
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 211

Core Data Performance

Tim Isted
Software Engineer

Optimization and Debugging

Introduction

•Optimization is a balance
■ Minimize memory usage
■ Maximize speed

Introduction

•Optimization is a balance
■ Minimize memory usage
■ Maximize speed

Memory

Speed

Introduction

•Optimization is a balance
■ Minimize memory usage
■ Maximize speed

Memory

Speed

Introduction

•Optimization is a balance
■ Minimize memory usage
■ Maximize speed

Memory

Speed

OS XiOS

Performance Pitfalls

• Loading too much
• Firing many faults
• Frequent cache misses
• Expensive queries
• Incurring too many locks

What You Will Learn

• Tools
■ Instruments
■ Debug logging

•Optimizing models, fetches, and predicates
• Choices for concurrency
•Optimizing text searching

Measuring Performance

Measuring Performance

• Instruments
■ What are you looking for?
■ How long should it take?

• Interpreting the results
■ Cache misses?
■ Fetches?
■ Faults firing?
■ Saves?
■ Memory usage?

Measuring Performance

• Instruments
■ What are you looking for?
■ How long should it take?

• Interpreting the results
■ Cache misses?
■ Fetches?
■ Faults firing?
■ Saves?
■ Memory usage?

Core Data

Measuring Performance

• Instruments
■ What are you looking for?
■ How long should it take?

• Interpreting the results
■ Cache misses?
■ Fetches?
■ Faults firing?
■ Saves?
■ Memory usage?

Core Data Time Profiler

Allocations File Activity

Optimizing Fetch Requests

Don’t Fetch More than You Need

•Only 10 or so rows are visible
•Don’t fetch every possible object
•Use a Fetch Batch Size of 20

Don’t Fetch More Than You Need

• Set a Fetch Batch Size
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.fetchBatchSize = 20;

Don’t Fetch More Than You Need

• Set a Fetch Batch Size
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.fetchBatchSize = 20;

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Don’t Fetch More Than You Need

• Set a Fetch Batch Size
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.fetchBatchSize = 20;

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Don’t Fetch More Than You Need

• Set a Fetch Batch Size
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.fetchBatchSize = 20;

16 17 18 19

Don’t Fetch More Than You Need

• Set a Fetch Batch Size
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.fetchBatchSize = 20;

16 17 18 19

Don’t Fetch More Than You Need

• Set a Fetch Batch Size
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.fetchBatchSize = 20;

16 17 18 19

Don’t Fetch More Than You Need

• Set a Fetch Batch Size
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.fetchBatchSize = 20;

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Optimizing the Data Model

Design the model for your app’s usage
Optimizing the Data Model

•Don’t overnormalize
•Duplication isn’t necessarily a bad thing

Data and External Files

•Use external storage

Data and External Files

•Use external storage

Contact

Attributes
firstName
lastName
photo

Relationships

Data and External Files

•Use external storage

Attributes
photoData

Relationships
contact

PhotoContact

Attributes
firstName
lastName

Relationships
photo

• Put binary data in a separate entity

Prefetch relationships if you know you need them
Fetching Related Objects

• Set relationship key paths for prefetching:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

[request setRelationshipKeyPathsForPrefetching:@[@"photo"]];

Don’t store more than you need
Optimizing the Model

•Don’t store a 10MB image just to show a tiny thumbnail
• Cache the thumbnail separately
• Less data takes less time to fetch

Don’t store more than you need
Optimizing the Model

•Don’t store a 10MB image just to show a tiny thumbnail
• Cache the thumbnail separately
• Less data takes less time to fetch

Attributes
photoData

Relationships
contact

PhotoContact

Attributes
firstName
lastName
thumbnail

Relationships
photo

Performing Background Tasks

Implementing Update or Insert

Implementing Update or Insert

• Sort your input objects by ID
• Execute one, sorted fetch request for matching IDs
• Iterate through both input and existing objects collections

■ If IDs match, it’s an update
■ If not, it’s an insert

Implementing Update or Insert

Implementing Update or Insert

Info to Update

101

103

104

Existing Objects

101

104

Implementing Update or Insert

Info to Update

101

103

104

Existing Objects

104

101

Implementing Update or Insert

Info to Update

103

104

101

Existing Objects

104

101

Implementing Update or Insert

Info to Update

103

104

101

Existing Objects

104

101

Implementing Update or Insert

Info to Update

103

104

101
Update

Existing Objects

104

101

Implementing Update or Insert

Info to Update

103

104

101

Existing Objects

104

101

Implementing Update or Insert

Info to Update

103

104

101
Insert

Existing Objects

104

101

Implementing Update or Insert

Info to Update

103

104

101
Insert

Existing Objects

103

101

Implementing Update or Insert

Info to Update

103

104

101

104

Existing Objects

103

101

Implementing Update or Insert

Info to Update

103

104

101

104

Existing Objects

103

101

Implementing Update or Insert

Info to Update

103

104

101

104Update

Implementing Update or Insert

•Work in batches
• Experiment to find optimal batch size
• Test on all devices you support

Minimizing Memory Usage

Refaulting and Resetting

• Turn a single managed object back into a fault:
[context refreshObject:object mergeChanges:YES];

Refaulting and Resetting

• Turn a single managed object back into a fault:
[context refreshObject:object mergeChanges:NO];

• Reset an entire context, clearing all its managed objects:
[context reset];

Refaulting and Resetting

• Turn a single managed object back into a fault:
[context refreshObject:object mergeChanges:NO];

• Reset an entire context, clearing all its managed objects:
[context reset];

Any existing references to managed
objects will be invalid

Fetch Only What You Need

Consider returning dictionaries instead of managed objects
Fetch Dictionaries

• Configure the fetch request to return dictionaries:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Quake"];
[request setResultType:NSDictionaryResultType];

Fetch Dictionaries

• Configure the fetch request to return dictionaries:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Quake"];
[request setResultType:NSDictionaryResultType];

• Just fetch the values you need:
[request setPropertiesToFetch:@[@"magnitude"]];

Consider returning dictionaries instead of managed objects

Use SQLite to perform your calculations
Use Aggregate Operations

• Configure the fetch request to return dictionaries:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Quake"];
[request setResultType:NSDictionaryResultType];

•Use an expression description:
NSExpressionDescription *ed = [[NSExpressionDescription alloc] init];
ed.name = @"minimum";
ed.expression = [NSExpression expressionForFunction:@"min:"
 arguments:@[[NSExpression expressionForKeyPath:@"magnitude"]]];

Use SQLite to perform your calculations
Use Aggregate Operations

• Configure the fetch request to return dictionaries:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Quake"];
[request setResultType:NSDictionaryResultType];

•Use an expression description:
NSExpressionDescription *ed = [[NSExpressionDescription alloc] init];
ed.name = @"minimum";
ed.expression = [NSExpression expressionForFunction:@"min:"
 arguments:@[[NSExpression expressionForKeyPath:@"magnitude"]]];

• Set the properties to fetch:
[request setPropertiesToFetch:@[ed]];

Use SQLite to group your results automatically
Group Results

NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Quake"];

[request setResultType:NSDictionaryResultType];

•Use an expression description:
NSExpressionDescription *ed = [[NSExpressionDescription alloc] init];
ed.name = @"count";
ed.expression = [NSExpression expressionForFunction:@"count:"
 arguments:@[[NSExpression expressionForKeyPath:@"magnitude"]]];

• Set the properties to fetch and group by:
[request setPropertiesToFetch:@[@"magnitude", ed]];
[request setPropertiesToGroupBy:@[@"magnitude"]];

Use SQLite to group your results automatically
Group Results

See What’s Going On

See what Core Data is doing behind the scenes
Using SQL Logging

• Pass argument on launch:
■ -com.apple.CoreData.SQLDebug 1

•Use value of 1, 2, or 3
• See raw SQL queries
•Get exact timings
•Note: SQLite schema is private and subject to change

Concurrency Models

Concurrency with Core Data

Main Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Concurrency with Core Data

Main Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Concurrency with Core Data

Main Queue
Context

Private Queue
Context

Private Queue
Context

Main Queue
Context

Persistent Store
Coordinator

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Save

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Save

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Save

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Save

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Fetch

Concurrency with Core Data

Private Queue
Context

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Main Queue
Context

Fetch

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Context Did Save
Notification!

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Context Did Save
Notification!

-mergeChangesFromContextDidSaveNotification:

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Context Did Save
Notification!

-mergeChangesFromContextDidSaveNotification:

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Context Did Save
Notification!

Concurrency with Core Data

Private Queue
Context

Persistent Store
Coordinator

Main Queue
Context

Persistent Store
Coordinator

Persistent
Store File

Context Did Save
Notification!

Refetch and Reload Data

SQLite Write-Ahead Logging

• Supports multiple concurrent reads and one concurrent write
• Enabled by default on iOS 7 and OS X 10.9

SQLite Write-Ahead Logging

• Supports multiple concurrent reads and one concurrent write
• Enabled by default on iOS 7 and OS X 10.9
•Available in iOS 4+ and OS X 10.7+

■ Set options dictionary when adding a persistent store:
■ @{ NSSQLitePragmasOption: @"journal_mode = WAL" }

Efficient Text Queries

Optimizing Predicates

Optimizing Predicates

• Set a Predicate:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.predicate = [NSPredicate
 predicateWithFormat:@"firstName == %@ AND age > %i", @"John", 40];

Optimizing Predicates

• Set a Predicate:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.predicate = [NSPredicate
 predicateWithFormat:@"firstName == %@ AND age > %i", @"John", 40];

Optimizing Predicates

• Set a Predicate:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.predicate = [NSPredicate
 predicateWithFormat:@"firstName == %@ AND age > %i", @"John", 40];

Text comparison
is expensive

Optimizing Predicates

• Set a Predicate:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.predicate = [NSPredicate
 predicateWithFormat:@"firstName == %@ AND age > %i", @"John", 40];

Text comparison
is expensive

Numeric comparison
is cheap

Optimizing Predicates

• Set a Predicate:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.predicate = [NSPredicate
 predicateWithFormat:@"age > %i && firstName == %@", 40, @"John"];

Optimizing Predicates

• Set a Predicate:
NSFetchRequest *request =
 [NSFetchRequest fetchRequestWithEntityName:@"Contact"];

request.predicate = [NSPredicate
 predicateWithFormat:@"age > %i && firstName == %@", 40, @"John"];

Put numeric
comparison first

Predicate Costs

• In increasing cost:
• [cd] increases cost even more

Predicate Costs

• In increasing cost:
• [cd] increases cost even more

Beginswith
Endswith

Equality (==)

Contains

Matches

$

$$

$$$

Predicate Costs

• In increasing cost:
• [cd] increases cost even more

Beginswith
Endswith

Equality (==)

Contains

Matches

$

$$

$$$

Use Canonicalized Searches

•Maintain a canonicalized text property
■ Set in custom accessor, whenever actual text is set

•Use a [n] query, and pass in the canonicalized query term

JournalEntry

Attributes
date
text

Relationships
tokens

Tokens

Attributes
token

Relationships
journalEntries

Canonicalized Tokens

•Maintain separate entity for tokens
• Extract tokens from a string
-componentsSeparatedByCharactersInSet:

■Consider whitespace, symbols, punctuation

Persistent
Store File

Persistent
Store File

Use a Completely Separate Stack

Primary
Context

Search Token
Context

Persistent Store
Coordinator

Persistent Store
Coordinator

Use a Completely Separate Stack

• Run a separate Core Data stack just for the tokens
•Use URI representation to refer to your destination objects

JournalEntry

Attributes
uri

Relationships
tokens

Tokens

Attributes
token

Relationships
journalEntries

Debugging Core Data with iCloud

New Debug Gauges in Xcode

What’s New in Core Data Pacific Heights
Wednesday 9:00AM

See what Core Data and iCloud are doing behind the scenes
Using Ubiquity Logging

• Pass argument on launch:
-com.apple.CoreData.Ubiquity.LogLevel 3

•Use value of 1, 2, or 3

What’s New in Core Data Pacific Heights
Wednesday 9:00AM

Recap

Don’t Work Too Hard

•Measure everything first
• Leverage SQLite as much as possible
•Measure again
• Balance memory vs speed
•Optimize predicates, fetches, saves
•Measure again

Labs

Core Data Lab Services Lab B
Wednesday 3:15-6:00PM

Core Data Lab Frameworks Lab A
Thursday 2:00-4:15PM

Core Data Lab Services Lab A
Friday 9:00-11:15AM

Instruments and Performance Lab Tools Lab B
Thursday 2:00-4:15PM

More Information

Dave DeLong
Frameworks Evangelist
delong@apple.com

Documentation
Developer Library
http://developer.apple.com/

Apple Developer Forums
http://devforums.apple.com

mailto:delong@apple.com
mailto:delong@apple.com

