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Animations and Interactions on iOS

• Core Animation
• UIView animations
• Motion effects
• Gesture driven interactions
• CADisplayLink
• All of above
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What Is UIKit Dynamics?
A composable, reusable, declarative, 

real-world inspired animation, and interaction system
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Sprite Kit

Introduction to Sprite Kit Presidio
Wednesday 11:30AM
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How?

• High-level expression
• Composition of…

■ Primitive behaviors

• Animation context
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UIDynamicAnimator

• Provide the overall context
• Define the coordinate system
• Control the engine
• Keep track of behaviors

Reference View

UIDynamicAnimator

animator = [[UIDynamicAnimator alloc] initWithReferenceView:referenceView];

[animator addBehavior:...];
[animator addBehavior:...];
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• Declarative
• Describe “influences” on views
• Added and removed at any time
• Composable
• Subclassable

Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

myBehavior = [[MyBehavior alloc] initWith...];

[animator addBehavior:myBehavior];
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Common Traits

• Configured with items to animate
• Most primitive behaviors support adding and removing items
• Can be parametrized before adding to an animator
• The influence stops when the behavior is removed
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A rich set of composable classes
Predefined Behaviors

• Gravity
• Collision
• Attachments
• Snap
• Forces
• Item properties
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UIGravityBehavior

• A simple gravity vector
@property (readwrite,nonatomic) 
CGFloat xComponent;
@property (readwrite,nonatomic) 
CGFloat yComponent;

• UIKit coordinate system
■ (0,1) by default

• Items can be added and removed 
at any time

g = [[UIGravityBehavior alloc] initWithItems:@[v]];

[animator addBehavior:g];
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A Well-known Constant…
Earth Gravity
9.80665 m/s²
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Introducing…
UIKit Gravity

1000 p/s²
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UICollisionBehavior

• You can create multiple collision 
behaviors
■ “red views collide with red views, 
green views with green views”

• A word of warning: collisions have 
a CPU cost
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Boundaries
UICollisionBehavior

• Easy setup using the reference view
@property (nonatomic, readwrite) BOOL 
translatesReferenceBoundsIntoBoundary;

• Or with insets
-(void)setTranslatesReferenceBoundsIntoBoundaryWithInsets:
(UIEdgeInsets)insets;
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Boundaries
UICollisionBehavior

• Explicitly with segments 
- (void)addBoundaryWithIdentifier:(id)identifier 
fromPoint:(CGPoint)p1 toPoint:(CGPoint)p2;

• Or paths (approximated)
- (void)addBoundaryWithIdentifier:(id)identifier 
forPath:(UIBezierPath*)p;

c = [[UICollisionBehavior alloc] initWithItems:@[view];

[c addBoundaryWithIdentifier:@”Wall1” 
                   fromPoint:p1 toPoint:p2];
[c addBoundaryWithIdentifier:@”Wall2” 
                   fromPoint:p3 toPoint:p4];
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UICollisionBehaviorDelegate

• Callback on begin and end of contact
• Between views
- collisionBehavior: beganContactForItem: withItem: atPoint:
- collisionBehavior: endedContactForItem: withItem:

• Or boundaries
- collisionBehavior: beganContactForItem: withBoundaryIdentifier: atPoint:
- collisionBehavior: endedContactForItem: withBoundaryIdentifier:

• The reference boundary identifier is always nil 
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UIAttachmentBehavior

• Between a view and an anchor point 
a1 = [[UIAttachmentBehavior alloc] 
              initWithItem:v1 attachedToAnchor:ap];

• Between two views
a2 = [[UIAttachmentBehavior alloc] 
              initWithItem:v1 attachedToItem:v2];
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UIAttachmentBehavior

• The view attachment point can be an offset from 
the center
a1 = [[UIAttachmentBehavior alloc] 
              initWithItem:v1 point:p1
              attachedToAnchor:ap];
a2 = [[UIAttachmentBehavior alloc] 
              initWithItem:v1 point:p2
              attachedToItem:v2];
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UIAttachmentBehavior

• An attachment can act as a spring
[a setFrequency:4.0];
[a setDamping:0.5];

• An anchor point can be modified later
• Only use length if to change the distance 
after setup

• Attachments are invisible!
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UISnapBehavior

• Snap a view in place
• Ensure position and angle
• Damping is customizable

s = [[UISnapBehavior alloc] initWithItem:v
                            snapToPoint:p];
[animator addBehavior:s];
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UIPushBehavior

• Apply a force to a view (or views)
p = [[UIPushBehavior alloc] 
               initWithItems:@[view]
               mode:UIPushBehaviorModeContinuous];

• A simple force vector
@property (readwrite,nonatomic) CGFloat xComponent;
@property (readwrite,nonatomic) CGFloat yComponent;

@property (readwrite,nonatomic) CGFloat angle;
@property (readwrite,nonatomic) CGFloat magnitude;

• The target point can be customized
[p setTargetPoint:x forItem:view];
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A Well-known Unit…
The Newton

Accelerate 1kg at a rate of 1m/s²
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Introducing…
The UIKit Newton

Accelerate a (100,100) view to 100 p/s²
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UIPushBehavior

• Instantaneous mode
p2 = [[UIPushBehavior alloc] 
            initWithItems:@[view]
            mode:UIPushBehaviorModeInstantaneous];

• Velocity change is instantaneous
• Automatically disables itself after

■ Reenable with [p setActive:TRUE]



Demo
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UIDynamicItemBehavior

• Applied to one or many items
• Change item-level properties
friction
resistance
angularResistance
elasticity
density
allowsRotation

• Directly add angular or linear velocities
■ i.e. map with a previous gesture
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Applying Dynamics

• Add and remove views to behaviors
• Configure, add, and remove behaviors to an animator
• There is no step 3
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• You can create setups which don’t 
have solutions

• Build your system iteratively
• Not a physics-accurate tool
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UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item
• UIView implements it
• You can implement it



UIDynamicItem

@protocol UIDynamicItem <NSObject>

@property (nonatomic, readwrite) CGPoint center;
@property (nonatomic, readonly)  CGRect bounds;
@property (nonatomic, readwrite) CGAffineTransform transform;

@end



Collection View 
Layout Attributes
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Dynamics and UICollectionView

• UICollectionViewLayoutAttributes conforms to UIDynamicItem
• You can initialize an animator with a layout
animator = [[UIDynamicAnimator alloc] initWithCollectionViewLayout:myLayout]

• Just pass UICollectionViewLayoutAttributes to your behaviors
• UIKit will invalidate the layout as needed
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Summary

• An interaction-oriented animation system
• Animate key elements
• Focus on the user experience



Jake Behrens
UI Frameworks Evangelist
behrens@apple.com

Documentation
UIKit Framework Reference
http://developer.apple.com/library/ios

Apple Developer Forums
http://devforums.apple.com

More Information



Custom Transitions Using View Controllers Pacific Heights
Thursday 11:30AM

Related Sessions

Advanced Techniques with UIKit Dynamics Presidio
Thursday 3:15PM

Designing Games with Sprite Kit Mission
Wednesday 2:00PM

Introduction to Sprite Kit Presidio
Wednesday 11:30AM



Labs

Scroll View, Collection View, and Table View on iOS Lab Frameworks Lab B
Wednesday  2:00PM

UIKit Dynamics Lab Frameworks Lab A
Wednesday 4:30PM

Cocoa Touch Animation Lab Frameworks Lab B
Thursday 2:00PM

Scroll View, Collection View, and Table View on iOS Lab Frameworks Lab B
Thursday 11:30AM

Cocoa Touch Lab Frameworks Lab B
Friday 9:00AM

Cocoa Touch Lab Frameworks Lab A
Wednesday 9:00AM

Sprite Kit Lab Graphics and Games Lab B
Wednesday 3:15PM




