
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 700/713

The OS X App Sandbox

Ivan KrstiĆ
Core OS Disaster Monkey

•Mandatory standardized
crash testing performed by
the government
• Traction control, blind spot
warnings, lane drift alerts
• But: Damage containment
•When all else fails, there are
seatbelts and airbags

Modern Car Safety

•Defender must protect everything
at all times, attacker must breach
one protection at any time
• Emphasis on damage prevention
(ASLR, NX, antivirus), not
containment
•One thing goes wrong, game over
•No seatbelt and airbag for the
computer

Traditional Desktop Security

The Unfortunate Assumption

•All programs should execute with the full privileges of the executing user
■ Or: Security is a barrier between different users, not different programs

• But most modern computer devices are single-user systems
•Not every app should have access to the most sensitive data

■ Apps should only have access to the resources they need

• The unfortunate assumption does
not work
• Compromising any app must not
grant access to all user data

An Unfortunate Example

Security UI Does Not Work

• Security dialogs are mysterious
and opaque; riddles wrapped
inside enigmas
• Clicking “Permit” or “Allow”
maximizes the likelihood of
getting work done
• “If you’re explaining, you’re losing”
• Pavlovian conditioning to ignore
security

Landscape Changes

•Many apps, many developers
• Computers are always on
a network
• Easier than ever to find and
run new software
• Security challenge:
Isolate data between programs

Software Reality

• Complex systems will always have vulnerabilities
■ Complexity is never decreasing

• Single buffer overflow can ruin your user’s day
• Frameworks and libraries you don’t control

■ Every WebView instance: Millions of lines of code
and a full-featured JavaScript engine

•No limit on exploit damage

App Sandbox

App Sandbox

• Introduced in OS X Lion
•More secure applications
•Drive security policy by user intent
• Contain exploit damage
• Reduce ability for a compromised or misbehaving application
to steal, corrupt, or destroy user data

Key Concepts

•Developer expresses what an app is supposed to be able to do
• Each app runs in its own container
•User controls access to documents

■ Special cases (e.g., recent items, drag and drop) work automatically

Key Components

Entitlements1.

Containers2.

Powerbox3.

XPC Services4.

Entitlements

•What apps can do is determined by the developer-specified
entitlements in the code signature
• Just a property list, editable in Xcode
• Simple, easy to understand
•About 20 total entitlements in Mountain Lion

Entitlements

•User-selected files, Downloads folder, secure bookmarks
• Personal information

■ Address book, calendars, location

•Assets: Music, movies, pictures
•Network client, server
•Devices

■ Camera, microphone, printing, USB, FireWire, Bluetooth, serial

•Application groups and scripting/automation targets

Key Components

Entitlements1.

Containers2.

Powerbox3.

XPC Services4.

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

open(“/Users/krstic/Library/foo”)

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

open(“/Users/krstic/Library/foo”)

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

NSHomeDirectory()

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

NSHomeDirectory()

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

NSHomeDirectory()

“/Users/krstic/Library/Containers/App”

Key Components

Entitlements1.

Containers2.

Powerbox3.

XPC Services4.

Powerbox

• Cocoa NSOpenPanel/NSSavePanel
• Trusted mediator process
• Clear declaration of user intent

■ Drives security policy
■ Sandboxed apps cannot synthesize user input events

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

NSOpenPanel

AppKit

~/Documents

AppKit

Powerbox

NSOpenPanel

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

Key Components

Entitlements1.

Containers2.

Powerbox3.

XPC Services4.

XPC Services

• Very easy app and framework privilege separation
• Services have their own entitlements
•No fork/exec, process lifecycle managed by XPC
•Only available to the containing app

Adium
Putting It All Together

Adium

• Popular open source IM client
• Full featured
• 250 source files
• 75,000 lines of code for the
main app
• 65,000 lines in app’s own
frameworks

Process
Adium

• Prepare entitlements
• Code sign program
• Run and verify App Sandbox status
• Look for violations

Demo

Exploitation
Adium

• The attacker only has access to documents that the user
exchanged with buddies during this Adium run
•No ability to access or modify other apps or documents
•Need multiple vulnerabilities for a successful exploit

New Since Lion

New Since Lion

• Security-scoped bookmarks (10.7.3 and later)
•Application groups (10.7.3 and later)
• Related items
•Automation

Security-scoped bookmarks
New Since Lion

Security-Scoped Bookmarks

• Preserve access to user-chosen files and folders across system reboot
• Per-user app configuration: Input and output folders, commonly
accessed files
•Document formats that contain references to files

Security-Scoped Bookmarks

•App scope
■ com.apple.security.files.user-
selected.read-{write,only}

■ Locked to the app and user that
created them

Security-Scoped Bookmarks

•App scope
■ com.apple.security.files.user-
selected.read-{write,only}

■ Locked to the app and user that
created them

User Picks File

bookmarkDataWithOptions

User Picks File

bookmarkDataWithOptions

User Picks File

NSData

bookmarkDataWithOptions

User Picks File

NSData

bookmarkDataWithOptions

User Picks File

NSData

bookmarkDataWithOptions

User Picks File

User Defaults

NSDataNSData

bookmarkDataWithOptions

User Picks File

User Defaults

NSData

Core Data

NSDataNSData

My App

NSData URLByResolvingBookmarkData

My App

NSData URLByResolvingBookmarkData

My App

Other App

NSData

Other App

URLByResolvingBookmarkData

Security-Scoped Bookmarks

•Document scope
■ com.apple.security.files.bookmarks.document-scope
■ Allows a document format to contain references to files
(but not folders) that travel with it

■ Bookmark must be stored in the document file/bundle itself
■ Cannot point to system or hidden locations (~/Library)

User
Creates

Doc

My App

User
Creates

Doc

User
Inserts
Movie

My App

bookmarkDataWithOptionsMy App

bookmarkDataWithOptionsNSDataMy App

bookmarkDataWithOptions

NSData

My App

User
Opens

Doc

My App

NSData

URLByResolvingBookmarkDataMy App

NSData

User
Creates

Doc

URLByResolvingBookmarkDataMy App

URLByResolvingBookmarkDataMy App

NSData

User
Opens

Doc

User
Opens

Doc

Other
App

NSData

URLByResolvingBookmarkDataOther
App

NSData

User
Creates

Doc

URLByResolvingBookmarkDataOther
App

URLByResolvingBookmarkDataOther
App

NSData

User
Opens

Doc

Security-Scoped Bookmarks

•No new API, just a flag on existing NSURL methods
■ + URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
■ – bookmarkDataWithOptions:includingResourceValuesForKeys:relativeToURL:error:

• Big difference: Resolution returns a security-scoped NSURL
■ Must call {start,stop}AccessingSecurityScopedResource
to gain and discontinue access to resource

■ Failure to do so will leak kernel resources and will eventually
suspend app’s ability to use user-selected files until relaunch

Application groups
New Since Lion

Application Groups

•Groups of apps from the same developer sometimes need more
direct communication
• IPC, file sharing
•App Sandbox now offers a special affordance for this scenario

Application Groups

• com.apple.security.application-groups
• Each group name must begin with Apple-assigned Team ID
•Useful for suites of different apps, or a single app and its helper(s)
•Direct IPC permitted: XPC, POSIX
• Each group is assigned a shared file system location

com.apple.security.application-groups
8314ABCD.myapp

com.apple.security.application-groups
8314ABCD.myapp

8314ABCD.myapp

8314ABCD.myapp

Mach, POSIX

SMLoginItemSetEnabled()

SMLoginItemSetEnabled()

XPC

Related items
New Since Lion

Related Items

•Access to files/folders with same name, but different file extension
■ Movie player opening a subtitle file for a movie
■ TextEdit upgrading a .rtf document to a .rtfd for attachments

•NSFilePresenter’s primaryPresentedItemURL for the former,
itemAtURL:willMoveToURL: for the latter

• Requires a declaration of allowed patterns in the app’s Info.plist

Automation
New Since Lion

Automation

• Rich history of automation on OS X
•App Sandbox does not impose restrictions on how your apps can
be scripted
• But your apps were very limited in how they can script other apps
• Two new mechanisms in Mountain Lion aim to safely support most
common scripting scenarios

Background

•Apple events can escape App Sandbox
■ Use Finder to escape file system restrictions
■ Use Safari to escape network restrictions
■ Use Terminal to escape everything!

• Therefore, no Apple event sending by default
•Had to use a temporary exception entitlement

Lion: Sending events to Mail
Apple Events Entitlement

<key>com.apple.security.temporary-exception.apple-events<key>
<array>
 <string>com.apple.mail<string>
</array>

Lion: Sending events to Mail
Apple Events Entitlement

<key>com.apple.security.temporary-exception.apple-events<key>
<array>
 <string>com.apple.mail<string>
</array>

Lion: Sending events to Mail
Apple Events Entitlement

<key>com.apple.security.temporary-exception.apple-events<key>
<array>
 <string>com.apple.mail<string>
</array>

New in Mountain Lion
Apple Event Access Groups

• Access groups define groups of scriptable operations
■ Commands, classes, properties
■ Part of the application’s scripting interface (sdef)
■ man 5 sdef

•Already in Mountain Lion applications
■ Mail: com.apple.Mail.compose
■ iTunes: com.apple.iTunes.playback, com.apple.iTunes.library.read,
com.apple.iTunes.library.read-write

Compose Mail message
Defining an Access Group

<class-extension name="application">
 <element name="outgoing message"/>
</class>

<class name="outgoing message">
 ...
<class>

<command name="send">
 <direct-parameter type="outgoing message"/>
</command>

Compose Mail message
Defining an Access Group

<class-extension name="application">
 <element name="outgoing message"/>
 <access-group identifier="com.apple.Mail.compose" access="rw"/>
 </element>
</class>

<class name="outgoing message">
 ...
<class>

<command name="send">
 <direct-parameter type="outgoing message"/>
</command>

Compose Mail message
Defining an Access Group

<class-extension name="application">
 <element name="outgoing message"/>
 <access-group identifier="com.apple.Mail.compose" access="rw"/>
 </element>
</class>

<class name="outgoing message">
 <access-group identifier="com.apple.Mail.compose" access="rw"/>
 ...
<class>

<command name="send">
 <direct-parameter type="outgoing message"/>
</command>

Compose Mail message
Defining an Access Group

<class-extension name="application">
 <element name="outgoing message"/>
 <access-group identifier="com.apple.Mail.compose" access="rw"/>
 </element>
</class>

<class name="outgoing message">
 <access-group identifier="com.apple.Mail.compose" access="rw"/>
 ...
<class>

<command name="send">
 <!-- Not part of any access group. No sending for you! -->
 <direct-parameter type="outgoing message"/>
</command>

Using an Access Group

•New entitlement
■ com.apple.security.scripting-targets

• Value is a dictionary
■ Keys are application code signing identifiers
■ Values are access group identifiers

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.Mail</key>
 <array>
 <string>com.apple.Mail.compose<string>
 </array>
</dict>

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.Mail</key>
 <array>
 <string>com.apple.Mail.compose<string>
 </array>
</dict>

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.Mail</key>
 <array>
 <string>com.apple.Mail.compose<string>
 </array>
</dict>

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.Mail</key>
 <array>
 <string>com.apple.Mail.compose<string>
 </array>
</dict>

New in Mountain Lion
Application-Run User Scripts

•Application Script Menu
• Event Handlers

■ Mail Rule
■ Aperture Import Action
■ Messages Events

• Scripts executed by the application
• Inherit application’s permissions

User Application Scripts
~/Library

com.devID.appNamecom.devID.appNamecom.devID.appNamecom.devID.appName

NSUserScriptTask

User Application Scripts
~/Library

com.devID.appNamecom.devID.appNamecom.devID.appNamecom.devID.appName

Running attached user scripts
NSUserScriptTask

• Part of Foundation.framework
•NSUserScriptTask for generic scripts

■ Supports AppleScript, Automator, and UNIX scripts

• Subclasses for specific control
■ NSUserAppleScriptTask, NSUserAutomatorTask, NSUserUnixTask

• Script runs outside the sandbox
•No entitlement required

Summary

App Sandbox

• Strong barrier against exploitation and coding errors
•Drives policy by user intent
• Complementary to Gatekeeper
• See the App Sandbox Design Guide
• Sample code available

Summary

• iOS Sandbox: 30 billion app
downloads with confidence
•Delight users with carefree
apps on OS X

Related Sessions

Gatekeeper and Developer ID Nob Hill
Tuesday 11:30AM

Secure Automation Techniques in OS X Russian Hill
Tuesday 3:15PM

Asynchronous Design Patterns with Blocks, GCD, and XPC Pacific Heights
Friday 9:00AM

Related Labs

Security Lab Core OS Lab B
Tuesday 3:15PM

Security Lab Core OS Lab B
Thursday 9:00AM

Core OS Open Hours Core OS Lab A, B
Friday 2:00PM

Cocoa and XPC Lab Essentials Lab A
Friday 10:15AM

Open and Save Panels Within an App Sandbox Q&A Lab Essentials Lab B
Wednesday 4:30PM

Sandboxing Audio Lab Graphics, Media & Games Lab D
Wednesday 2:00PM

