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•Users expect long battery life and high-performance apps



In a World Where…

•Users expect long battery life and high-performance apps
•All apps have about equal access to limited resources

■ CPU time
■ Disk I/O
■ Energy



App Nap focuses system resources 
on the most important user work.





Battery Life Responsiveness



Understanding what’s important
App Nap Heuristics



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application
•Application type



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application
•Application type
• Visibility



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application
•Application type
• Visibility
•Drawing activity



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application
•Application type
• Visibility
•Drawing activity
•Audio playback



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application
•Application type
• Visibility
•Drawing activity
•Audio playback
• Event processing



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application
•Application type
• Visibility
•Drawing activity
•Audio playback
• Event processing
•Use of existing IOKit power 
assertion API



Understanding what’s important
App Nap Heuristics

• Foreground vs. background 
application
•Application type
• Visibility
•Drawing activity
•Audio playback
• Event processing
•Use of existing IOKit power 
assertion API
•Use of new App Nap API



Demo
App Nap



How App Nap Works
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What’s a Watt?

• Power
■ Rate at which energy is consumed
■ Measured in watts (W)

• Energy
■ Stored potential to do work
■ Measured in watt-hours (Wh)
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What can modern chips do?
CPU Power Usage

Idle

Nominal

Turbo

0.4 W

15 W

25 W



Three key rules
Extending Battery Life

• Stay idle as long as possible
•Avoid unnecessary work
• Return to idle as quickly as possible



Staying Idle: a Case Study
Visiting apple.com in Safari
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•Mouse or keyboard input
•Disk I/O
• Timers
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Everything with a relative or absolute deadline
API with Timers

NSTimer, CFRunLoopTimerRef, DISPATCH_SOURCE_TYPE_TIMER

sleep()

pthread_cond_timedwait(), semaphore_timedwait()

-[performSelector:withObject:afterDelay:], -[NSRunLoop runUntilDate:]

… and many more
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Reducing the impact of timers
Extending Battery Life

• Timer Coalescing
• Timer Rate Limiting
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After the timer fires
Second Order Effects

• CPU usage
• Screen
•GPU usage
•Network
• Storage
•Memory
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Coalescing and Rate Limiting

• Coalescing delay is on order of 100 ms
■ About the same as delay due to normal system load
■ Undetectable to user

• Rate limiting delay is on order of seconds
• Timers do not fire early
• Exact delays depend on heuristics
• Configurable 
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Switch from timer API to event API
Improving the Result

• Instead of polling key presses or mouse locations
■ Use events

• Instead of repeatedly checking file content
■ Use FSEvents, dispatch sources, or IPC

• Instead of timer-based synchronization
■ Use semaphores or other locks

Energy Best Practices Marina
Thursday 10:15AM



Demo
Improving the Eyes application
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Responsiveness

• Important work should have higher priority
•Apps in App Nap have lower priority

■ I/O
■ CPU

• To improve responsiveness, improve performance

Building Efficient OS X Apps Nob Hill
Tuesday 4:30PM
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App Nap API

• Find out when your app is visible
•Add tolerance to timers
• Tell system about user activities
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Visibility

• Find out when a window or application is occluded
■ On another space
■ Another app is in front
■ Screen saver is on

•Halt expensive work when occluded
• Refresh content when becoming visible
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Minimized Windows
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Application Occlusion

@protocol NSApplicationDelegate
- (void)applicationDidChangeOcclusionState:(NSNotification *)notification;
@end

@interface NSApplication
- (NSApplicationOcclusionState)occlusionState;
@end

typedef NS_OPTIONS(NSUInteger, NSApplicationOcclusionState) {
    NSApplicationOcclusionStateVisible = 1UL << 1,
}



Window Occlusion

@protocol NSWindowDelegate
- (void)windowDidChangeOcclusionState:(NSNotification *)notification;
@end

@interface NSWindow
- (NSWindowOcclusionState)occlusionState;
@end

typedef NS_OPTIONS(NSUInteger, NSWindowOcclusionState) {
    NSWindowOcclusionStateVisible = 1UL << 1,
}



Occlusion Example

@implementation EYEAppDelegate

- (void)applicationDidChangeOcclusionState:(NSNotification *)n
{
    if ([NSApp occlusionState] & NSApplicationOcclusionStateVisible) {
        // Visible
    } else {
        // Occluded
    }
}

@end
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Timer Tolerance

•Most timers do not need to be hyper-accurate
■ Default tolerance is applied to all timers

•New API allows for increasing default tolerance
• System fires timer at best time in tolerance window
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NSTimer Tolerance

@interface NSTimer
- (void)setTolerance:(NSTimeInterval)tolerance;
- (NSTimeInterval)tolerance;
@end



NSTimer Tolerance

// Create repeating timer
NSTimer *timer = [NSTimer timerWithTimeInterval:7.0
                                         target:self
                                       selector:@selector(timerFired:)
                                       userInfo:nil
                                        repeats:YES];

// Set fire date
[timer setFireDate:[NSDate dateWithTimeIntervalSinceNow:5.0]];

// Set tolerance
[timer setTolerance:3.0];

[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];



Dispatch Timer Tolerance

dispatch_source_t timer;
timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 
                               0, 
                               0, 
                               queue);

dispatch_source_set_event_handler(timer, ^{ /* Work goes here */ });

dispatch_source_set_timer(timer,
                    dispatch_time(DISPATCH_TIME_NOW, 5 * NSEC_PER_SEC), 
                    7 * NSEC_PER_SEC, 
                    3 * NSEC_PER_SEC);

dispatch_resume(timer);



Dispatch Strict Timers

dispatch_source_t timer;
timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 
                               0, 
                               DISPATCH_TIMER_STRICT, 
                               queue);

dispatch_source_set_event_handler(timer, ^{ /* Work goes here */ });

dispatch_source_set_timer(timer,
                    dispatch_time(DISPATCH_TIME_NOW, 5 * NSEC_PER_SEC), 
                    7 * NSEC_PER_SEC, 
                    700 * NSEC_PER_MSEC);

dispatch_resume(timer);
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Timer Tolerance

• Suggested tolerance is at least 10% of interval
■ Exact value will be application specific

• Tolerance used regardless of App Nap
• Strict timers are rare

■ Disables timer rate limiting
■ You should still specify a tolerance

• Critical mass effect
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User Activities

• Improves accuracy of App Nap heuristics
•Use for long-running or asynchronous work
• Cocoa API to prevent idle system sleep
• Includes automatic and sudden termination
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@end
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User Activities

@interface NSProcessInfo

@end

- (void)performActivityWithOptions:(NSActivityOptions)options 
                            reason:(NSString *)reason 
                             block:(void (^)())block;

- (id)beginActivityWithOptions:(NSActivityOptions)options 
                        reason:(NSString *)reason;

- (void)endActivity:(id)activity;
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NSActivityOptions
User Activities

• Exporting, recording, processing
NSActivityUserInitiated
NSActivityUserInitiatedAllowingIdleSystemSleep

•Maintenance
NSActivityBackground

• Latency sensitive
NSActivityUserInitiated | NSActivityLatencyCritical
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NSActivityOptions
User Activities

• Idle system sleep
NSActivityIdleDisplaySleepDisabled
NSActivityIdleSystemSleepDisabled

• Sudden termination
NSActivitySuddenTerminationDisabled

•Automatic termination
NSActivityAutomaticTerminationDisabled



User Activities

NSOperationQueue *queue = ...;

id token = [[NSProcessInfo processInfo] 
              beginActivityWithOptions:NSActivityUserInitiated 
                                reason:@"Batch processing files"];

[queue addOperationWithBlock:^{
    // Do work here

    [[NSProcessInfo processInfo] endActivity:token];
}];
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Choosing the Right Activity

•Applications can have multiple concurrent activities
■ NSActivityBackground for maintenance work
■ NSActivityUserInitiated when user takes action

•Avoid rapidly starting and ending activities
• Idle system sleep assertions should be used with care

■ Don’t prevent idle sleep forever
■ Verify power assertions are dropped
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Verify power assertions
Choosing the Right Activity

$ pmset -g assertions
Assertion status system-wide:
   BackgroundTask                 0
   PreventUserIdleDisplaySleep    0
   PreventSystemSleep             0
   PreventDiskIdle                0
   PreventUserIdleSystemSleep     1
   ExternalMedia                  0
   UserIsActive                   0
   ApplePushServiceTask           0
Listed by owning process:
   pid 1963(Eyes): [0x0000000100000196] 00:03:36 PreventUserIdleSystemSleep 
named: "Keeping the computer awake" 



Demo
Adopting App Nap API
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Summary

• Software has a huge impact on energy efficiency
• To extend battery life

■ Stay idle as long as possible
■ Avoid unnecessary work
■ Race back to idle

•Avoiding timers allows a longer idle time
■ Instead, use event based API
■ If you must use timers, add tolerance

•Use activity API to inform system of important user work



Energy Best Practices Marina
Thursday 10:15AM

Building Efficient OS X Apps Nob Hill
Tuesday 4:30PM

Related Sessions

Maximizing Battery Life on OS X Mission
Tuesday 11:30AM

Power and Performance: Optimizing Your Website for Great Battery 
Life and Responsive Scrolling

Russian Hill
Wednesday 9:00AM
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More Information

Jake Behrens
App Frameworks Evangelist
behrens@apple.com

Apple Developer Forums
http://devforums.apple.com
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