
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 206

Getting Started with UIKit Dynamics

Olivier Gutknecht
iOS Applications & Frameworks Engineer

What we will cover
Agenda

What we will cover
Agenda

• Core concepts

What we will cover
Agenda

• Core concepts
• Predefined behaviors

What we will cover
Agenda

• Core concepts
• Predefined behaviors
• Best practices

Animations and Interactions on iOS

Animations and Interactions on iOS

• Core Animation

Animations and Interactions on iOS

• Core Animation
• UIView animations

Animations and Interactions on iOS

• Core Animation
• UIView animations
• Motion effects

Animations and Interactions on iOS

• Core Animation
• UIView animations
• Motion effects
• Gesture driven interactions

Animations and Interactions on iOS

• Core Animation
• UIView animations
• Motion effects
• Gesture driven interactions
• CADisplayLink

Animations and Interactions on iOS

• Core Animation
• UIView animations
• Motion effects
• Gesture driven interactions
• CADisplayLink
• All of above

What Is UIKit Dynamics?

What Is UIKit Dynamics?
A composable, reusable, declarative,

real-world inspired animation, and interaction system

UIKit Games

UIKit Games

UIKit Games

UIKit Games

UIKit Games

Sprite Kit

Introduction to Sprite Kit Presidio
Wednesday 11:30AM

Demo

How Complex Is This?
Entire application: 400 lines of code

How Complex Is This?
Entire application: 400 lines of code

80%

20%

Dynamics
Non Dynamics

Overview

Why?

• Real world inspired interactions

Why?

• Real world inspired interactions
• Combining predefined
and interactive animations

Why?

• Real world inspired interactions
• Combining predefined
and interactive animations

• Designed for UI

Why?

• Real world inspired interactions
• Combining predefined
and interactive animations

• Designed for UI

Why?

• Real world inspired interactions
• Combining predefined
and interactive animations

• Designed for UI

Why?

How?

How?

• High-level expression
[myView setMass:0.42] ?

How?

• High-level expression
[myView setMass:0.42] ?

How?

• High-level expression
• Composition of…

How?

• High-level expression
• Composition of…

■ Primitive behaviors

How?

• High-level expression
• Composition of…

■ Primitive behaviors

• Animation context

Architecture

UIDynamicAnimator

UIDynamicBehaviorUIDynamicBehavior UIDynamicBehavior

Architecture

UIDynamicAnimator

UIDynamicBehaviorUIDynamicBehavior UIDynamicBehavior

Architecture

UIDynamicAnimator

View View View

UIDynamicBehaviorUIDynamicBehavior UIDynamicBehavior

Architecture

UIDynamicAnimator

View View View

Reference View

UIDynamicBehaviorUIDynamicBehavior UIDynamicBehavior

Architecture

UIDynamicAnimator

View View View

Reference View

UIDynamicBehaviorUIDynamicBehavior UIDynamicBehavior

Architecture

UIDynamicAnimator

View View View

Reference View

UIDynamicAnimator

Reference View

UIDynamicAnimator

UIDynamicAnimator

• Provide the overall context

Reference View

UIDynamicAnimator

UIDynamicAnimator

• Provide the overall context
• Define the coordinate system

Reference View

UIDynamicAnimator

UIDynamicAnimator

• Provide the overall context
• Define the coordinate system
• Control the engine Reference View

UIDynamicAnimator

UIDynamicAnimator

• Provide the overall context
• Define the coordinate system
• Control the engine
• Keep track of behaviors

Reference View

UIDynamicAnimator

UIDynamicAnimator

• Provide the overall context
• Define the coordinate system
• Control the engine
• Keep track of behaviors

Reference View

UIDynamicAnimator

animator = [[UIDynamicAnimator alloc] initWithReferenceView:referenceView];

[animator addBehavior:...];
[animator addBehavior:...];

Reference View

UIDynamicBehavior

UIDynamicAnimator

Reference View

UIDynamicBehavior

UIDynamicBehavior

UIDynamicAnimator

Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

• Declarative

Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

• Declarative
• Describe “influences” on views

Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

• Declarative
• Describe “influences” on views
• Added and removed at any time Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

• Declarative
• Describe “influences” on views
• Added and removed at any time
• Composable

Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

• Declarative
• Describe “influences” on views
• Added and removed at any time
• Composable
• Subclassable

Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

• Declarative
• Describe “influences” on views
• Added and removed at any time
• Composable
• Subclassable

Reference View

UIDynamicBehavior

View

UIDynamicBehavior

UIDynamicAnimator

myBehavior = [[MyBehavior alloc] initWith...];

[animator addBehavior:myBehavior];

Primitive Behaviors

Common Traits

• Configured with items to animate

Common Traits

• Configured with items to animate
• Most primitive behaviors support adding and removing items

Common Traits

• Configured with items to animate
• Most primitive behaviors support adding and removing items
• Can be parametrized before adding to an animator

Common Traits

• Configured with items to animate
• Most primitive behaviors support adding and removing items
• Can be parametrized before adding to an animator
• The influence stops when the behavior is removed

A rich set of composable classes
Predefined Behaviors

A rich set of composable classes
Predefined Behaviors

• Gravity

A rich set of composable classes
Predefined Behaviors

• Gravity
• Collision

A rich set of composable classes
Predefined Behaviors

• Gravity
• Collision
• Attachments

A rich set of composable classes
Predefined Behaviors

• Gravity
• Collision
• Attachments
• Snap

A rich set of composable classes
Predefined Behaviors

• Gravity
• Collision
• Attachments
• Snap
• Forces

A rich set of composable classes
Predefined Behaviors

• Gravity
• Collision
• Attachments
• Snap
• Forces
• Item properties

UIGravityBehavior

UIGravityBehavior

UIGravityBehavior

• A simple gravity vector

UIGravityBehavior

• A simple gravity vector
@property (readwrite,nonatomic)
CGFloat xComponent;
@property (readwrite,nonatomic)
CGFloat yComponent;

UIGravityBehavior

• A simple gravity vector
@property (readwrite,nonatomic)
CGFloat xComponent;
@property (readwrite,nonatomic)
CGFloat yComponent;

• UIKit coordinate system

UIGravityBehavior

• A simple gravity vector
@property (readwrite,nonatomic)
CGFloat xComponent;
@property (readwrite,nonatomic)
CGFloat yComponent;

• UIKit coordinate system
■ (0,1) by default

UIGravityBehavior

• A simple gravity vector
@property (readwrite,nonatomic)
CGFloat xComponent;
@property (readwrite,nonatomic)
CGFloat yComponent;

• UIKit coordinate system
■ (0,1) by default

• Items can be added and removed
at any time

UIGravityBehavior

• A simple gravity vector
@property (readwrite,nonatomic)
CGFloat xComponent;
@property (readwrite,nonatomic)
CGFloat yComponent;

• UIKit coordinate system
■ (0,1) by default

• Items can be added and removed
at any time

g = [[UIGravityBehavior alloc] initWithItems:@[v]];

[animator addBehavior:g];

A Well-known Constant…
Earth Gravity

A Well-known Constant…
Earth Gravity
9.80665 m/s²

Introducing…
UIKit Gravity

Introducing…
UIKit Gravity

1000 p/s²

UICollisionBehavior

UICollisionBehavior

• Between a view and a boundary

UICollisionBehavior

• Between a view and a boundary

UICollisionBehavior

• Between a view and a boundary
• Or between views associated
to the same behavior

UICollisionBehavior

• Between a view and a boundary
• Or between views associated
to the same behavior

UICollisionBehavior

• Between a view and a boundary
• Or between views associated
to the same behavior

• Or both, by default

UICollisionBehavior

• Between a view and a boundary
• Or between views associated
to the same behavior

• Or both, by default

UICollisionBehavior

• Collision mode
@property (nonatomic, readwrite)
UICollisionBehaviorMode collisionMode;

UICollisionBehaviorModeItems
UICollisionBehaviorModeBoundaries
UICollisionBehaviorModeEverything

UICollisionBehavior

• Collision mode
@property (nonatomic, readwrite)
UICollisionBehaviorMode collisionMode;

UICollisionBehaviorModeItems
UICollisionBehaviorModeBoundaries
UICollisionBehaviorModeEverything

• Items can be added or removed at any time

UICollisionBehavior

• Collision mode
@property (nonatomic, readwrite)
UICollisionBehaviorMode collisionMode;

UICollisionBehaviorModeItems
UICollisionBehaviorModeBoundaries
UICollisionBehaviorModeEverything

• Items can be added or removed at any time

UICollisionBehavior

• You can create multiple collision
behaviors
■ “red views collide with red views,
green views with green views”

UICollisionBehavior

• You can create multiple collision
behaviors
■ “red views collide with red views,
green views with green views”

• A word of warning: collisions have
a CPU cost

Boundaries
UICollisionBehavior

• Easy setup using the reference view
@property (nonatomic, readwrite) BOOL
translatesReferenceBoundsIntoBoundary;

Boundaries
UICollisionBehavior

• Easy setup using the reference view
@property (nonatomic, readwrite) BOOL
translatesReferenceBoundsIntoBoundary;

• Or with insets
-(void)setTranslatesReferenceBoundsIntoBoundaryWithInsets:
(UIEdgeInsets)insets;

Boundaries
UICollisionBehavior

Boundaries
UICollisionBehavior

• Explicitly with segments
- (void)addBoundaryWithIdentifier:(id)identifier
fromPoint:(CGPoint)p1 toPoint:(CGPoint)p2;

Boundaries
UICollisionBehavior

• Explicitly with segments
- (void)addBoundaryWithIdentifier:(id)identifier
fromPoint:(CGPoint)p1 toPoint:(CGPoint)p2;

• Or paths (approximated)
- (void)addBoundaryWithIdentifier:(id)identifier
forPath:(UIBezierPath*)p;

Boundaries
UICollisionBehavior

• Explicitly with segments
- (void)addBoundaryWithIdentifier:(id)identifier
fromPoint:(CGPoint)p1 toPoint:(CGPoint)p2;

• Or paths (approximated)
- (void)addBoundaryWithIdentifier:(id)identifier
forPath:(UIBezierPath*)p;

c = [[UICollisionBehavior alloc] initWithItems:@[view];

[c addBoundaryWithIdentifier:@”Wall1”
 fromPoint:p1 toPoint:p2];
[c addBoundaryWithIdentifier:@”Wall2”
 fromPoint:p3 toPoint:p4];

UICollisionBehaviorDelegate

• Callback on begin and end of contact

UICollisionBehaviorDelegate

• Callback on begin and end of contact
• Between views
- collisionBehavior: beganContactForItem: withItem: atPoint:
- collisionBehavior: endedContactForItem: withItem:

UICollisionBehaviorDelegate

• Callback on begin and end of contact
• Between views
- collisionBehavior: beganContactForItem: withItem: atPoint:
- collisionBehavior: endedContactForItem: withItem:

• Or boundaries
- collisionBehavior: beganContactForItem: withBoundaryIdentifier: atPoint:
- collisionBehavior: endedContactForItem: withBoundaryIdentifier:

UICollisionBehaviorDelegate

• Callback on begin and end of contact
• Between views
- collisionBehavior: beganContactForItem: withItem: atPoint:
- collisionBehavior: endedContactForItem: withItem:

• Or boundaries
- collisionBehavior: beganContactForItem: withBoundaryIdentifier: atPoint:
- collisionBehavior: endedContactForItem: withBoundaryIdentifier:

• The reference boundary identifier is always nil

UIAttachmentBehavior

UIAttachmentBehavior

• Between a view and an anchor point

UIAttachmentBehavior

• Between a view and an anchor point
a1 = [[UIAttachmentBehavior alloc]
 initWithItem:v1 attachedToAnchor:ap];

UIAttachmentBehavior

• Between a view and an anchor point
a1 = [[UIAttachmentBehavior alloc]
 initWithItem:v1 attachedToAnchor:ap];

• Between two views

UIAttachmentBehavior

• Between a view and an anchor point
a1 = [[UIAttachmentBehavior alloc]
 initWithItem:v1 attachedToAnchor:ap];

• Between two views
a2 = [[UIAttachmentBehavior alloc]
 initWithItem:v1 attachedToItem:v2];

UIAttachmentBehavior

UIAttachmentBehavior

• The view attachment point can be an offset from
the center
a1 = [[UIAttachmentBehavior alloc]
 initWithItem:v1 point:p1
 attachedToAnchor:ap];
a2 = [[UIAttachmentBehavior alloc]
 initWithItem:v1 point:p2
 attachedToItem:v2];

UIAttachmentBehavior

UIAttachmentBehavior

UIAttachmentBehavior

• An attachment can act as a spring
[a setFrequency:4.0];
[a setDamping:0.5];

UIAttachmentBehavior

• An attachment can act as a spring
[a setFrequency:4.0];
[a setDamping:0.5];

• An anchor point can be modified later

UIAttachmentBehavior

• An attachment can act as a spring
[a setFrequency:4.0];
[a setDamping:0.5];

• An anchor point can be modified later
• Only use length if to change the distance
after setup

UIAttachmentBehavior

• An attachment can act as a spring
[a setFrequency:4.0];
[a setDamping:0.5];

• An anchor point can be modified later
• Only use length if to change the distance
after setup

• Attachments are invisible!

Demo

UISnapBehavior

UISnapBehavior

• Snap a view in place

UISnapBehavior

• Snap a view in place

UISnapBehavior

• Snap a view in place
• Ensure position and angle

UISnapBehavior

• Snap a view in place
• Ensure position and angle
• Damping is customizable

UISnapBehavior

• Snap a view in place
• Ensure position and angle
• Damping is customizable

s = [[UISnapBehavior alloc] initWithItem:v
 snapToPoint:p];
[animator addBehavior:s];

UIPushBehavior

UIPushBehavior

UIPushBehavior

• Apply a force to a view (or views)
p = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeContinuous];

UIPushBehavior

• Apply a force to a view (or views)
p = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeContinuous];

• A simple force vector
@property (readwrite,nonatomic) CGFloat xComponent;
@property (readwrite,nonatomic) CGFloat yComponent;

@property (readwrite,nonatomic) CGFloat angle;
@property (readwrite,nonatomic) CGFloat magnitude;

UIPushBehavior

• Apply a force to a view (or views)
p = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeContinuous];

• A simple force vector
@property (readwrite,nonatomic) CGFloat xComponent;
@property (readwrite,nonatomic) CGFloat yComponent;

@property (readwrite,nonatomic) CGFloat angle;
@property (readwrite,nonatomic) CGFloat magnitude;

• The target point can be customized
[p setTargetPoint:x forItem:view];

UIPushBehavior

• Apply a force to a view (or views)
p = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeContinuous];

• A simple force vector
@property (readwrite,nonatomic) CGFloat xComponent;
@property (readwrite,nonatomic) CGFloat yComponent;

@property (readwrite,nonatomic) CGFloat angle;
@property (readwrite,nonatomic) CGFloat magnitude;

• The target point can be customized
[p setTargetPoint:x forItem:view];

UIPushBehavior

• Apply a force to a view (or views)
p = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeContinuous];

• A simple force vector
@property (readwrite,nonatomic) CGFloat xComponent;
@property (readwrite,nonatomic) CGFloat yComponent;

@property (readwrite,nonatomic) CGFloat angle;
@property (readwrite,nonatomic) CGFloat magnitude;

• The target point can be customized
[p setTargetPoint:x forItem:view];

A Well-known Unit…
The Newton

A Well-known Unit…
The Newton

Accelerate 1kg at a rate of 1m/s²

Introducing…
The UIKit Newton

Introducing…
The UIKit Newton

Accelerate a (100,100) view to 100 p/s²

UIPushBehavior

UIPushBehavior

• Instantaneous mode
p2 = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeInstantaneous];

UIPushBehavior

• Instantaneous mode
p2 = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeInstantaneous];

• Velocity change is instantaneous

UIPushBehavior

• Instantaneous mode
p2 = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeInstantaneous];

• Velocity change is instantaneous

UIPushBehavior

• Instantaneous mode
p2 = [[UIPushBehavior alloc]
 initWithItems:@[view]
 mode:UIPushBehaviorModeInstantaneous];

• Velocity change is instantaneous
• Automatically disables itself after

■ Reenable with [p setActive:TRUE]

Demo

UIDynamicItemBehavior

UIDynamicItemBehavior

• Applied to one or many items

UIDynamicItemBehavior

• Applied to one or many items
• Change item-level properties
friction
resistance
angularResistance
elasticity
density
allowsRotation

UIDynamicItemBehavior

• Applied to one or many items
• Change item-level properties
friction
resistance
angularResistance
elasticity
density
allowsRotation

UIDynamicItemBehavior

• Applied to one or many items
• Change item-level properties
friction
resistance
angularResistance
elasticity
density
allowsRotation

• Directly add angular or linear velocities
■ i.e. map with a previous gesture

Applying Dynamics

Applying Dynamics

• Add and remove views to behaviors

Applying Dynamics

• Add and remove views to behaviors
• Configure, add, and remove behaviors to an animator

Applying Dynamics

• Add and remove views to behaviors
• Configure, add, and remove behaviors to an animator
• There is no step 3

Don’t Expect the Impossible

• You can create setups which don’t
have solutions

• Build your system iteratively
• Not a physics-accurate tool

Don’t Expect the Impossible

• You can create setups which don’t
have solutions

• Build your system iteratively
• Not a physics-accurate tool

Don’t Expect the Impossible

• You can create setups which don’t
have solutions

• Build your system iteratively
• Not a physics-accurate tool

Don’t Expect the Impossible

• You can create setups which don’t
have solutions

• Build your system iteratively
• Not a physics-accurate tool

Don’t Expect the Impossible

• You can create setups which don’t
have solutions

• Build your system iteratively

Don’t Expect the Impossible

• You can create setups which don’t
have solutions

• Build your system iteratively
• Not a physics-accurate tool

Dynamic Items

UIDynamicItem Protocol

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item
• UIView implements it

UIDynamicItem Protocol

• A protocol for items associated to predefined behaviors
• Describe what UIKit needs to animate an item
• UIView implements it
• You can implement it

UIDynamicItem

@protocol UIDynamicItem <NSObject>

@property (nonatomic, readwrite) CGPoint center;
@property (nonatomic, readonly) CGRect bounds;
@property (nonatomic, readwrite) CGAffineTransform transform;

@end

Collection View
Layout Attributes

Dynamics and UICollectionView

Dynamics and UICollectionView

• UICollectionViewLayoutAttributes conforms to UIDynamicItem

Dynamics and UICollectionView

• UICollectionViewLayoutAttributes conforms to UIDynamicItem
• You can initialize an animator with a layout
animator = [[UIDynamicAnimator alloc] initWithCollectionViewLayout:myLayout]

Dynamics and UICollectionView

• UICollectionViewLayoutAttributes conforms to UIDynamicItem
• You can initialize an animator with a layout
animator = [[UIDynamicAnimator alloc] initWithCollectionViewLayout:myLayout]

• Just pass UICollectionViewLayoutAttributes to your behaviors

Dynamics and UICollectionView

• UICollectionViewLayoutAttributes conforms to UIDynamicItem
• You can initialize an animator with a layout
animator = [[UIDynamicAnimator alloc] initWithCollectionViewLayout:myLayout]

• Just pass UICollectionViewLayoutAttributes to your behaviors
• UIKit will invalidate the layout as needed

Demo

Summary

Summary

• An interaction-oriented animation system

Summary

• An interaction-oriented animation system
• Animate key elements

Summary

• An interaction-oriented animation system
• Animate key elements
• Focus on the user experience

Jake Behrens
UI Frameworks Evangelist
behrens@apple.com

Documentation
UIKit Framework Reference
http://developer.apple.com/library/ios

Apple Developer Forums
http://devforums.apple.com

More Information

Custom Transitions Using View Controllers Pacific Heights
Thursday 11:30AM

Related Sessions

Advanced Techniques with UIKit Dynamics Presidio
Thursday 3:15PM

Designing Games with Sprite Kit Mission
Wednesday 2:00PM

Introduction to Sprite Kit Presidio
Wednesday 11:30AM

Labs

Scroll View, Collection View, and Table View on iOS Lab Frameworks Lab B
Wednesday 2:00PM

UIKit Dynamics Lab Frameworks Lab A
Wednesday 4:30PM

Cocoa Touch Animation Lab Frameworks Lab B
Thursday 2:00PM

Scroll View, Collection View, and Table View on iOS Lab Frameworks Lab B
Thursday 11:30AM

Cocoa Touch Lab Frameworks Lab B
Friday 9:00AM

Cocoa Touch Lab Frameworks Lab A
Wednesday 9:00AM

Sprite Kit Lab Graphics and Games Lab B
Wednesday 3:15PM

