must configure its new connection
•Use AVCaptureSession’s -beginConfiguration / -commitConfiguration when
reconfiguring inputs or outputs to a session

See updated AVCam sample code

New in iOS 6

• Video stabilization
• Real-time face detection
•AVCaptureVideoPreviewLayer enhancements

Face Detection

Face Detection

• Scans for faces in real-time

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face

faceID: 18

faceID: 15

faceID: 16

faceID: 17

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face

time:
71023055723083

time:
71023055723083

time:
71023055723083

time:
71023055723083

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face

bounds:
{0.4,0.8 0.1x0.1}

bounds:
{0.2,0.1 0.1x0.1}

bounds:
{0.1,0.3 0.1x0.2}

bounds:
{0.5,0.6 0.1x0.1}

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face
•Determines the roll angle

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face
•Determines the roll angle

roll: 240°

roll: 270°

roll: 270°

roll: 270°

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face
•Determines the roll angle

roll: 240°

roll: 270°

roll: 270°

roll: 270°

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face
•Determines the roll angle

roll: 330°

roll: 0°

roll: 0°

roll: 0°

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face
•Determines the roll angle
•Determines the yaw angle

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to
each face
• Provides a timestamp for
each face
• Finds the rectangle bounding
each face
•Determines the roll angle
•Determines the yaw angle

yaw: 0°

yaw: 315°

yaw: 0°

Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to each face
• Provides a timestamp for each face
• Finds the rectangle bounding each face
•Determines the roll angle
•Determines the yaw angle
•Works with front and back camera (all presets!)

Face Detection

•Does NOT find alien or pet faces

Face Detection

•Does NOT find alien or pet faces

Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces

Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces

Princess Clara

Sad Captain
America

Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces

Princess Clara

Sad Captain
America

Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces
•Does NOT remember faces

Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces
•Does NOT remember faces
•Does NOT determine pitch

Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces
•Does NOT remember faces
•Does NOT determine pitch

Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces
•Does NOT remember faces
•Does NOT determine pitch
•Does NOT find faces with a yaw angle between 91 and 269 degrees

Why use AV Foundation Face Detection?
Face Detection

Why use AV Foundation Face Detection?
Face Detection

•Optimized for real-time capture

Why use AV Foundation Face Detection?
Face Detection

•Optimized for real-time capture
• Incurs very little CPU

Why use AV Foundation Face Detection?
Face Detection

•Optimized for real-time capture
• Incurs very little CPU
• Capture resolution independent

Why use AV Foundation Face Detection?
Face Detection

•Optimized for real-time capture
• Incurs very little CPU
• Capture resolution independent
• Supports tracking faces over time

Why use Core Image’s CIFaceDetector
Face Detection

Why use Core Image’s CIFaceDetector
Face Detection

•Available on all supported iOS devices

Why use Core Image’s CIFaceDetector
Face Detection

•Available on all supported iOS devices
• “Push” interface suitable for arbitrary source images

Demo

Ethan Tira-Thompson
Core Media Engineering

‘StacheCam 2

‘StacheCam 2 (CIFaceDetector path)

‘StacheCam 2 (CIFaceDetector path)

AVCaptureSession

AVCaptureDeviceInput

‘StacheCam 2 (CIFaceDetector path)

V VV

AVCaptureSession

AVCaptureDeviceInput

AVCaptureVideoDataOutput AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

‘StacheCam 2 (CIFaceDetector path)

(push one frame at a time)

V VV

AVCaptureSession

AVCaptureDeviceInput

AVCaptureVideoDataOutput AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

CIFaceDetector

‘StacheCam 2 (CIFaceDetector path)

(push one frame at a time)

(draw red face rects)

V VV

AVCaptureSession

AVCaptureDeviceInput

AVCaptureVideoDataOutput AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

CIFaceDetector

‘StacheCam 2 (CIFaceDetector path)

(push one frame at a time)

(draw red face rects)

(Use CG to composite mustaches)
(Use ImageIO to write JPEG)
(AssetsLibrary to save to disk)

V VV

AVCaptureSession

AVCaptureDeviceInput

AVCaptureVideoDataOutput AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

CIFaceDetector

‘StacheCam 2 (real-time path)

‘StacheCam 2 (real-time path)

AVCaptureSession

AVCaptureDeviceInput

‘StacheCam 2 (real-time path)

AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

AVCaptureSession

AVCaptureDeviceInput

‘StacheCam 2 (real-time path)

AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

V VM

AVCaptureSession

AVCaptureDeviceInput

AVCaptureMetadataOutput

‘StacheCam 2 (real-time path)

AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

(draw mustache layers)

V VM

AVCaptureSession

AVCaptureDeviceInput

AVCaptureMetadataOutput

‘StacheCam 2 (real-time path)

AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

(draw mustache layers)(Use CG to composite mustaches)
(Use ImageIO to write JPEG)
(AssetsLibrary to write to disk)

V VM

AVCaptureSession

AVCaptureDeviceInput

AVCaptureMetadataOutput

Programming model
Face Detection

Programming model
Face Detection

•AVCaptureDeviceInput exposes an input port of AVMediaTypeMetadata

Programming model
Face Detection

•AVCaptureDeviceInput exposes an input port of AVMediaTypeMetadata
•New AVCaptureOutput subclass AVCaptureMetadataOutput

Programming model
Face Detection

•AVCaptureDeviceInput exposes an input port of AVMediaTypeMetadata
•New AVCaptureOutput subclass AVCaptureMetadataOutput

■ Patterned after AVCaptureVideoDataOutput

Programming model
Face Detection

•AVCaptureDeviceInput exposes an input port of AVMediaTypeMetadata
•New AVCaptureOutput subclass AVCaptureMetadataOutput

■ Patterned after AVCaptureVideoDataOutput
■ Outputs an NSArray of AVMetadataObjects to a delegate

Programming model
Face Detection

•AVCaptureDeviceInput exposes an input port of AVMediaTypeMetadata
•New AVCaptureOutput subclass AVCaptureMetadataOutput

■ Patterned after AVCaptureVideoDataOutput
■ Outputs an NSArray of AVMetadataObjects to a delegate
■ Allows discovery of -availableMetadataObjectTypes

Programming model
Face Detection

•AVCaptureDeviceInput exposes an input port of AVMediaTypeMetadata
•New AVCaptureOutput subclass AVCaptureMetadataOutput

■ Patterned after AVCaptureVideoDataOutput
■ Outputs an NSArray of AVMetadataObjects to a delegate
■ Allows discovery of -availableMetadataObjectTypes
■ Lets you request a subset of available metadata

NSArray *faceMetadata = [NSArray arrayWithObject:AVMetadataObjectTypeFace];
[metadataOutput setMetadataObjectTypes:faceMetadata];

What’s in a face?

- (void)captureOutput:(AVCaptureOutput *)captureOutput
 didOutputMetadataObjects:(NSArray *)metadataObjects
 fromConnection:(AVCaptureConnection *)c
{

for (AVMetadataObject *object in metadataObjects) {

if ([[object type] isEqual:AVMetadataObjectTypeFace]) {

CMTime timestamp = [face time];
CGRect faceRectangle = [face bounds];
NSInteger faceID = [face faceID];
CGFloat rollAngle = [face rollAngle];
CGFloat yawAngle = [face yawAngle];

// Do interesting things with this face
}

}
}

Face Detection

What’s in a face?

- (void)captureOutput:(AVCaptureOutput *)captureOutput
 didOutputMetadataObjects:(NSArray *)metadataObjects
 fromConnection:(AVCaptureConnection *)c
{

for (AVMetadataObject *object in metadataObjects) {

if ([[object type] isEqual:AVMetadataObjectTypeFace]) {

CMTime timestamp = [face time];
CGRect faceRectangle = [face bounds];
NSInteger faceID = [face faceID];
CGFloat rollAngle = [face rollAngle];
CGFloat yawAngle = [face yawAngle];

// Do interesting things with this face
}

}
}

Face Detection

AVFaceMetadataObject
Face Detection

AVFaceMetadataObject
Face Detection

• Face bounds extend from above the eye brows to below the lips

AVFaceMetadataObject
Face Detection

• Face bounds extend from above the eye brows to below the lips

AVFaceMetadataObject
Face Detection

• Face bounds extend from above the eye brows to below the lips
• CGRect coordinates are scalar values from 0 to 1

AVFaceMetadataObject
Face Detection

• Face bounds extend from above the eye brows to below the lips
• CGRect coordinates are scalar values from 0 to 1
• CGRect origin is top-left

AVFaceMetadataObject
Face Detection

• Face bounds extend from above the eye brows to below the lips
• CGRect coordinates are scalar values from 0 to 1
• CGRect origin is top-left
• CGRect coordinates refer to an untransformed source picture

AVFaceMetadataObject
Face Detection

• Face bounds extend from above the eye brows to below the lips
• CGRect coordinates are scalar values from 0 to 1
• CGRect origin is top-left
• CGRect coordinates refer to an untransformed source picture
• CIFaceDetector and AVCaptureMetadataOutput rectangles are
comparable in size and origin

Still image support
Face Detection

Still image support
Face Detection

•When using AVCaptureMetadataOutput + AVCaptureStillImageOutput,
face rectangles are included with the still image Exif metadata

Still image support
Face Detection

•When using AVCaptureMetadataOutput + AVCaptureStillImageOutput,
face rectangles are included with the still image Exif metadata
• Still image output’s -jpegStillImageNSDataRepresentation: preserves face
metadata in XMP Regions

[stillImageOutput captureStillImageAsynchronouslyFromConnection:connection
 completionHandler:

^(CMSampleBufferRef imageSampleBuffer, NSError *error) {
 if (! error) {
 NSData *jpegData = [AVCaptureStillImageOutput

 jpegStillImageNSDataRepresentation:imageSampleBuffer];

 // Write to disk or AssetsLibrary
}

Still image support
Face Detection

•When using AVCaptureMetadataOutput + AVCaptureStillImageOutput,
face rectangles are included with the still image Exif metadata
• Still image output’s -jpegStillImageNSDataRepresentation: preserves face
metadata in XMP Regions

[stillImageOutput captureStillImageAsynchronouslyFromConnection:connection
 completionHandler:

^(CMSampleBufferRef imageSampleBuffer, NSError *error) {
 if (! error) {
 NSData *jpegData = [AVCaptureStillImageOutput

 jpegStillImageNSDataRepresentation:imageSampleBuffer];

 // Write to disk or AssetsLibrary
}

Face Detection
Supported platforms

iPhone 4S

iPad 2

The new iPad

New in iOS 6

• Video stabilization
• Real-time face detection
•AVCaptureVideoPreviewLayer enhancements

AVCaptureVideoPreviewLayer enhancements

• Conversion methods for focus and exposure points of interest

AVCaptureVideoPreviewLayer enhancements

• Conversion methods for focus and exposure points of interest

AVCaptureVideoPreviewLayer enhancements

• Conversion methods for focus and exposure points of interest

“Setting an AVCaptureDevice’s focusPointOfInterest and exposurePointOfInterest
requires a CGPoint between {0,0} and {1,1}, in a totally arbitrary space, regardless
of device orientation. This makes using said API extremely difficult.”

AVCaptureDevice pointOfInterest review
AVCaptureVideoPreviewLayer Enhancements

AVCaptureDevice pointOfInterest review
AVCaptureVideoPreviewLayer Enhancements

• focusPointOfInterest is a CGPoint from {0, 0} to {1, 1}

AVCaptureDevice pointOfInterest review
AVCaptureVideoPreviewLayer Enhancements

• focusPointOfInterest is a CGPoint from {0, 0} to {1, 1}

• Top-left is {0,0}, bottom-right is {1,1}

AVCaptureDevice pointOfInterest review
AVCaptureVideoPreviewLayer Enhancements

• focusPointOfInterest is a CGPoint from {0, 0} to {1, 1}

• Top-left is {0,0}, bottom-right is {1,1}
• Camera sensor native (unrotated) orientation is landscape

AVCaptureDevice pointOfInterest review
AVCaptureVideoPreviewLayer Enhancements

• focusPointOfInterest is a CGPoint from {0, 0} to {1, 1}

• Top-left is {0,0}, bottom-right is {1,1}
• Camera sensor native (unrotated) orientation is landscape

AVCaptureDevice pointOfInterest review
AVCaptureVideoPreviewLayer Enhancements

• focusPointOfInterest is a CGPoint from {0, 0} to {1, 1}

• Top-left is {0,0}, bottom-right is {1,1}
• Camera sensor native (unrotated) orientation is landscape

(0,0)

(1,1)

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

• Preview may be rotated (videoOrientation)

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

• Preview may be rotated (videoOrientation)
• Preview may be mirrored (videoMirrored)

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

• Preview may be rotated (videoOrientation)
• Preview may be mirrored (videoMirrored)
• Preview bounds rect may not have the same aspect ratio as the sensor
video buffers (bounds)

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

• Preview may be rotated (videoOrientation)
• Preview may be mirrored (videoMirrored)
• Preview bounds rect may not have the same aspect ratio as the sensor
video buffers (bounds)
• Preview may stretch, shrink, crop, or letterbox the source content
(videoGravity)

•AVLayerVideoGravityResizeAspect
• “Letterbox mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

•AVLayerVideoGravityResizeAspect
• “Letterbox mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

1280 x 720 Source Image 640 x 640 Settings+

•AVLayerVideoGravityResizeAspect
• “Letterbox mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

1280 x 720 Source Image 640 x 640 Settings+

=

640 x 640 (with black bars)

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

•AVLayerVideoGravityResizeAspectFill
• “Crop mode"

1280 x 720 Source Image

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

•AVLayerVideoGravityResizeAspectFill
• “Crop mode"

1280 x 720 Source Image 640 x 640 Settings+

=

640 x 640 (cropped)

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

•AVLayerVideoGravityResizeAspectFill
• “Crop mode"

1280 x 720 Source Image 640 x 640 Settings+

=

640 x 640 (cropped)

•AVLayerVideoGravityResize
• “Funhouse mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

1280 x 720 Source Image

•AVLayerVideoGravityResize
• “Funhouse mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

1280 x 720 Source Image 640 x 640 Settings+

•AVLayerVideoGravityResize
• “Funhouse mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

1280 x 720 Source Image 640 x 640 Settings+

=

640 x 640

Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

• Convert from a touch point to an AVCaptureDevice point of interest

Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

• Convert from a touch point to an AVCaptureDevice point of interest
// Set point of interest
CGPoint tapPoint = [gestureRecognizer locationInView:previewView];
CGPoint convertedPoint =
 [videoPreviewLayer captureDevicePointOfInterestForPoint:tapPoint]
[captureDevice setFocusPointOfInterest:convertedPoint];

Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

• Convert from a touch point to an AVCaptureDevice point of interest
// Set point of interest
CGPoint tapPoint = [gestureRecognizer locationInView:previewView];
CGPoint convertedPoint =
 [videoPreviewLayer captureDevicePointOfInterestForPoint:tapPoint]
[captureDevice setFocusPointOfInterest:convertedPoint];

Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

• Convert from an AVCaptureDevice point of interest to a touch point
// Get the current point of interest to draw on preview layer
CGPoint poi = [device focusPointOfInterest];
CGPoint layerPoint =
 [videoPreviewLayer pointForCaptureDevicePointOfInterest:poi];

// Draw something at layerPoint

Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

• Convert from an AVCaptureDevice point of interest to a touch point
// Get the current point of interest to draw on preview layer
CGPoint poi = [device focusPointOfInterest];
CGPoint layerPoint =
 [videoPreviewLayer pointForCaptureDevicePointOfInterest:poi];

// Draw something at layerPoint

AVMetadataObject Conversion For Preview

AVMetadataObject Conversion For Preview

• Convert face metadata for video preview layer drawing
for (AVMetadataFaceObject *face in metadataObjects) {
 AVMetadataFaceObject *transformedFace =
 [previewLayer transformedMetadataObjectForMetadataObject:face];
 CGRect transformedFaceRect = [transformedFace bounds];

 // Draw a funny mustache on the face
}

AVMetadataObject Conversion For Preview

• Convert face metadata for video preview layer drawing
for (AVMetadataFaceObject *face in metadataObjects) {
 AVMetadataFaceObject *transformedFace =
 [previewLayer transformedMetadataObjectForMetadataObject:face];
 CGRect transformedFaceRect = [transformedFace bounds];

 // Draw a funny mustache on the face
}

AVMetadataObject Conversion for Output

AVMetadataObject Conversion for Output

• Convert face metadata for AVCaptureOutput drawing

AVMetadataObject Conversion for Output

• Convert face metadata for AVCaptureOutput drawing
•Align faces with physically rotated video data output
for (AVMetadataFaceObject *face in metadataObjects) {
 AVCaptureConnection *c = [vdo connectionWithMediaType:AVMediaTypeVideo];
 AVMetadataFaceObject *transformedFace =
 [vdo transformedMetadataObjectForMetadataObject:face connection:c];
 CGRect transformedFaceRect = [transformedFace bounds];

 // Draw a funny mustache on the face
}

AVMetadataObject Conversion for Output

• Convert face metadata for AVCaptureOutput drawing
•Align faces with physically rotated video data output
for (AVMetadataFaceObject *face in metadataObjects) {
 AVCaptureConnection *c = [vdo connectionWithMediaType:AVMediaTypeVideo];
 AVMetadataFaceObject *transformedFace =
 [vdo transformedMetadataObjectForMetadataObject:face connection:c];
 CGRect transformedFaceRect = [transformedFace bounds];

 // Draw a funny mustache on the face
}

Pause and resume video preview
AVCaptureVideoPreviewLayer Enhancements

•AVCaptureVideoPreviewLayer exposes an AVCaptureConnection

Pause and resume video preview
AVCaptureVideoPreviewLayer Enhancements

•AVCaptureVideoPreviewLayer exposes an AVCaptureConnection
•All connection properties are available to the layer

Pause and resume video preview
AVCaptureVideoPreviewLayer Enhancements

•AVCaptureVideoPreviewLayer exposes an AVCaptureConnection
•All connection properties are available to the layer
• To pause video preview, disable the connection

Pause and resume video preview
AVCaptureVideoPreviewLayer Enhancements

•AVCaptureVideoPreviewLayer exposes an AVCaptureConnection
•All connection properties are available to the layer
• To pause video preview, disable the connection
• Causes no glitch in any of the outputs

AVCaptureConnection *previewConnection = [videoPreviewLayer connection];

// pause preview
[previewConnection setEnabled:NO];

Pause and resume video preview
AVCaptureVideoPreviewLayer Enhancements

•AVCaptureVideoPreviewLayer exposes an AVCaptureConnection
•All connection properties are available to the layer
• To pause video preview, disable the connection
• Causes no glitch in any of the outputs

AVCaptureConnection *previewConnection = [videoPreviewLayer connection];

// pause preview
[previewConnection setEnabled:NO];

Deprecations
AVCaptureVideoPreviewLayer

Deprecations
AVCaptureVideoPreviewLayer

• Preview layer’s -connection property makes some methods redundant

Deprecations
AVCaptureVideoPreviewLayer

• Preview layer’s -connection property makes some methods redundant
• See AVCaptureVideoPreviewLayer.h

Deprecations
AVCaptureVideoPreviewLayer

• Preview layer’s -connection property makes some methods redundant
• See AVCaptureVideoPreviewLayer.h

 Deprecated Instead Use

layer.isOrientationSupported

layer.orientation

layer.isMirroringSupported

layer.automaticallyAdjustsMirroring

layer.isMirrored

conn = [layer connection];

conn.isVideoOrientationSupported

conn.videoOrientation

conn.isVideoMirroringSupported

conn.automaticallyAdjustsVideoMirroring

conn.isVideoMirrored

Miscellaneous API Enhancements

•AVCaptureDevice’s -torchActive property
•AVCaptureDevice’s -setTorchModeOnWithLevel:error: method
•AVCaptureStillImageOutput’s support for AVVideoQualityKey

What You Will Learn

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video

Solutions for Performance Problems

Common performance problems
Solving Performance Problems

Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture

Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture
■ Is it my fault?

Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture
■ Is it my fault?
■ What can I do to recover?

Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture
■ Is it my fault?
■ What can I do to recover?

•My AVAssetWriter recorded movies have frame drops at the beginning

Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture
■ Is it my fault?
■ What can I do to recover?

•My AVAssetWriter recorded movies have frame drops at the beginning
•My AVAssetWriter recorded movies have garbage (I use OpenGL)

Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture
■ Is it my fault?
■ What can I do to recover?

•My AVAssetWriter recorded movies have frame drops at the beginning
•My AVAssetWriter recorded movies have garbage (I use OpenGL)
•My DIY preview is slow

Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture
■ Is it my fault?
■ What can I do to recover?

•My AVAssetWriter recorded movies have frame drops at the beginning
•My AVAssetWriter recorded movies have garbage (I use OpenGL)
•My DIY preview is slow

■ How do I speed it up?

Handling frame drops
Solving Performance Problems

Handling frame drops
Solving Performance Problems

• Set AVCaptureVideoDataOutput’s -alwaysDiscardsLateVideoFrames to YES

Handling frame drops
Solving Performance Problems

• Set AVCaptureVideoDataOutput’s -alwaysDiscardsLateVideoFrames to YES
■ Unless you are recording

Handling frame drops
Solving Performance Problems

• Set AVCaptureVideoDataOutput’s -alwaysDiscardsLateVideoFrames to YES
■ Unless you are recording
■ Enforces a buffer queue size of 1 at the end of video data output’s
processing pipeline

Handling frame drops
Solving Performance Problems

• Set AVCaptureVideoDataOutput’s -alwaysDiscardsLateVideoFrames to YES
■ Unless you are recording
■ Enforces a buffer queue size of 1 at the end of video data output’s
processing pipeline

■ Saves you from periodically slow processing

Handling frame drops
Solving Performance Problems

• Set AVCaptureVideoDataOutput’s -alwaysDiscardsLateVideoFrames to YES
■ Unless you are recording
■ Enforces a buffer queue size of 1 at the end of video data output’s
processing pipeline

■ Saves you from periodically slow processing
■ Does not save you from chronically slow processing

Handling frame drops
Solving Performance Problems

Handling frame drops
Solving Performance Problems

•New in iOS 6, AVCaptureVideoDataOutput can report frame drops
// New optional AVCaptureVideoDataOutputDelegate method
- (void)captureOutput:(AVCaptureOutput *)captureOutput
 didDropSampleBuffer:(CMSampleBufferRef)sampleBuffer
 fromConnection:(AVCaptureConnection *)connection
{
 // We just dropped a frame!

}

Handling frame drops
Solving Performance Problems

•New in iOS 6, AVCaptureVideoDataOutput can report frame drops
// New optional AVCaptureVideoDataOutputDelegate method
- (void)captureOutput:(AVCaptureOutput *)captureOutput
 didDropSampleBuffer:(CMSampleBufferRef)sampleBuffer
 fromConnection:(AVCaptureConnection *)connection
{
 // We just dropped a frame!

}

Handling frame drops
Solving Performance Problems

Handling frame drops
Solving Performance Problems

• The didDropSampleBuffer contains no image data

Handling frame drops
Solving Performance Problems

• The didDropSampleBuffer contains no image data
•Does contain timing information and format description

Handling frame drops
Solving Performance Problems

• The didDropSampleBuffer contains no image data
•Does contain timing information and format description
•Does contain kCMSampleBufferAttachmentKey_DroppedFrameReason

Handling frame drops
Solving Performance Problems

• The didDropSampleBuffer contains no image data
•Does contain timing information and format description
•Does contain kCMSampleBufferAttachmentKey_DroppedFrameReason

■ kCMSampleBufferDroppedFrameReason_FrameWasLate

Handling frame drops
Solving Performance Problems

• The didDropSampleBuffer contains no image data
•Does contain timing information and format description
•Does contain kCMSampleBufferAttachmentKey_DroppedFrameReason

■ kCMSampleBufferDroppedFrameReason_FrameWasLate
■ kCMSampleBufferDroppedFrameReason_OutOfBuffers

Handling frame drops
Solving Performance Problems

• The didDropSampleBuffer contains no image data
•Does contain timing information and format description
•Does contain kCMSampleBufferAttachmentKey_DroppedFrameReason

■ kCMSampleBufferDroppedFrameReason_FrameWasLate
■ kCMSampleBufferDroppedFrameReason_OutOfBuffers
■ kCMSampleBufferDroppedFrameReason_Discontinuity

Handling frame drops
Solving Performance Problems

Handling frame drops
Solving Performance Problems

• Frame drops can be mitigated by lowering the frame rate

Handling frame drops
Solving Performance Problems

• Frame drops can be mitigated by lowering the frame rate
•As of iOS 5, the video data output frame rate can be altered dynamically

Handling frame drops
Solving Performance Problems

• Frame drops can be mitigated by lowering the frame rate
•As of iOS 5, the video data output frame rate can be altered dynamically
•No glitch in preview or output

// Lower the min and max frame rate to recover from slow processing
AVCaptureConnection *c = [dataOutput connectionWithMediaType:AVMediaTypeVideo];

// min duration is 1 / max frame rate
int32_t newFrameRate = currentRate - 1;
[c setVideoMinFrameDuration:CMTimeMake(1, newFrameRate)];
[c setVideoMaxFrameDuration:CMTimeMake(1, newFrameRate)];

Handling frame drops
Solving Performance Problems

• Frame drops can be mitigated by lowering the frame rate
•As of iOS 5, the video data output frame rate can be altered dynamically
•No glitch in preview or output

// Lower the min and max frame rate to recover from slow processing
AVCaptureConnection *c = [dataOutput connectionWithMediaType:AVMediaTypeVideo];

// min duration is 1 / max frame rate
int32_t newFrameRate = currentRate - 1;
[c setVideoMinFrameDuration:CMTimeMake(1, newFrameRate)];
[c setVideoMaxFrameDuration:CMTimeMake(1, newFrameRate)];

Solving AVAssetWriter frame drops
Solving Performance Problems

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing
■ Preallocates buffers for glitch free movie writing

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing
■ Preallocates buffers for glitch free movie writing

•AVAssetWriter

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing
■ Preallocates buffers for glitch free movie writing

•AVAssetWriter
■ Does not know the source format

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing
■ Preallocates buffers for glitch free movie writing

•AVAssetWriter
■ Does not know the source format
■ Cannot prime the render pipeline

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing
■ Preallocates buffers for glitch free movie writing

•AVAssetWriter
■ Does not know the source format
■ Cannot prime the render pipeline
■ Sets things up on the first -appendSampleBuffer:

Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing
■ Preallocates buffers for glitch free movie writing

•AVAssetWriter
■ Does not know the source format
■ Cannot prime the render pipeline
■ Sets things up on the first -appendSampleBuffer:
■ Result: dropped frames at the very beginning

Solving AVAssetWriter frame drops
Solving Performance Problems

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format
up front

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType
 outputSettings:(NSDictionary *)outputSettings

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType
 outputSettings:(NSDictionary *)outputSettings
 sourceFormatHint:(CMFormatDescriptionRef)sourceFormatHint;

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType
 outputSettings:(NSDictionary *)outputSettings
 sourceFormatHint:(CMFormatDescriptionRef)sourceFormatHint;

• Start up costs move to [AVAssetWriter startWriting]

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType
 outputSettings:(NSDictionary *)outputSettings
 sourceFormatHint:(CMFormatDescriptionRef)sourceFormatHint;

• Start up costs move to [AVAssetWriter startWriting]
• Set up your AVAssetWriter outside of
-captureOutput:didOutputSampleBuffer:fromConnection:

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType
 outputSettings:(NSDictionary *)outputSettings
 sourceFormatHint:(CMFormatDescriptionRef)sourceFormatHint;

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

•When rendering to a texture using CVOpenGLESTextureCache, ensure
GL has finished rendering before passing to AVAssetWriter

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

•When rendering to a texture using CVOpenGLESTextureCache, ensure
GL has finished rendering before passing to AVAssetWriter

• glFinish() is safe but may block

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

•When rendering to a texture using CVOpenGLESTextureCache, ensure
GL has finished rendering before passing to AVAssetWriter

• glFinish() is safe but may block

• glFlush() + delayed glFinish() keeps both GPU and CPU busy

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Solving Performance Problems

Frame n

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Solving Performance Problems

Render + glFlush()

OpenGLES

Frame n

Frame n

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Solving Performance Problems

Frame n

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Hold the Frame

Solving Performance Problems

Frame n

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Hold the Frame

Solving Performance Problems

Frame n+1

Frame n

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Call glFinish()

Solving Performance Problems

Frame n+1

Frame n

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Call glFinish()Render + glFlush()

OpenGLES

Frame n+1

Solving Performance Problems

Frame n+1

Hold the Frame

Frame n

didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Render + glFlush()

OpenGLES

Frame n+1

Solving Performance Problems

Frame n+1

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

• glFlush() is not necessary if you present the render buffer for preview

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

• glFlush() is not necessary if you present the render buffer for preview
• In iOS 6, glFinish() is not necessary

Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

• glFlush() is not necessary if you present the render buffer for preview
• In iOS 6, glFinish() is not necessary
• AVAssetWriter ensures the GPU rendering is complete before writing

How to draw my own preview (fast!)
Solving Performance Problems

How to draw my own preview (fast!)
Solving Performance Problems

•Use AVCaptureVideoPreviewLayer + your own CALayers for
simple overlays

How to draw my own preview (fast!)
Solving Performance Problems

•Use AVCaptureVideoPreviewLayer + your own CALayers for
simple overlays
•Use OpenGL for preview if you are manipulating pixels

How to draw my own preview (fast!)
Solving Performance Problems

•Use AVCaptureVideoPreviewLayer + your own CALayers for
simple overlays
•Use OpenGL for preview if you are manipulating pixels
• Review GLCameraRipple sample code

How to draw my own preview (fast!)
Solving Performance Problems

•Use AVCaptureVideoPreviewLayer + your own CALayers for
simple overlays
•Use OpenGL for preview if you are manipulating pixels
• Review GLCameraRipple sample code

■ Operates in ‘420v’

How to draw my own preview (fast!)
Solving Performance Problems

•Use AVCaptureVideoPreviewLayer + your own CALayers for
simple overlays
•Use OpenGL for preview if you are manipulating pixels
• Review GLCameraRipple sample code

■ Operates in ‘420v’

• Review RosyWriter sample code

How to draw my own preview (fast!)
Solving Performance Problems

•Use AVCaptureVideoPreviewLayer + your own CALayers for
simple overlays
•Use OpenGL for preview if you are manipulating pixels
• Review GLCameraRipple sample code

■ Operates in ‘420v’

• Review RosyWriter sample code
■ Operates in ‘BGRA’

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video

What You Will Learn

Synchronizing Motion Data
with Video

Demo

Walker Eagleston
Core Media Engineering

VideoSnake

VideoSnake

VideoSnake

AVCaptureSession

AVCaptureDeviceInput
(Camera)

AVCaptureDeviceInput
(Microphone)

VideoSnake

AVCaptureSession

AVCaptureDeviceInput
(Camera)

AVCaptureDeviceInput
(Microphone)

AVCaptureVideoDataOutput AVCaptureAudioDataOutput

VideoSnake

AVCaptureSession

Undo AV Sync

AVCaptureDeviceInput
(Camera)

AVCaptureDeviceInput
(Microphone)

AVCaptureVideoDataOutput AVCaptureAudioDataOutput

VideoSnake

AVCaptureSession

Undo AV Sync

AVCaptureDeviceInput
(Camera)

AVCaptureDeviceInput
(Microphone)

AVCaptureVideoDataOutput AVCaptureAudioDataOutput

CIFaceDetector

VideoSnake

AVCaptureSession

Undo AV Sync

Render with
OpenGL

AVCaptureDeviceInput
(Camera)

AVCaptureDeviceInput
(Microphone)

AVCaptureVideoDataOutput AVCaptureAudioDataOutput

CIFaceDetector

VideoSnake

AVCaptureSession

Undo AV Sync

Preview

Render with
OpenGL

AVCaptureDeviceInput
(Camera)

AVCaptureDeviceInput
(Microphone)

AVCaptureVideoDataOutput AVCaptureAudioDataOutput

CIFaceDetector

VideoSnake

AVCaptureSession

Undo AV Sync

Preview

AVAssetWriter
Render with

OpenGL

AVCaptureDeviceInput
(Camera)

AVCaptureDeviceInput
(Microphone)

AVCaptureVideoDataOutput AVCaptureAudioDataOutput

CIFaceDetector

Synchronizing Motion Data with Video

Synchronizing Motion Data with Video

Synchronizing Motion Data with Video

Synchronizing Motion Data with Video

Synchronizing Motion Data with Video

Synchronizing Motion Data with Video

Synchronizing Motion Data with Video

Synchronizing Motion Data with Video

• CoreMotion samples contain a timestamp

Synchronizing Motion Data with Video

• CoreMotion samples contain a timestamp
NSTimeInterval motionTimestamp = [(CMDeviceMotion *)motion timestamp];

Synchronizing Motion Data with Video

• CoreMotion samples contain a timestamp
NSTimeInterval motionTimestamp = [(CMDeviceMotion *)motion timestamp];

• Timestamp is the mach_absolute_time() of the motion

Synchronizing Motion Data with Video

• CoreMotion samples contain a timestamp
NSTimeInterval motionTimestamp = [(CMDeviceMotion *)motion timestamp];

• Timestamp is the mach_absolute_time() of the motion
• CoreMotion uses the host time clock

Synchronizing Motion Data with Video

• CoreMotion samples contain a timestamp
NSTimeInterval motionTimestamp = [(CMDeviceMotion *)motion timestamp];

• Timestamp is the mach_absolute_time() of the motion
• CoreMotion uses the host time clock
• CoreMotion sampling rate should be at least 2x your video frame rate

Video timestamps
Synchronizing Motion Data with Video

Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp

Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp
CMTime pts = CMSampleBufferGetPresentationTime(sampleBuffer);

Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp
CMTime pts = CMSampleBufferGetPresentationTime(sampleBuffer);

• Presentation time is the mach_absolute_time() of the frame

Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp
CMTime pts = CMSampleBufferGetPresentationTime(sampleBuffer);

• Presentation time is the mach_absolute_time() of the frame
• Front and Back Camera AVCaptureDevices use the host time clock

Audio timestamps
Synchronizing Motion Data with Video

Audio timestamps
Synchronizing Motion Data with Video

•Audio sample buffers contain n samples (frames) of audio

Audio timestamps
Synchronizing Motion Data with Video

•Audio sample buffers contain n samples (frames) of audio
• Presentation time is the time at which the first sample in the buffer was
picked up by the microphone

Audio timestamps
Synchronizing Motion Data with Video

•Audio sample buffers contain n samples (frames) of audio
• Presentation time is the time at which the first sample in the buffer was
picked up by the microphone
• The audio AVCaptureDevice uses the audio clock

A/V Sync
Synchronizing Motion Data with Video

A/V Sync
Synchronizing Motion Data with Video

•Audio clock != video clock

A/V Sync
Synchronizing Motion Data with Video

•Audio clock != video clock
•Audio and video might drift

A/V Sync
Synchronizing Motion Data with Video

•Audio clock != video clock
•Audio and video might drift
•When recording audio, the video sample buffers are synced to the
audio (master) clock

A/V Sync
Synchronizing Motion Data with Video

•Audio clock != video clock
•Audio and video might drift
•When recording audio, the video sample buffers are synced to the
audio (master) clock
• Re-clocking alters the video timestamps

“Undoing” A/V Sync
Synchronizing Motion Data with Video

“Undoing” A/V Sync
Synchronizing Motion Data with Video

CMClockRef audioClock = NULL, videoClock = NULL;

OSStatus err = CMAudioClockCreate(NULL, &audioClock);

videoClock = CMClockGetHostTimeClock();

CMTime pts = CMSampleBufferGetPresentationTime(videoBuffer);

CMTime convertedPTS = CMSyncConvertTime(pts, audioClock, videoClock);

// now match convertedPTS with CoreMotion timestamps

“Undoing” A/V Sync
Synchronizing Motion Data with Video

CMClockRef audioClock = NULL, videoClock = NULL;

OSStatus err = CMAudioClockCreate(NULL, &audioClock);

videoClock = CMClockGetHostTimeClock();

CMTime pts = CMSampleBufferGetPresentationTime(videoBuffer);

CMTime convertedPTS = CMSyncConvertTime(pts, audioClock, videoClock);

// now match convertedPTS with CoreMotion timestamps

“Undoing” A/V Sync
Synchronizing Motion Data with Video

CMClockRef audioClock = NULL, videoClock = NULL;

OSStatus err = CMAudioClockCreate(NULL, &audioClock);

videoClock = CMClockGetHostTimeClock();

CMTime pts = CMSampleBufferGetPresentationTime(videoBuffer);

CMTime convertedPTS = CMSyncConvertTime(pts, audioClock, videoClock);

// now match convertedPTS with CoreMotion timestamps

Summary

Summary

•What’s new in camera capture

Summary

•What’s new in camera capture
■ Mac OS X 10.8 performance improvements

Summary

•What’s new in camera capture
■ Mac OS X 10.8 performance improvements
■ iOS camera ecosystem

Summary

•What’s new in camera capture
■ Mac OS X 10.8 performance improvements
■ iOS camera ecosystem
■ New iOS 6 AV Foundation capture features

Summary

•What’s new in camera capture
■ Mac OS X 10.8 performance improvements
■ iOS camera ecosystem
■ New iOS 6 AV Foundation capture features
■ Solving performance problems in your capture app

Summary

•What’s new in camera capture
■ Mac OS X 10.8 performance improvements
■ iOS camera ecosystem
■ New iOS 6 AV Foundation capture features
■ Solving performance problems in your capture app
■ Synchronizing motion data with video

Eryk Vershen
Media Technologies Evangelist
evershen@apple.com

Documentation
AV Foundation Programming Guide
http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/AVFoundationPG/

Apple Developer Forums
http://devforums.apple.com

More Information

Related Sessions

Audio Session and Multiroute Audio in iOS Pacific Heights
Tuesday 2:00PM

Audio and Video for Media and Games Presidio
Thursday 9:00AM

Understanding Core Motion Pacific Heights
Friday 10:15AM

Labs

OS X Capture Lab GMG Lab A
Tuesday 9:00AM - 1:30PM

AV Foundation Lab GMG Lab A
Tuesday 2:00PM - 6:00 PM

AVAudioSession Lab GMG Lab D
Wednesday 4:30PM - 6:00 PM

iOS Camera Capture Lab GMG Lab D
Thursday 2:00PM - 6:00 PM

AV Foundation Lab GMG Lab C
Thursday 2:00PM - 6:00 PM

iOS Camera Capture Lab GMG Lab D
Friday 9:00AM - 11:15 AM

