
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Keep app content fresh and interesting

Session 204

What’s New with Multitasking

David Chan
iOS Software Engineering



Today

• Multitasking in iOS 6
■ Changes in iOS 7

• New Multitasking APIs
• Running in the background

■ Data Protection
■ Battery life
■ Cellular data usage



Multitasking in iOS 6

• Background Task Completion
• Background Audio
• Location Services

■ Region Monitoring
■ Significant Location Changes
■ Continuous Location Monitoring

• VoIP
• Newsstand



Changes to Existing Multitasking

• Background Task Completion
• App Switcher
• Location Services
• Newsstand



In iOS 6
Background Task Changes

task = [app beginBackgroundTaskWithExpirationHandler:^{
    task = UIBackgroundTaskInvalid;
};
// ...
[app endBackgroundTask:task];

• Used for
■ Encoding video
■ Uploads or downloads
■ Completing database operations



In iOS 6
Background Task Changes

Time

Time allowed to complete task

iPhone awake



In iOS 6
Background Task Changes

TimeApp Enters Background
Starts background task to 
complete activity

Time allowed to complete task

iPhone awake



In iOS 6
Background Task Changes

TimeApp Enters Background
Starts background task to 
complete activity

Time allowed to complete task

iPhone awake

User Locks iPhone
The user locks the phone 
to put it to sleep



In iOS 6
Background Task Changes

TimeApp Enters Background
Starts background task to 
complete activity

Time allowed to complete task

iPhone awake

Background Task Ended
Ending the task allows 
the device to sleep 
shortly after

User Locks iPhone
The user locks the phone 
to put it to sleep



In iOS 7
Background Task Changes

App Enters Background
Starts background task to 
complete activity

iPhone awake

Time allowed to complete task

Background Task Ended
Task has finished work in 

the background

User Locks iPhone
The user locks the phone 

to put it to sleep

Time



In iOS 7
Background Task Changes

App Enters Background
Starts background task to 
complete activity

iPhone awake

Time allowed to complete task

Background Task Ended
Task has finished work in 

the background

User Locks iPhone
The user locks the phone 

to put it to sleep

Fetches Mail
When the device is awake 

anyway, task can run

Time



Handling iOS 6 vs iOS 7
Background Task Changes

• If you were using background tasks for network transfers, 
use NSURLSession instead

• Switch between old and new mechanisms like this

if ([NSURLSession class]) {
   // Create a background session and enqueue transfers
}
else {
! // Start a background task and transfer directly
}



In iOS 7
Background Task Changes

• Apps will no longer keep the device awake
• Apps will still get several minutes of runtime
• Just not guaranteed to be contiguous



Just click home twice
App Switcher

• New UI prominently features app 
snapshots

• Make sure your app looks good after 
the user leaves and comes back
■ State Restoration

• Swipe up to remove apps
■ Stop running in the background

• Updating snapshots in the 
background



Changes from iOS 6
Location Services

• Background activity configurable 
from Settings

• Respects App Switcher
■ Won’t launch in the background 
if user removed app from App 
Switcher



Changes from iOS 6
Newsstand

• Background activity configurable 
from Settings

• Respects App Switcher
■ Won’t launch in the background 
if user removed app from App 
Switcher

• Stick with Newsstand API



New Multitasking APIs



New Multitasking APIs

• Background Fetch



New Multitasking APIs

• Background Fetch
• Remote Notifications



New Multitasking APIs

• Background Fetch
• Remote Notifications
• Background Transfer Service



Motivation
Background Fetch



Motivation
Background Fetch

• Let’s say you have the next great 
social networking app



Motivation
Background Fetch

• Let’s say you have the next great 
social networking app

• When your app becomes 
frontmost, you refresh your feed



Motivation
Background Fetch

• Let’s say you have the next great 
social networking app

• When your app becomes 
frontmost, you refresh your feed

• Every time your users return 
to your app, they have to wait for 
new and interesting stuff



Motivation
Background Fetch



Motivation
Background Fetch

• Now, you can update your content 
before the user returns to your app



Motivation
Background Fetch

• Now, you can update your content 
before the user returns to your app

• So that the new and interesting 
content waits for your users to see



UIKit API
Background Fetch



UIKit API
Background Fetch

LSRequiresIPhoneOS

UIBackgroundModes
UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation
s

YES

fetch
...

{...}

{...}

{...}

1.  Info.plist



UIKit API
Background Fetch

LSRequiresIPhoneOS

UIBackgroundModes
UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation
s

YES

fetch
...

{...}

{...}

{...}

1.  Info.plist

[app setMinimumBackgroundFetchInterval:
UIApplicationBackgroundFetchIntervalMinimum]

2. Enable fetching



UIKit API
Background Fetch

LSRequiresIPhoneOS

UIBackgroundModes
UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation
s

YES

fetch
...

{...}

{...}

{...}

1.  Info.plist

[app setMinimumBackgroundFetchInterval:
UIApplicationBackgroundFetchIntervalMinimum]

2. Enable fetching

3. Launched into background



UIKit API
Background Fetch

LSRequiresIPhoneOS

UIBackgroundModes
UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation
s

YES

fetch
...

{...}

{...}

{...}

1.  Info.plist

[app setMinimumBackgroundFetchInterval:
UIApplicationBackgroundFetchIntervalMinimum]

2. Enable fetching

application:didFinishLaunchingWithOptions:

3. Launched into background



UIKit API
Background Fetch

LSRequiresIPhoneOS

UIBackgroundModes
UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation
s

YES

fetch
...

{...}

{...}

{...}

1.  Info.plist

[app setMinimumBackgroundFetchInterval:
UIApplicationBackgroundFetchIntervalMinimum]

2. Enable fetching

application:performFetchWithCompletionHandler:

application:didFinishLaunchingWithOptions:

3. Launched into background



UIKit API
Background Fetch

LSRequiresIPhoneOS

UIBackgroundModes
UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation
s

YES

fetch
...

{...}

{...}

{...}

1.  Info.plist

[app setMinimumBackgroundFetchInterval:
UIApplicationBackgroundFetchIntervalMinimum]

2. Enable fetching Retrieve
content

application:performFetchWithCompletionHandler:

application:didFinishLaunchingWithOptions:

3. Launched into background



UIKit API
Background Fetch

LSRequiresIPhoneOS

UIBackgroundModes
UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation
s

YES

fetch
...

{...}

{...}

{...}

1.  Info.plist

[app setMinimumBackgroundFetchInterval:
UIApplicationBackgroundFetchIntervalMinimum]

2. Enable fetching

completionHandler

Retrieve
content

application:performFetchWithCompletionHandler:

application:didFinishLaunchingWithOptions:

3. Launched into background



Minimum Background Fetch Interval
Background Fetch

UIApplicationBackgroundFetchIntervalNever

Start

Default value

Signed out
No content



Minimum Background Fetch Interval
Background Fetch

UIApplicationBackgroundFetchIntervalNever

Start

Default value

User signs in

UIApplicationBackgroundFetchIntervalMinimum

Signed in
Content 
available

Signed out
No content



Minimum Background Fetch Interval
Background Fetch

UIApplicationBackgroundFetchIntervalNever

Start

Default value

User signs in

User signs out

UIApplicationBackgroundFetchIntervalMinimum

Signed in
Content 
available

Signed out
No content



Minimum Background Fetch Interval Custom Value
Background Fetch

App Activity
After user activity or 
system-initiated fetch



Custom Minimum Background Fetch Interval

Fetching disabled

Minimum Background Fetch Interval Custom Value
Background Fetch

App Activity
After user activity or 
system-initiated fetch



Custom Minimum Background Fetch Interval

Fetching disabled

Minimum Background Fetch Interval Custom Value
Background Fetch

App Activity
After user activity or 
system-initiated fetch

Fetching allowed at any time

After Interval



Minimum Background Fetch Interval Custom Value
Background Fetch



Demo

Brittany Hughes
iOS Software Engineer—SpringBoard



Demo
Background Fetch

• Make sure to pass completion handler all the way through
• Call completion handler with proper status



Design
Background Fetch

• System-scheduled fetch
■ Coalesced across applications

• Adapts to actual usage patterns on device
• Sensitive to energy and data usage
• Indifferent to actual app running state



Adapts to User Activity



Adapts to User Activity

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1



Adapts to User Activity

9:15 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 2

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1



Adapts to User Activity

9:15 AM

10:00 AM

1:15 PM

5:00 PM

5:15 PM

1:00 PM

Day n

9:15 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 2

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1



Adapts to User Activity

Device observes 
the pattern

9:15 AM

10:00 AM

1:15 PM

5:00 PM

5:15 PM

1:00 PM

Day n

9:15 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 2

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1



Adapts to User Activity

Device observes 
the pattern

9:15 AM

10:00 AM

1:15 PM

5:00 PM

5:15 PM

1:00 PM

Day n

9:15 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 2

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1



Adapts to User Activity

Device observes 
the pattern

9:15 AM

10:00 AM

1:15 PM

5:00 PM

5:15 PM

1:00 PM

Day n

9:15 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 2

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1



Adapts to User Activity

Device observes 
the pattern

9:15 AM

10:00 AM

1:15 PM

5:00 PM

5:15 PM

1:00 PM

Day n

9:15 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 2

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1



Adapts to User Activity

Device observes 
the pattern

9:15 AM

10:00 AM

1:15 PM

5:00 PM

5:15 PM

1:00 PM

Day n

9:15 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 2

9:15 AM

9:30 AM

10:30 AM

1:00 PM

3:00 PM

5:00 PM

5:15 PM

Day 1

9:15 AM

5:00 PM

5:15 PM

1:00 PM

Prediction



Learns patterns based on device usage

Coalesces fetches across apps

Avoids frequent fetching during periods of inactivity

Adapts to User Activity

9:15 AM

5:00 PM

5:15 PM

1:00 PM

Prediction



Examples
Background Fetch

• Useful for many kinds of applications and features
■ Social network feeds
■ News and entertainment
■ Blog aggregators
■ Weather
■ Finance

• Use in conjunction with Background Transfers to automatically update
■ Photo sharing
■ Video sharing



New Multitasking APIs 

• Background Fetch
• Remote Notifications
• Background Transfer Service



Remote Notifications in iOS 6
Users must wait for your app to catch up

Push Slide to view

aps {
alert: {...}

}

Ready 
to view

Retrieve
message



Remote Notifications in iOS 7
Can be delivered in the background to the app

aps {
content-available: 1
alert: {...}

}

Push
Ready 

to view

Retrieve
message

Slide to view



Push

Retrieve
content

Silent Remote Notifications in iOS 7
Delivered in the background

aps {
content-available: 1

}



UIKit API
Remote Notifications



UIKit API
Remote Notifications

LSRequiresIPhoneOS

UIBackgroundModes

UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation

YES
remote-
notification

...

{...}

{...}

{...}

1.  Info.plist



UIKit API
Remote Notifications

LSRequiresIPhoneOS

UIBackgroundModes

UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation

YES
remote-
notification

...

{...}

{...}

{...}

1.  Info.plist

2. Set content-available flag 
    in push notification

aps {
  content-available: 1
  alert: {...}
}



UIKit API
Remote Notifications

LSRequiresIPhoneOS

UIBackgroundModes

UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation

YES
remote-
notification

...

{...}

{...}

{...}

1.  Info.plist 3. Launched into background

2. Set content-available flag 
    in push notification

aps {
  content-available: 1
  alert: {...}
}



UIKit API
Remote Notifications

LSRequiresIPhoneOS

UIBackgroundModes

UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation

YES
remote-
notification

...

{...}

{...}

{...}

1.  Info.plist

application:didFinishLaunchingWithOptions:

3. Launched into background

2. Set content-available flag 
    in push notification

aps {
  content-available: 1
  alert: {...}
}



UIKit API
Remote Notifications

LSRequiresIPhoneOS

UIBackgroundModes

UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation

YES
remote-
notification

...

{...}

{...}

{...}

1.  Info.plist

application:didReceiveRemoteNotification:
         fetchCompletionHandler:

application:didFinishLaunchingWithOptions:

3. Launched into background

2. Set content-available flag 
    in push notification

aps {
  content-available: 1
  alert: {...}
}



UIKit API
Remote Notifications

LSRequiresIPhoneOS

UIBackgroundModes

UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation

YES
remote-
notification

...

{...}

{...}

{...}

1.  Info.plist

Retrieve
content

application:didReceiveRemoteNotification:
         fetchCompletionHandler:

application:didFinishLaunchingWithOptions:

3. Launched into background

2. Set content-available flag 
    in push notification

aps {
  content-available: 1
  alert: {...}
}



UIKit API
Remote Notifications

LSRequiresIPhoneOS

UIBackgroundModes

UIMainStoryboardFile

UIRequiredDeviceCapabilities

UIStatusBarTintParameters

UISupportedInterfaceOrientation

YES
remote-
notification

...

{...}

{...}

{...}

1.  Info.plist

completionHandler

Retrieve
content

application:didReceiveRemoteNotification:
         fetchCompletionHandler:

application:didFinishLaunchingWithOptions:

3. Launched into background

2. Set content-available flag 
    in push notification

aps {
  content-available: 1
  alert: {...}
}



Silent pushes are rate limited
Silent Remote Notifications in iOS 7

When push rate is acceptable, normal and silent pushes delivered immediately

Apple
Push

Service

Push 
Provider



Silent pushes are rate limited
Silent Remote Notifications in iOS 7

When push rate is acceptable, normal and silent pushes delivered immediately

Apple
Push

Service

Push 
Provider



Silent pushes are rate limited
Silent Remote Notifications in iOS 7

When push rate is acceptable, normal and silent pushes delivered immediately

Apple
Push

Service

Push 
Provider

When push rate is too high, silent pushes are stored for later delivery

Apple
Push

Service

Push 
Provider



Silent pushes are rate limited
Silent Remote Notifications in iOS 7

When push rate is acceptable, normal and silent pushes delivered immediately

Apple
Push

Service

Push 
Provider

When push rate is too high, silent pushes are stored for later delivery

Apple
Push

Service

Push 
Provider



Silent pushes are rate limited
Silent Remote Notifications in iOS 7

When push rate is acceptable, normal and silent pushes delivered immediately

Apple
Push

Service

Push 
Provider

When push rate is too high, silent pushes are stored for later delivery

Apple
Push

Service

Push 
Provider

Stored pushes are delivered along with normal pushes and keep-alive responses 

Apple
Push

Service

Push 
Provider



Silent pushes are rate limited
Silent Remote Notifications in iOS 7

When push rate is acceptable, normal and silent pushes delivered immediately

Apple
Push

Service

Push 
Provider

When push rate is too high, silent pushes are stored for later delivery

Apple
Push

Service

Push 
Provider

Stored pushes are delivered along with normal pushes and keep-alive responses 

Apple
Push

Service

Push 
Provider



Examples
Remote Notifications

• Can be used for many applications and features
■ Instant messaging
■ Picture messaging
■ Video messaging
■ Email

• Silent remote notifications can be useful for
■ Episodic content—TV shows, podcasts
■ Read these stories later
■ Purchase syncing
■ File syncing



Example: Auto-download in a TV app
Remote Notifications



Example: Auto-download in a TV app
Remote Notifications

• User asks for new episodes of a show to be downloaded when available



Example: Auto-download in a TV app
Remote Notifications

• User asks for new episodes of a show to be downloaded when available
• When episode is available, silent push is sent to the device



Example: Auto-download in a TV app
Remote Notifications

• User asks for new episodes of a show to be downloaded when available
• When episode is available, silent push is sent to the device
• App wakes up, checks for any newly available episodes



Example: Auto-download in a TV app
Remote Notifications

• User asks for new episodes of a show to be downloaded when available
• When episode is available, silent push is sent to the device
• App wakes up, checks for any newly available episodes
• Enqueues them in the Background Transfer service



Example: Auto-download in a TV app
Remote Notifications

• User asks for new episodes of a show to be downloaded when available
• When episode is available, silent push is sent to the device
• App wakes up, checks for any newly available episodes
• Enqueues them in the Background Transfer service
• When completed, app wakes up and updates UI



Example: Auto-download in a TV app
Remote Notifications

• User asks for new episodes of a show to be downloaded when available
• When episode is available, silent push is sent to the device
• App wakes up, checks for any newly available episodes
• Enqueues them in the Background Transfer service
• When completed, app wakes up and updates UI
• Sends local notification to notify user when episode is ready to watch



Example: File syncing app
Remote Notifications



Example: File syncing app
Remote Notifications

• User tags a few files as favorites to be updated all the time



Example: File syncing app
Remote Notifications

• User tags a few files as favorites to be updated all the time
• Whenever those file change, the service sends a silent push



Example: File syncing app
Remote Notifications

• User tags a few files as favorites to be updated all the time
• Whenever those file change, the service sends a silent push

■ Because silent pushes are rate limited already



Example: File syncing app
Remote Notifications

• User tags a few files as favorites to be updated all the time
• Whenever those file change, the service sends a silent push

■ Because silent pushes are rate limited already

• App wakes up, checks for any newly available file updates



Example: File syncing app
Remote Notifications

• User tags a few files as favorites to be updated all the time
• Whenever those file change, the service sends a silent push

■ Because silent pushes are rate limited already

• App wakes up, checks for any newly available file updates
• Enqueues file diffs into the Background Transfer Service



Example: File syncing app
Remote Notifications

• User tags a few files as favorites to be updated all the time
• Whenever those file change, the service sends a silent push

■ Because silent pushes are rate limited already

• App wakes up, checks for any newly available file updates
• Enqueues file diffs into the Background Transfer Service
• When completed, app wakes up and updates UI



Summary
Remote Notifications

• Receive push notifications in the background
• Silent pushes are rate limited—a handful per hour



New Multitasking APIs 

Background Fetch Remote Notifications

Content Importance

Content Availability

Examples

Interesting, but not critical Immediate

Very frequent Infrequent or sporadic

News
Social networking feeds

Photo sharing

Instant messaging
Synced content
Read this later



New Multitasking APIs 

• Background Fetch
• Remote Notifications
• Background Transfer Service



Motivation
Background Transfer Service

• In iOS 6, apps can transfer files while in the foreground or for a few 
minutes when the app returns to the background

• Limited arbitrarily by time
• Couldn’t effectively auto-download content or upload large assets



Background Transfer Service

• Downloads and uploads managed by iOS
• Continue even after app exits
• Not restricted by time
• Enqueue at any time—from foreground or background
• App woken up to handle authentication, errors, or completion

Motivation



CFNetwork and UIKit API
Background Transfer Service



NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

1.  Create a background NSURLSession and add download 
    or upload tasks



NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

NSURLRequest

NSURLSessionTask

1.  Create a background NSURLSession and add download 
    or upload tasks



NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

1.  Create a background NSURLSession and add download 
    or upload tasks



NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

1.  Create a background NSURLSession and add download 
    or upload tasks



NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

2. Launched into background

1.  Create a background NSURLSession and add download 
    or upload tasks



NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

application:didFinishLaunchingWithOptions:

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

2. Launched into background

1.  Create a background NSURLSession and add download 
    or upload tasks



Handle new
content

application:handleEventsForBackgroundURLSession:
completionHandler:

NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

application:didFinishLaunchingWithOptions:

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

2. Launched into background

1.  Create a background NSURLSession and add download 
    or upload tasks



completionHandler

Handle new
content

application:handleEventsForBackgroundURLSession:
completionHandler:

NSURLSession

NSURLSessionConfiguration
backgroundSession

CFNetwork and UIKit API
Background Transfer Service

application:didFinishLaunchingWithOptions:

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

NSURLRequest

NSURLSessionTask

2. Launched into background

1.  Create a background NSURLSession and add download 
    or upload tasks



Discretionary transfers help preserve energy and data
Background Transfer Service

• Discretionary transfers are power-managed and will only go over WiFi
• From the background, transfers are always discretionary
• From the foreground, transfers can optionally request discretionary



Examples
Background Transfer Service

• Useful for uploading photos or videos
• Use in combination with other Multitasking modes

■ Region Monitoring and Significant Location Changes
■ Background Fetch and Remote Notifications

• Helps keep your app up to date by downloading in the background
■ Shared photos and videos
■ Purchased books or other content
■ TV shows
■ Podcasts
■ Game content



New Multitasking APIs 

• Background Fetch
• Remote Notifications
• Background Transfer Service



Considerations

• Limited time to run in background
• Background completion tasks initiated from the background
• Seamless background experience
• Data Protection and Keychain
• Efficient battery life usage 
• Cellular data usage
• Removed from the App Switcher
• Background App Refresh Settings



Limited Time in Background

• Given less than a minute to finish update
• Fetched in parallel with other apps

■ Optimize launch and fetching paths for CPU usage
■ Use Time Profiler in Instruments

• Important to complete as soon as possible

Apps given limited time to update content and UI



From background activity
Background Task Completion Changes

• When woken for
■ Background Fetch
■ Remote Notifications
■ Background Transfer

• Background tasks are only given seconds rather than minutes 
of run time



Seamless Background Experience

• Snapshot and state restoration saved after calling completion handler
• Configure view hierarchy to hide passwords, etc.
• Use State Restoration to make sure app seamlessly transitions from 
snapshot to live

Snapshots and state restoration



Always use data protection when handling sensitive user data
Data Protection

NSFileProtection Keychain

NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked

NSFileProtectionCompleteUnlessOpen

NSFileProtectionCompleteUntilFirstUserAuth
entication kSecAttrAccessibleAfterFirstUnlock

NSFileProtectionNone kSecAttrAccessibleAlways

High

Low

Security
level



NSFileProtection Keychain

NSFileProtectionComplete kSecAttrAccessibleWhenUnlocked

NSFileProtectionCompleteUnlessOpen

NSFileProtectionCompleteUntilFirstUserAuth
entication kSecAttrAccessibleAfterFirstUnlock

NSFileProtectionNone kSecAttrAccessibleAlways

Always use data protection when handling sensitive user data
Data Protection

High

Low

Security
level



Always use data protection when handling sensitive user data
Data Protection

NSData sqlite3

NSDataWritingFileProtectionComplete SQLITE_OPEN_FILEPROTECTION_COMPLETE

NSDataWritingFileProtectionCompleteUnless
Open

SQLITE_OPEN_FILEPROTECTION_COMPLETEU
NLESSOPEN                 

NSDataWritingFileProtectionCompleteUntilFi
rstUserAuthentication

SQLITE_OPEN_FILEPROTECTION_COMPLETEU
NTILFIRSTUSERAUTHENTICATION

NSDataWritingFileProtectionNone SQLITE_OPEN_FILEPROTECTION_NONE

High

Low

Security
level

https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETE%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETE%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNLESSOPEN%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNLESSOPEN%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNLESSOPEN%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNLESSOPEN%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNTILFIRSTUSERAUTHENTICATION%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNTILFIRSTUSERAUTHENTICATION%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNTILFIRSTUSERAUTHENTICATION%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_COMPLETEUNTILFIRSTUSERAUTHENTICATION%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_NONE%22&kind=macro
https://purplefish.apple.com/index.php?action=search_xref&index=Innsbruck&q=%22SQLITE_OPEN_FILEPROTECTION_NONE%22&kind=macro


How to handle data while running in the background
Data Protection

Complete Protection
Data accessible while unlocked

DBDB



How to handle data while running in the background
Data Protection

Complete Protection
Data accessible while unlocked

Partial Protection
Protects data from reboot 
until first unlock

DBDB



How to handle data while running in the background
Data Protection

Complete Protection
Data accessible while unlocked

Partial Protection
Protects data from reboot 
until first unlock

DBDB



How to handle data while running in the background
Data Protection

Complete Protection
Data accessible while unlocked

Partial Protection
Protects data from reboot 
until first unlock

DBDB

Partial Access
For example, read-only and 
expires within one week



Data

How to handle data while running in the background
Data Protection

Complete Protection
Data accessible while unlocked

Partial Protection
Protects data from reboot 
until first unlock

DBDB

Partial Access
For example, read-only and 
expires within one week

Protected While Open
Download new data which 
is secured when closed



Data

How to handle data while running in the background
Data Protection

Complete Protection
Data accessible while unlocked

Partial Protection
Protects data from reboot 
until first unlock

DBDB

Partial Access
For example, read-only and 
expires within one week

Protected While Open
Download new data which 
is secured when closed



Data

How to handle data while running in the background
Data Protection

Complete Protection
Data accessible while unlocked

Partial Protection
Protects data from reboot 
until first unlock

DBDB

Partial Access
For example, read-only and 
expires within one week

Protected While Open
Download new data which 
is secured when closed

Merge When Accessible
Merge new data into main 
database when appropriate



Coalesce and minimize usage
Efficient Battery Life and Cellular Data Usage

• Minimize cellular data usage
■ Prior to calling completion handler, only download what’s necessary 

for a fresh UI—thumbnails instead of full images
■ Enqueue the rest as a background transfer

• For power efficiency, bring the radios back down as quickly as possible
■ Parallelize network activity as much as possible
■ Avoid using location, motion, or other hardware if unneeded
■ Call the completion handler when complete



User control of background activity
App Switcher

• When removed from App Switcher, 
app will no longer run

• Until launched by the user



User control of background activity
Background App Refresh Settings

• Users can configure background 
activity from Settings

• Apps can be disabled individually
• API coming soon to inspect 
settings

• Like Newsstand and Location



Multitasking in iOS 7



Background Task Completion

Background Audio

Location Services

VoIP

Newsstand

Multitasking in iOS 7



Background Fetch

Background Task Completion

Background Audio

Location Services

VoIP

Newsstand

Multitasking in iOS 7



Background Fetch

Remote Notifications

Background Task Completion

Background Audio

Location Services

VoIP

Newsstand

Multitasking in iOS 7



Background Fetch

Remote Notifications

Background Transfer Service

Background Task Completion

Background Audio

Location Services

VoIP

Newsstand

Multitasking in iOS 7



Paul Marcos
Integration Technologies Evangelist
pmarcos@apple.com

Jake Behrens
App Frameworks Evangelist
behrens@apple.com

Documentation
iOS Application Programming Guide
http://developer.apple.com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/

Apple Developer Forums
http://devforums.apple.com

More Information

mailto:email@apple.com
mailto:email@apple.com
mailto:email@apple.com
mailto:email@apple.com
http://devforums.apple.com
http://devforums.apple.com


What’s New in State Restoration Mission
Thursday 3:15PM

Related Sessions

Protecting your Users’ Privacy Mission
Friday 9:00AM

What’s New in Core Location Presidio
Thursday 11:30AM

What’s New in Foundation Networking Mission
Wednesday 9:00AM

Improving Performance and Energy Usage with Instruments Nob Hill
Thursday 11:30AM

Protecting Secrets with the Keychain Marina
Wednesday 11:30AM

Energy Best Practices Marina
Thursday 10:15AM



Labs

Multitasking Lab Services Lab
Today 3:15PM

iOS Power Efficiency Lab Frameworks Lab
Wednesday 9:00AM

Push Notifications Lab Services Lab
Wednesday 11:30AM

Foundation Networking Lab Core OS Lab
Wednesday 10:15AM

Multitasking Lab Services Lab
Thursday 9:00AM

Keychain and Data Protection Security Lab Core OS Lab
Wednesday 4:30PM

State Restoration Lab Frameworks Lab
Thursday 4:30PM




