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What You Will Not Learn

•AV Foundation and CoreMedia basics
•AV Foundation class hierarchy
• Review last year’s WWDC capture sessions at developer.apple.com



Sample Code for This Session

•AVRecorder (OS X)
•AVScreenShack (OS X)
• ‘StacheCam 2 (iOS)
• VideoSnake (iOS)
•AVCam (iOS)

Materials available at:
https://developer.apple.com/library/wwdc/mac/
https://developer.apple.com/library/wwdc/ios/



Mac OS X 10.8 (Mountain Lion) enhancements
New AV Foundation Capture APIs
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Mac OS X 10.8 Capture Enhancements

•Major improvements to AVCaptureScreenInput performance
■ Lower latency for AVCaptureVideoDataOutput clients
■ Better frame rates for AVCaptureVideoDataOutput clients
■ ‘BGRA’ output with no intermediate ‘2vuy’ conversion
■ Opt out for drawing the mouse cursor
■ Mouse position metadata attached to video sample buffers
■ Opt out for duplicate frame removal

See (updated) AVScreenShack sample code!
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Mac OS X 10.8 Capture Enhancements

• Support for hardware accelerated H.264 encoding 
■ 2011 and newer Macs with SandyBridge / IvyBridge chipset
■ Up to 1920x1088
■ AVCaptureMovieFileOutput and AVAssetWriter (in real-time mode)
■ No code changes required!
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Mac OS X 10.8 Capture Enhancements

• Support for “just-in-time” compression
■ AVCaptureMovieFileOutput supports frame accurate start and stop
■ In Mac OS X 10.7, output compresses all the time
■ In Mac OS X 10.8, you must opt in for frame accurate start

-(BOOL)captureOutputShouldProvideSampleAccurateRecordingStart: 

■ Lowers power consumption when previewing

See (updated) AVRecorder sample code
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Mac OS X 10.8 Capture Enhancements

•Newly published CoreMediaIO “DAL” SDK
• Includes sample device
•Makes life easier for video driver writers
• See us in the labs for more details!

SDK available at:
http://developer.apple.com/library/mac/samplecode/CoreMediaIO/index.html
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iOS Camera Ecosystem

•Apple’s Camera app saves photos and videos to a central library
•AssetsLibrary APIs allow your app to access this library

■ Camera roll
■ Synced assets from iTunes
■ Saved assets from Mail, your app, etc.
■ Photo streams
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iOS Camera Ecosystem

• Photos and videos are personal, sensitive data
• iOS 6 devices now prompt user to grant access to the library

•Handle errors!



• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video

What You Will Learn



iOS 6 enhancements
New AV Foundation Capture APIs
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• Video stabilization steadies shaky shots
• Compensates for rolling shutter artifacts
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Demo
Video stabilization



Video Stabilization

Before After
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Video Stabilization

• Camera phones are susceptible to shake
•HD resolution recordings are especially susceptible to rolling shutter 
• Stabilization saves otherwise unusable footage
• It works in real-time

Why use it?
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Video Stabilization

• Stabilization alters the pixels
•Output no longer matches preview layer
• It may not interoperate well with other pixel processing algorithms
• Stabilization adds latency to video data output

Why not use stabilization?



Supported platforms
Video Stabilization

iPhone 4S

The new iPad
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Compatibility

•All HD video resolutions are compatible
AVCaptureSessionPresetHigh
AVCaptureSessionPreset1920x1080
AVCaptureSessionPreset1280x720
AVCaptureSessionPresetiFrame1280x720
AVCaptureSessionPresetiFrame960x540

Video Stabilization
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Compatibility

•Does NOT work with front camera
•Does NOT work with AVCaptureStillImageOutput
•Does NOT work with AVCaptureVideoPreviewLayer

Video Stabilization
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iOS 5 behavior
Video Stabilization

•AVCaptureMovieFileOutput always stabilizes 1080p video
•AVCaptureMovieFileOutput never stabilizes any other resolution
•AVCaptureVideoDataOutput never stabilizes video
•No API to opt in or out
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iOS 6 behavior
Video Stabilization

•Apps linked before iOS 6 continue to get the iOS 5 behavior
•Apps linked on or after iOS 6 must opt in for stabilization
• Both movie file output and video data output support stabilization
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Opting in
Video Stabilization

• Create an AVCaptureSession
•Add an AVCaptureDeviceInput
•Add an AVCaptureMovieFileOutput or AVCaptureVideoDataOutput
•Get the output’s video connection
AVCaptureConnection *c = [output connectionWithMediaType:AVMediaTypeVideo];

•Opt in for video stabilization when available
if ( [c isVideoStabilizationSupported] )
  [c setEnablesVideoStabilizationWhenAvailable:YES];

• Key-value observe the connection’s @”videoStabilizationEnabled” property 
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Gotchas
Video Stabilization

• Connections are implicitly severed when inputs or outputs are removed
•When you switch cameras, all your connection settings are lost
•After adding your new input, you must configure its new connection
•Use AVCaptureSession’s -beginConfiguration / -commitConfiguration when 
reconfiguring inputs or outputs to a session

See updated AVCam sample code



New in iOS 6

• Video stabilization
• Real-time face detection
•AVCaptureVideoPreviewLayer enhancements
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Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to 
each face
• Provides a timestamp for 
each face
• Finds the rectangle bounding 
each face

bounds: 
{0.4,0.8 0.1x0.1}

bounds: 
{0.2,0.1 0.1x0.1}

bounds: 
{0.1,0.3 0.1x0.2}

bounds: 
{0.5,0.6 0.1x0.1}
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Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to 
each face
• Provides a timestamp for 
each face
• Finds the rectangle bounding 
each face
•Determines the roll angle

roll:  330°
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Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to 
each face
• Provides a timestamp for 
each face
• Finds the rectangle bounding 
each face
•Determines the roll angle
•Determines the yaw angle

yaw:  0°

yaw:  315°

yaw:  0°



Face Detection

• Scans for faces in real-time
• Tracks up to 10 faces
•Assigns a unique ID to each face
• Provides a timestamp for each face
• Finds the rectangle bounding each face
•Determines the roll angle
•Determines the yaw angle
•Works with front and back camera (all presets!)
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Face Detection

•Does NOT find alien or pet faces
•Does NOT recognize particular faces
•Does NOT remember faces
•Does NOT determine pitch
•Does NOT find faces with a yaw angle between 91 and 269 degrees
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Why use AV Foundation Face Detection?
Face Detection

•Optimized for real-time capture
• Incurs very little CPU
• Capture resolution independent
• Supports tracking faces over time
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•Available on all supported iOS devices



Why use Core Image’s CIFaceDetector
Face Detection

•Available on all supported iOS devices
• “Push” interface suitable for arbitrary source images



Demo

Ethan Tira-Thompson
Core Media Engineering

‘StacheCam 2
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‘StacheCam 2 (CIFaceDetector path) 

(push one frame at a time)

(draw red face rects)

V VV

AVCaptureSession

AVCaptureDeviceInput

AVCaptureVideoDataOutput AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

CIFaceDetector



‘StacheCam 2 (CIFaceDetector path) 

(push one frame at a time)

(draw red face rects)

(Use CG to composite mustaches)
(Use ImageIO to write JPEG)
(AssetsLibrary to save to disk)

V VV

AVCaptureSession

AVCaptureDeviceInput

AVCaptureVideoDataOutput AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

CIFaceDetector
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‘StacheCam 2 (real-time path) 

AVCaptureVideoPreviewLayerAVCaptureStillImageOutput
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‘StacheCam 2 (real-time path) 

AVCaptureVideoPreviewLayerAVCaptureStillImageOutput

(draw mustache layers)(Use CG to composite mustaches)
(Use ImageIO to write JPEG)
(AssetsLibrary to write to disk)

V VM

AVCaptureSession

AVCaptureDeviceInput

AVCaptureMetadataOutput
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Programming model
Face Detection

•AVCaptureDeviceInput exposes an input port of AVMediaTypeMetadata
•New AVCaptureOutput subclass AVCaptureMetadataOutput

■ Patterned after AVCaptureVideoDataOutput
■ Outputs an NSArray of AVMetadataObjects to a delegate
■ Allows discovery of -availableMetadataObjectTypes
■ Lets you request a subset of available metadata
 
NSArray *faceMetadata = [NSArray arrayWithObject:AVMetadataObjectTypeFace];
[metadataOutput setMetadataObjectTypes:faceMetadata];



What’s in a face?

- (void)captureOutput:(AVCaptureOutput *)captureOutput
         didOutputMetadataObjects:(NSArray *)metadataObjects
         fromConnection:(AVCaptureConnection *)c
{

for ( AVMetadataObject *object in metadataObjects ) {

if ( [[object type] isEqual:AVMetadataObjectTypeFace] ) {

CMTime timestamp = [face time];
CGRect faceRectangle = [face bounds];
NSInteger faceID = [face faceID];
CGFloat rollAngle = [face rollAngle];
CGFloat yawAngle = [face yawAngle];

// Do interesting things with this face
}

}
}

Face Detection



What’s in a face?

- (void)captureOutput:(AVCaptureOutput *)captureOutput
         didOutputMetadataObjects:(NSArray *)metadataObjects
         fromConnection:(AVCaptureConnection *)c
{

for ( AVMetadataObject *object in metadataObjects ) {

if ( [[object type] isEqual:AVMetadataObjectTypeFace] ) {

CMTime timestamp = [face time];
CGRect faceRectangle = [face bounds];
NSInteger faceID = [face faceID];
CGFloat rollAngle = [face rollAngle];
CGFloat yawAngle = [face yawAngle];

// Do interesting things with this face
}

}
}

Face Detection
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AVFaceMetadataObject
Face Detection

• Face bounds extend from above the eye brows to below the lips
• CGRect coordinates are scalar values from 0 to 1
• CGRect origin is top-left
• CGRect coordinates refer to an untransformed source picture
• CIFaceDetector and AVCaptureMetadataOutput rectangles are 
comparable in size and origin
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•When using AVCaptureMetadataOutput + AVCaptureStillImageOutput, 
face rectangles are included with the still image Exif metadata



Still image support
Face Detection

•When using AVCaptureMetadataOutput + AVCaptureStillImageOutput, 
face rectangles are included with the still image Exif metadata
• Still image output’s -jpegStillImageNSDataRepresentation: preserves face 
metadata in XMP Regions
 
[stillImageOutput captureStillImageAsynchronouslyFromConnection:connection
                                              completionHandler:

^(CMSampleBufferRef imageSampleBuffer, NSError *error) {
        if ( ! error ) {
           NSData *jpegData = [AVCaptureStillImageOutput 

            jpegStillImageNSDataRepresentation:imageSampleBuffer];

           // Write to disk or AssetsLibrary
}



Still image support
Face Detection

•When using AVCaptureMetadataOutput + AVCaptureStillImageOutput, 
face rectangles are included with the still image Exif metadata
• Still image output’s -jpegStillImageNSDataRepresentation: preserves face 
metadata in XMP Regions
 
[stillImageOutput captureStillImageAsynchronouslyFromConnection:connection
                                              completionHandler:

^(CMSampleBufferRef imageSampleBuffer, NSError *error) {
        if ( ! error ) {
           NSData *jpegData = [AVCaptureStillImageOutput 

            jpegStillImageNSDataRepresentation:imageSampleBuffer];

           // Write to disk or AssetsLibrary
}



Face Detection
Supported platforms

iPhone 4S

iPad 2

The new iPad



New in iOS 6

• Video stabilization
• Real-time face detection
•AVCaptureVideoPreviewLayer enhancements
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AVCaptureVideoPreviewLayer enhancements

• Conversion methods for focus and exposure points of interest

“Setting an AVCaptureDevice’s focusPointOfInterest and exposurePointOfInterest 
requires a CGPoint between {0,0} and {1,1}, in a totally arbitrary space, regardless 
of device orientation.  This makes using said API extremely difficult.”
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AVCaptureDevice pointOfInterest review
AVCaptureVideoPreviewLayer Enhancements

• focusPointOfInterest is a CGPoint from {0, 0} to {1, 1}

• Top-left is {0,0}, bottom-right is {1,1}
• Camera sensor native (unrotated) orientation is landscape

(0,0)

(1,1)
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What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

• Preview may be rotated (videoOrientation)
• Preview may be mirrored (videoMirrored)
• Preview bounds rect may not have the same aspect ratio as the sensor 
video buffers (bounds)
• Preview may stretch, shrink, crop, or letterbox the source content 
(videoGravity)
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•AVLayerVideoGravityResizeAspect
• “Letterbox mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

1280 x 720 Source Image 640 x 640 Settings+

=

640 x 640 (with black bars)
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•AVLayerVideoGravityResize
• “Funhouse mode"

What makes coordinate conversion so hard?
AVCaptureVideoPreviewLayer Enhancements

1280 x 720 Source Image 640 x 640 Settings+

=

640 x 640 
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• Convert from a touch point to an AVCaptureDevice point of interest
// Set point of interest
CGPoint tapPoint = [gestureRecognizer locationInView:previewView];
CGPoint convertedPoint = 
  [videoPreviewLayer captureDevicePointOfInterestForPoint:tapPoint]
[captureDevice setFocusPointOfInterest:convertedPoint];
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// Set point of interest
CGPoint tapPoint = [gestureRecognizer locationInView:previewView];
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• Convert from an AVCaptureDevice point of interest to a touch point
// Get the current point of interest to draw on preview layer
CGPoint poi = [device focusPointOfInterest];
CGPoint layerPoint = 
  [videoPreviewLayer pointForCaptureDevicePointOfInterest:poi];

// Draw something at layerPoint



Conversion methods to the rescue
AVCaptureVideoPreviewLayer Enhancements

• Convert from an AVCaptureDevice point of interest to a touch point
// Get the current point of interest to draw on preview layer
CGPoint poi = [device focusPointOfInterest];
CGPoint layerPoint = 
  [videoPreviewLayer pointForCaptureDevicePointOfInterest:poi];

// Draw something at layerPoint
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AVMetadataObject Conversion For Preview

• Convert face metadata for video preview layer drawing
for ( AVMetadataFaceObject *face in metadataObjects ) {
  AVMetadataFaceObject *transformedFace = 
    [previewLayer transformedMetadataObjectForMetadataObject:face];
  CGRect transformedFaceRect = [transformedFace bounds];

  // Draw a funny mustache on the face
}



AVMetadataObject Conversion For Preview

• Convert face metadata for video preview layer drawing
for ( AVMetadataFaceObject *face in metadataObjects ) {
  AVMetadataFaceObject *transformedFace = 
    [previewLayer transformedMetadataObjectForMetadataObject:face];
  CGRect transformedFaceRect = [transformedFace bounds];

  // Draw a funny mustache on the face
}
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AVMetadataObject Conversion for Output

• Convert face metadata for AVCaptureOutput drawing
•Align faces with physically rotated video data output
for ( AVMetadataFaceObject *face in metadataObjects ) {
  AVCaptureConnection *c = [vdo connectionWithMediaType:AVMediaTypeVideo];
  AVMetadataFaceObject *transformedFace = 
    [vdo transformedMetadataObjectForMetadataObject:face connection:c];
  CGRect transformedFaceRect = [transformedFace bounds];

  // Draw a funny mustache on the face
}



AVMetadataObject Conversion for Output

• Convert face metadata for AVCaptureOutput drawing
•Align faces with physically rotated video data output
for ( AVMetadataFaceObject *face in metadataObjects ) {
  AVCaptureConnection *c = [vdo connectionWithMediaType:AVMediaTypeVideo];
  AVMetadataFaceObject *transformedFace = 
    [vdo transformedMetadataObjectForMetadataObject:face connection:c];
  CGRect transformedFaceRect = [transformedFace bounds];

  // Draw a funny mustache on the face
}
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•AVCaptureVideoPreviewLayer exposes an AVCaptureConnection
•All connection properties are available to the layer
• To pause video preview, disable the connection
• Causes no glitch in any of the outputs

AVCaptureConnection *previewConnection = [videoPreviewLayer connection];

// pause preview
[previewConnection setEnabled:NO];



Pause and resume video preview
AVCaptureVideoPreviewLayer Enhancements

•AVCaptureVideoPreviewLayer exposes an AVCaptureConnection
•All connection properties are available to the layer
• To pause video preview, disable the connection
• Causes no glitch in any of the outputs

AVCaptureConnection *previewConnection = [videoPreviewLayer connection];

// pause preview
[previewConnection setEnabled:NO];
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Deprecations
AVCaptureVideoPreviewLayer

• Preview layer’s -connection property makes some methods redundant
• See AVCaptureVideoPreviewLayer.h

       Deprecated           Instead Use

layer.isOrientationSupported

layer.orientation

layer.isMirroringSupported

layer.automaticallyAdjustsMirroring

layer.isMirrored

conn = [layer connection];

conn.isVideoOrientationSupported

conn.videoOrientation

conn.isVideoMirroringSupported

conn.automaticallyAdjustsVideoMirroring

conn.isVideoMirrored



Miscellaneous API Enhancements

•AVCaptureDevice’s -torchActive property
•AVCaptureDevice’s -setTorchModeOnWithLevel:error: method
•AVCaptureStillImageOutput’s support for AVVideoQualityKey



What You Will Learn

• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video



Solutions for Performance Problems
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Common performance problems
Solving Performance Problems

•My app is dropping frames during video capture
■ Is it my fault?
■ What can I do to recover?

•My AVAssetWriter recorded movies have frame drops at the beginning
•My AVAssetWriter recorded movies have garbage (I use OpenGL)
•My DIY preview is slow

■ How do I speed it up?
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Handling frame drops
Solving Performance Problems

• Set AVCaptureVideoDataOutput’s -alwaysDiscardsLateVideoFrames to YES
■ Unless you are recording
■ Enforces a buffer queue size of 1 at the end of video data output’s 
processing pipeline

■ Saves you from periodically slow processing
■ Does not save you from chronically slow processing
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•New in iOS 6, AVCaptureVideoDataOutput can report frame drops
// New optional AVCaptureVideoDataOutputDelegate method
- (void)captureOutput:(AVCaptureOutput *)captureOutput
    didDropSampleBuffer:(CMSampleBufferRef)sampleBuffer
         fromConnection:(AVCaptureConnection *)connection
{
    // We just dropped a frame!

}
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• The didDropSampleBuffer contains no image data
•Does contain timing information and format description
•Does contain kCMSampleBufferAttachmentKey_DroppedFrameReason

■ kCMSampleBufferDroppedFrameReason_FrameWasLate
■ kCMSampleBufferDroppedFrameReason_OutOfBuffers



Handling frame drops
Solving Performance Problems

• The didDropSampleBuffer contains no image data
•Does contain timing information and format description
•Does contain kCMSampleBufferAttachmentKey_DroppedFrameReason

■ kCMSampleBufferDroppedFrameReason_FrameWasLate
■ kCMSampleBufferDroppedFrameReason_OutOfBuffers
■ kCMSampleBufferDroppedFrameReason_Discontinuity
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Handling frame drops
Solving Performance Problems

• Frame drops can be mitigated by lowering the frame rate
•As of iOS 5, the video data output frame rate can be altered dynamically
•No glitch in preview or output

// Lower the min and max frame rate to recover from slow processing
AVCaptureConnection *c = [dataOutput connectionWithMediaType:AVMediaTypeVideo];

// min duration is 1 / max frame rate
int32_t newFrameRate = currentRate - 1;
[c setVideoMinFrameDuration:CMTimeMake( 1, newFrameRate )];
[c setVideoMaxFrameDuration:CMTimeMake( 1, newFrameRate )];



Handling frame drops
Solving Performance Problems

• Frame drops can be mitigated by lowering the frame rate
•As of iOS 5, the video data output frame rate can be altered dynamically
•No glitch in preview or output

// Lower the min and max frame rate to recover from slow processing
AVCaptureConnection *c = [dataOutput connectionWithMediaType:AVMediaTypeVideo];

// min duration is 1 / max frame rate
int32_t newFrameRate = currentRate - 1;
[c setVideoMinFrameDuration:CMTimeMake( 1, newFrameRate )];
[c setVideoMaxFrameDuration:CMTimeMake( 1, newFrameRate )];
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Solving AVAssetWriter frame drops
Solving Performance Problems

•AVCaptureMovieFileOutput
■ Optimized for real-time file writing
■ Preallocates buffers for glitch free movie writing

•AVAssetWriter
■ Does not know the source format
■ Cannot prime the render pipeline
■ Sets things up on the first -appendSampleBuffer:
■ Result:  dropped frames at the very beginning
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• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format 
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType
     outputSettings:(NSDictionary *)outputSettings
     sourceFormatHint:(CMFormatDescriptionRef)sourceFormatHint;



• Start up costs move to [AVAssetWriter startWriting]
• Set up your AVAssetWriter outside of 
-captureOutput:didOutputSampleBuffer:fromConnection:

Solving AVAssetWriter frame drops
Solving Performance Problems

• Set AVAssetWriterInput’s -expectsMediaDataInRealTime flag to YES
•New in iOS 6, AVAssetWriterInput allows you to hint the source format 
up front
+ (AVAssetWriterInput *)assetWriterInputWithMediaType:(NSString *)mediaType
     outputSettings:(NSDictionary *)outputSettings
     sourceFormatHint:(CMFormatDescriptionRef)sourceFormatHint;
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Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

•When rendering to a texture using CVOpenGLESTextureCache, ensure 
GL has finished rendering before passing to AVAssetWriter

• glFinish() is safe but may block

• glFlush() + delayed glFinish() keeps both GPU and CPU busy
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didOutputSampleBuffer:

AVCaptureVideoDataOutput

AVAssetWriter

Render + glFlush()

OpenGLES

Frame n+1

Solving Performance Problems

Frame n+1
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Rendering with OpenGL, writing to AVAssetWriter
Solving Performance Problems

•  glFlush() is not necessary if you present the render buffer for preview
• In iOS 6, glFinish() is not necessary
•  AVAssetWriter ensures the GPU rendering is complete before writing
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How to draw my own preview (fast!)
Solving Performance Problems

•Use AVCaptureVideoPreviewLayer + your own CALayers for 
simple overlays
•Use OpenGL for preview if you are manipulating pixels
• Review GLCameraRipple sample code

■ Operates in ‘420v’

• Review RosyWriter sample code
■ Operates in ‘BGRA’



• Performance improvements in Mac OS X 10.8
• Camera ecosystem
•New AV Foundation capture features in iOS 6
• Solutions for performance problems in your capture app
• Synchronizing motion data with video

What You Will Learn
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Synchronizing Motion Data with Video

• CoreMotion samples contain a timestamp
NSTimeInterval motionTimestamp = [(CMDeviceMotion *)motion timestamp];

• Timestamp is the mach_absolute_time() of the motion
• CoreMotion uses the host time clock
• CoreMotion sampling rate should be at least 2x your video frame rate



Video timestamps
Synchronizing Motion Data with Video



Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp



Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp
CMTime pts = CMSampleBufferGetPresentationTime(sampleBuffer);



Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp
CMTime pts = CMSampleBufferGetPresentationTime(sampleBuffer);

• Presentation time is the mach_absolute_time() of the frame



Video timestamps
Synchronizing Motion Data with Video

• Sample buffers contain a timestamp
CMTime pts = CMSampleBufferGetPresentationTime(sampleBuffer);

• Presentation time is the mach_absolute_time() of the frame
• Front and Back Camera AVCaptureDevices use the host time clock
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Audio timestamps
Synchronizing Motion Data with Video

•Audio sample buffers contain n samples (frames) of audio
• Presentation time is the time at which the first sample in the buffer was 
picked up by the microphone
• The audio AVCaptureDevice uses the audio clock
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A/V Sync
Synchronizing Motion Data with Video

•Audio clock != video clock
•Audio and video might drift
•When recording audio, the video sample buffers are synced to the 
audio (master) clock
• Re-clocking alters the video timestamps
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CMClockRef audioClock = NULL, videoClock = NULL;

OSStatus err = CMAudioClockCreate( NULL, &audioClock );

videoClock = CMClockGetHostTimeClock();

CMTime pts = CMSampleBufferGetPresentationTime(videoBuffer);
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// now match convertedPTS with CoreMotion timestamps
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Summary

•What’s new in camera capture
■ Mac OS X 10.8 performance improvements
■ iOS camera ecosystem
■ New iOS 6 AV Foundation capture features
■ Solving performance problems in your capture app
■ Synchronizing motion data with video



Eryk Vershen
Media Technologies Evangelist
evershen@apple.com

Documentation
AV Foundation Programming Guide
http://developer.apple.com/library/ios/#documentation/AudioVideo/Conceptual/AVFoundationPG/

Apple Developer Forums
http://devforums.apple.com

More Information



Related Sessions

Audio Session and Multiroute Audio in iOS Pacific Heights
Tuesday 2:00PM

Audio and Video for Media and Games Presidio
Thursday 9:00AM

Understanding Core Motion Pacific Heights
Friday 10:15AM



Labs

OS X Capture Lab GMG Lab A
Tuesday 9:00AM - 1:30PM

AV Foundation Lab GMG Lab A
Tuesday 2:00PM - 6:00 PM

AVAudioSession Lab GMG Lab D
Wednesday 4:30PM - 6:00 PM

iOS Camera Capture Lab GMG Lab D
Thursday 2:00PM - 6:00 PM

AV Foundation Lab GMG Lab C
Thursday 2:00PM - 6:00 PM

iOS Camera Capture Lab GMG Lab D
Friday 9:00AM - 11:15 AM




