
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 209

Improving Power
Efficiency with App Nap

Tony Parker
Software Engineer, Cocoa Frameworks

What is App Nap?

How App Nap Works

App Nap API

What is App Nap?

In a World Where…

•Users expect long battery life and high-performance apps

In a World Where…

•Users expect long battery life and high-performance apps
•All apps have about equal access to limited resources

■ CPU time
■ Disk I/O
■ Energy

App Nap focuses system resources
on the most important user work.

Battery Life Responsiveness

Understanding what’s important
App Nap Heuristics

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application
•Application type

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application
•Application type
• Visibility

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application
•Application type
• Visibility
•Drawing activity

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application
•Application type
• Visibility
•Drawing activity
•Audio playback

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application
•Application type
• Visibility
•Drawing activity
•Audio playback
• Event processing

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application
•Application type
• Visibility
•Drawing activity
•Audio playback
• Event processing
•Use of existing IOKit power
assertion API

Understanding what’s important
App Nap Heuristics

• Foreground vs. background
application
•Application type
• Visibility
•Drawing activity
•Audio playback
• Event processing
•Use of existing IOKit power
assertion API
•Use of new App Nap API

Demo
App Nap

How App Nap Works

What’s a Watt?

What’s a Watt?

• Power
■ Rate at which energy is consumed
■ Measured in watts (W)

What’s a Watt?

• Power
■ Rate at which energy is consumed
■ Measured in watts (W)

• Energy
■ Stored potential to do work
■ Measured in watt-hours (Wh)

What’s a Watt?

• 50 watt-hour battery
• 7 hour battery life

What’s a Watt?

• 50 watt-hour battery
• 7 hour battery life

50 watt-hours
7 hours

What’s a Watt?

• 50 watt-hour battery
• 7 hour battery life

50 watt-hours
7 hours

≈ 7.1 watts

What’s a Watt?

• 50 watt-hour battery
• 7 hour battery life

50 watt-hours
7 hours

≈ 7.1 watts

• Screen

•GPU

•Network

• Storage

•Memory

•CPU

What’s a Watt?

• 50 watt-hour battery
• 7 hour battery life

50 watt-hours
7 hours

≈ 7.1 watts

• Screen

•GPU

•Network

• Storage

•Memory

•CPU

• Screen

•GPU

•Network

• Storage

•Memory

•CPU

What can modern chips do?
CPU Power Usage

What can modern chips do?
CPU Power Usage

Idle

Nominal

Turbo

What can modern chips do?
CPU Power Usage

Idle

Nominal

Turbo

0.4 W

What can modern chips do?
CPU Power Usage

Idle

Nominal

Turbo

0.4 W

15 W

What can modern chips do?
CPU Power Usage

Idle

Nominal

Turbo

0.4 W

15 W

25 W

Three key rules
Extending Battery Life

• Stay idle as long as possible
•Avoid unnecessary work
• Return to idle as quickly as possible

Staying Idle: a Case Study
Visiting apple.com in Safari

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

CP
U

 A
ct

iv
ity

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

CP
U

 A
ct

iv
ity

Not idle, highest power

Idle, lowest power

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

Safari

CP
U

 A
ct

iv
ity

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

Safari

CP
U

 A
ct

iv
ity

Typing apple.com

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

Safari

CP
U

 A
ct

iv
ity Downloading Web Page

Typing apple.com

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

Safari

CP
U

 A
ct

iv
ity Downloading Web Page

Rendering FinishedTyping apple.com

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

Safari

Eyes Demo

CP
U

 A
ct

iv
ity

0%

25%

50%

75%

100%

Staying Idle: a Case Study
Visiting apple.com in Safari

Safari

Eyes Demo

CP
U

 A
ct

iv
ity

Polling More Polling Still Polling

When there is work to do
Exiting Idle

When there is work to do
Exiting Idle

•Network activity

When there is work to do
Exiting Idle

•Network activity
•Mouse or keyboard input

When there is work to do
Exiting Idle

•Network activity
•Mouse or keyboard input
•Disk I/O

When there is work to do
Exiting Idle

•Network activity
•Mouse or keyboard input
•Disk I/O
• Timers

When there is work to do
Exiting Idle

•Network activity
•Mouse or keyboard input
•Disk I/O
• Timers

Everything with a relative or absolute deadline
API with Timers

Everything with a relative or absolute deadline
API with Timers

NSTimer, CFRunLoopTimerRef, DISPATCH_SOURCE_TYPE_TIMER

Everything with a relative or absolute deadline
API with Timers

NSTimer, CFRunLoopTimerRef, DISPATCH_SOURCE_TYPE_TIMER

sleep()

Everything with a relative or absolute deadline
API with Timers

NSTimer, CFRunLoopTimerRef, DISPATCH_SOURCE_TYPE_TIMER

sleep()

pthread_cond_timedwait(), semaphore_timedwait()

Everything with a relative or absolute deadline
API with Timers

NSTimer, CFRunLoopTimerRef, DISPATCH_SOURCE_TYPE_TIMER

sleep()

pthread_cond_timedwait(), semaphore_timedwait()

-[performSelector:withObject:afterDelay:], -[NSRunLoop runUntilDate:]

Everything with a relative or absolute deadline
API with Timers

NSTimer, CFRunLoopTimerRef, DISPATCH_SOURCE_TYPE_TIMER

sleep()

pthread_cond_timedwait(), semaphore_timedwait()

-[performSelector:withObject:afterDelay:], -[NSRunLoop runUntilDate:]

… and many more

Reducing the impact of timers
Extending Battery Life

Reducing the impact of timers
Extending Battery Life

• Timer Coalescing
• Timer Rate Limiting

Timer Coalescing

Timer Coalescing

Now 150ms

High

Low

Idle

Po
w

er

Timer Coalescing

Now 150ms

High

Low

Idle

Po
w

er

T1 T2 T3 T4

Timer Coalescing

Now 150ms

High

Low

Idle

Po
w

er

T1 T2 T3 T4

Timer Coalescing

Now 150ms

High

Low

Idle

Po
w

er

T1 T2 T3 T4

Timer Coalescing

Now 150ms

High

Low

Idle

Po
w

er

T1 T2 T3 T4

Timer Coalescing

Now 150ms

High

Low

Idle

Po
w

er

T1 T2 T3 T4

Timer Coalescing

Now 150ms

High

Low

Idle

Po
w

er

Saved Energy T1 T2 T3 T4

After the timer fires
Second Order Effects

• CPU usage

After the timer fires
Second Order Effects

• CPU usage
• Screen

After the timer fires
Second Order Effects

• CPU usage
• Screen
•GPU usage

After the timer fires
Second Order Effects

• CPU usage
• Screen
•GPU usage
•Network

After the timer fires
Second Order Effects

• CPU usage
• Screen
•GPU usage
•Network
• Storage

After the timer fires
Second Order Effects

• CPU usage
• Screen
•GPU usage
•Network
• Storage
•Memory

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer Timer Timer Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer Timer Timer Timer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer TimerTimerTimer

Timer Rate Limiting

Now

High

Idle

Po
w

er

1 2 3 4 5 6 7 8 9 10 11 12 seconds

Timer TimerTimerTimer

Saved Energy Saved Energy Saved Energy

Coalescing and Rate Limiting

• Coalescing delay is on order of 100 ms
■ About the same as delay due to normal system load
■ Undetectable to user

Coalescing and Rate Limiting

• Coalescing delay is on order of 100 ms
■ About the same as delay due to normal system load
■ Undetectable to user

• Rate limiting delay is on order of seconds

Coalescing and Rate Limiting

• Coalescing delay is on order of 100 ms
■ About the same as delay due to normal system load
■ Undetectable to user

• Rate limiting delay is on order of seconds
• Timers do not fire early

Coalescing and Rate Limiting

• Coalescing delay is on order of 100 ms
■ About the same as delay due to normal system load
■ Undetectable to user

• Rate limiting delay is on order of seconds
• Timers do not fire early
• Exact delays depend on heuristics

Coalescing and Rate Limiting

• Coalescing delay is on order of 100 ms
■ About the same as delay due to normal system load
■ Undetectable to user

• Rate limiting delay is on order of seconds
• Timers do not fire early
• Exact delays depend on heuristics
• Configurable

Eyes demo
The Result

Eyes demo

0%

25%

50%

75%

100%

The Result
CP

U
 A

ct
iv

ity

Eyes demo

0%

25%

50%

75%

100%

The Result

No App Nap

CP
U

 A
ct

iv
ity

Eyes demo

0%

25%

50%

75%

100%

The Result

With App Nap

No App Nap

CP
U

 A
ct

iv
ity

Eyes demo

0%

25%

50%

75%

100%

The Result

With App Nap

No App Nap

CP
U

 A
ct

iv
ity

Work Work Work Work

Eyes demo

0%

25%

50%

75%

100%

The Result

With App Nap

No App Nap

CP
U

 A
ct

iv
ity

Work Work Work Work

1 Hour

2012 15” MacBook Pro with Retina Display, 2.6 GHz Intel Core i7, OS X 10.9 Developer Preview

Switch from timer API to event API
Improving the Result

Switch from timer API to event API
Improving the Result

• Instead of polling key presses or mouse locations
■ Use events

Switch from timer API to event API
Improving the Result

• Instead of polling key presses or mouse locations
■ Use events

• Instead of repeatedly checking file content
■ Use FSEvents, dispatch sources, or IPC

Switch from timer API to event API
Improving the Result

• Instead of polling key presses or mouse locations
■ Use events

• Instead of repeatedly checking file content
■ Use FSEvents, dispatch sources, or IPC

• Instead of timer-based synchronization
■ Use semaphores or other locks

Switch from timer API to event API
Improving the Result

• Instead of polling key presses or mouse locations
■ Use events

• Instead of repeatedly checking file content
■ Use FSEvents, dispatch sources, or IPC

• Instead of timer-based synchronization
■ Use semaphores or other locks

Energy Best Practices Marina
Thursday 10:15AM

Demo
Improving the Eyes application

Responsiveness

• Important work should have higher priority

Responsiveness

• Important work should have higher priority
•Apps in App Nap have lower priority

■ I/O
■ CPU

Responsiveness

• Important work should have higher priority
•Apps in App Nap have lower priority

■ I/O
■ CPU

• To improve responsiveness, improve performance

Responsiveness

• Important work should have higher priority
•Apps in App Nap have lower priority

■ I/O
■ CPU

• To improve responsiveness, improve performance

Building Efficient OS X Apps Nob Hill
Tuesday 4:30PM

App Nap API

App Nap API

• Find out when your app is visible
•Add tolerance to timers
• Tell system about user activities

Visibility

• Find out when a window or application is occluded
■ On another space
■ Another app is in front
■ Screen saver is on

Visibility

• Find out when a window or application is occluded
■ On another space
■ Another app is in front
■ Screen saver is on

•Halt expensive work when occluded

Visibility

• Find out when a window or application is occluded
■ On another space
■ Another app is in front
■ Screen saver is on

•Halt expensive work when occluded
• Refresh content when becoming visible

Window Occlusion

Visible

Window Occlusion

Visible

Window Occlusion

Visible

Window Occlusion

Visible

Window Occlusion

Occluded

Minimized Windows

Visible

Minimized Windows

Occluded

Application Occlusion

•Union of all application windows

Application Occlusion

•Union of all application windows
•Menu bar does not count

■ Except for a status item

Application Occlusion

•Union of all application windows
•Menu bar does not count

■ Except for a status item

Application Occlusion

•Union of all application windows
•Menu bar does not count

■ Except for a status item

Application Occlusion

@protocol NSApplicationDelegate
- (void)applicationDidChangeOcclusionState:(NSNotification *)notification;
@end

@interface NSApplication
- (NSApplicationOcclusionState)occlusionState;
@end

typedef NS_OPTIONS(NSUInteger, NSApplicationOcclusionState) {
 NSApplicationOcclusionStateVisible = 1UL << 1,
}

Window Occlusion

@protocol NSWindowDelegate
- (void)windowDidChangeOcclusionState:(NSNotification *)notification;
@end

@interface NSWindow
- (NSWindowOcclusionState)occlusionState;
@end

typedef NS_OPTIONS(NSUInteger, NSWindowOcclusionState) {
 NSWindowOcclusionStateVisible = 1UL << 1,
}

Occlusion Example

@implementation EYEAppDelegate

- (void)applicationDidChangeOcclusionState:(NSNotification *)n
{
 if ([NSApp occlusionState] & NSApplicationOcclusionStateVisible) {
 // Visible
 } else {
 // Occluded
 }
}

@end

Timer Tolerance

•Most timers do not need to be hyper-accurate
■ Default tolerance is applied to all timers

Timer Tolerance

•Most timers do not need to be hyper-accurate
■ Default tolerance is applied to all timers

•New API allows for increasing default tolerance

Timer Tolerance

•Most timers do not need to be hyper-accurate
■ Default tolerance is applied to all timers

•New API allows for increasing default tolerance
• System fires timer at best time in tolerance window

Timer Tolerance

Time 5 12 19 26

Timer Tolerance

Time 5 12 19 26

Start

Timer Tolerance

Time 5 12 19

7 7

26

7Interval

Start

Timer Tolerance

Time 5 12 19

7 7

26

7Interval

3Tolerance 3 3

Start

22

Timer Tolerance

Time 5 12 19

7 7

26

7Interval

3Tolerance 3 3

Start

8 15

22

Timer Tolerance

Time 5 12 19

7 7

26

7Interval

3Tolerance 3 3

Start

8 15

Timer Timer Timer

NSTimer Tolerance

@interface NSTimer
- (void)setTolerance:(NSTimeInterval)tolerance;
- (NSTimeInterval)tolerance;
@end

NSTimer Tolerance

// Create repeating timer
NSTimer *timer = [NSTimer timerWithTimeInterval:7.0
 target:self
 selector:@selector(timerFired:)
 userInfo:nil
 repeats:YES];

// Set fire date
[timer setFireDate:[NSDate dateWithTimeIntervalSinceNow:5.0]];

// Set tolerance
[timer setTolerance:3.0];

[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];

Dispatch Timer Tolerance

dispatch_source_t timer;
timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER,
 0,
 0,
 queue);

dispatch_source_set_event_handler(timer, ^{ /* Work goes here */ });

dispatch_source_set_timer(timer,
 dispatch_time(DISPATCH_TIME_NOW, 5 * NSEC_PER_SEC),
 7 * NSEC_PER_SEC,
 3 * NSEC_PER_SEC);

dispatch_resume(timer);

Dispatch Strict Timers

dispatch_source_t timer;
timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER,
 0,
 DISPATCH_TIMER_STRICT,
 queue);

dispatch_source_set_event_handler(timer, ^{ /* Work goes here */ });

dispatch_source_set_timer(timer,
 dispatch_time(DISPATCH_TIME_NOW, 5 * NSEC_PER_SEC),
 7 * NSEC_PER_SEC,
 700 * NSEC_PER_MSEC);

dispatch_resume(timer);

Timer Tolerance

• Suggested tolerance is at least 10% of interval
■ Exact value will be application specific

Timer Tolerance

• Suggested tolerance is at least 10% of interval
■ Exact value will be application specific

• Tolerance used regardless of App Nap

Timer Tolerance

• Suggested tolerance is at least 10% of interval
■ Exact value will be application specific

• Tolerance used regardless of App Nap
• Strict timers are rare

■ Disables timer rate limiting
■ You should still specify a tolerance

Timer Tolerance

• Suggested tolerance is at least 10% of interval
■ Exact value will be application specific

• Tolerance used regardless of App Nap
• Strict timers are rare

■ Disables timer rate limiting
■ You should still specify a tolerance

• Critical mass effect

User Activities

• Improves accuracy of App Nap heuristics

User Activities

• Improves accuracy of App Nap heuristics
•Use for long-running or asynchronous work

User Activities

• Improves accuracy of App Nap heuristics
•Use for long-running or asynchronous work
• Cocoa API to prevent idle system sleep

User Activities

• Improves accuracy of App Nap heuristics
•Use for long-running or asynchronous work
• Cocoa API to prevent idle system sleep
• Includes automatic and sudden termination

User Activities

@interface NSProcessInfo

@end

- (void)performActivityWithOptions:(NSActivityOptions)options
 reason:(NSString *)reason
 block:(void (^)())block;

User Activities

@interface NSProcessInfo

@end

- (void)performActivityWithOptions:(NSActivityOptions)options
 reason:(NSString *)reason
 block:(void (^)())block;

- (id)beginActivityWithOptions:(NSActivityOptions)options
 reason:(NSString *)reason;

- (void)endActivity:(id)activity;

NSActivityOptions
User Activities

• Exporting, recording, processing
NSActivityUserInitiated
NSActivityUserInitiatedAllowingIdleSystemSleep

NSActivityOptions
User Activities

• Exporting, recording, processing
NSActivityUserInitiated
NSActivityUserInitiatedAllowingIdleSystemSleep

•Maintenance
NSActivityBackground

NSActivityOptions
User Activities

• Exporting, recording, processing
NSActivityUserInitiated
NSActivityUserInitiatedAllowingIdleSystemSleep

•Maintenance
NSActivityBackground

• Latency sensitive
NSActivityUserInitiated | NSActivityLatencyCritical

NSActivityOptions
User Activities

• Idle system sleep
NSActivityIdleDisplaySleepDisabled
NSActivityIdleSystemSleepDisabled

NSActivityOptions
User Activities

• Idle system sleep
NSActivityIdleDisplaySleepDisabled
NSActivityIdleSystemSleepDisabled

• Sudden termination
NSActivitySuddenTerminationDisabled

NSActivityOptions
User Activities

• Idle system sleep
NSActivityIdleDisplaySleepDisabled
NSActivityIdleSystemSleepDisabled

• Sudden termination
NSActivitySuddenTerminationDisabled

•Automatic termination
NSActivityAutomaticTerminationDisabled

User Activities

NSOperationQueue *queue = ...;

id token = [[NSProcessInfo processInfo]
 beginActivityWithOptions:NSActivityUserInitiated
 reason:@"Batch processing files"];

[queue addOperationWithBlock:^{
 // Do work here

 [[NSProcessInfo processInfo] endActivity:token];
}];

Choosing the Right Activity

•Applications can have multiple concurrent activities
■ NSActivityBackground for maintenance work
■ NSActivityUserInitiated when user takes action

Choosing the Right Activity

•Applications can have multiple concurrent activities
■ NSActivityBackground for maintenance work
■ NSActivityUserInitiated when user takes action

•Avoid rapidly starting and ending activities

Choosing the Right Activity

•Applications can have multiple concurrent activities
■ NSActivityBackground for maintenance work
■ NSActivityUserInitiated when user takes action

•Avoid rapidly starting and ending activities
• Idle system sleep assertions should be used with care

■ Don’t prevent idle sleep forever
■ Verify power assertions are dropped

Verify power assertions
Choosing the Right Activity

Verify power assertions
Choosing the Right Activity

$ pmset -g assertions

Verify power assertions
Choosing the Right Activity

$ pmset -g assertions
Assertion status system-wide:
 BackgroundTask 0
 PreventUserIdleDisplaySleep 0
 PreventSystemSleep 0
 PreventDiskIdle 0
 PreventUserIdleSystemSleep 1
 ExternalMedia 0
 UserIsActive 0
 ApplePushServiceTask 0
Listed by owning process:
 pid 1963(Eyes): [0x0000000100000196] 00:03:36 PreventUserIdleSystemSleep
named: "Keeping the computer awake"

Demo
Adopting App Nap API

Summary

Summary

• Software has a huge impact on energy efficiency

Summary

• Software has a huge impact on energy efficiency
• To extend battery life

■ Stay idle as long as possible
■ Avoid unnecessary work
■ Race back to idle

Summary

• Software has a huge impact on energy efficiency
• To extend battery life

■ Stay idle as long as possible
■ Avoid unnecessary work
■ Race back to idle

•Avoiding timers allows a longer idle time
■ Instead, use event based API
■ If you must use timers, add tolerance

Summary

• Software has a huge impact on energy efficiency
• To extend battery life

■ Stay idle as long as possible
■ Avoid unnecessary work
■ Race back to idle

•Avoiding timers allows a longer idle time
■ Instead, use event based API
■ If you must use timers, add tolerance

•Use activity API to inform system of important user work

Energy Best Practices Marina
Thursday 10:15AM

Building Efficient OS X Apps Nob Hill
Tuesday 4:30PM

Related Sessions

Maximizing Battery Life on OS X Mission
Tuesday 11:30AM

Power and Performance: Optimizing Your Website for Great Battery
Life and Responsive Scrolling

Russian Hill
Wednesday 9:00AM

Labs

Cocoa Lab Frameworks Lab A
Thursday 9:00AM

Cocoa Lab Frameworks Lab A
Wednesday 11:30AM

Cocoa Lab Frameworks Lab A
Friday 9:00AM

More Information

Jake Behrens
App Frameworks Evangelist
behrens@apple.com

Apple Developer Forums
http://devforums.apple.com

mailto:behrens@apple.com
mailto:behrens@apple.com
http://devforums.apple.com
http://devforums.apple.com

