
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

On Mac OS X

Session 215

Optimizing Drawing and Scrolling

Corbin Dunn
AppKit Software Engineer

Raleigh Ledet
AppKit Software Engineer

Optimizing AppKit Drawing

Layer-Backed View Drawing
with Core Animation

Responsive Scrolling

Magnification

Best practices
Optimizing AppKit Drawing

Optimize -drawRect:
Optimizing AppKit Drawing

• You are probably already doing this

- (void)drawRect:(NSRect)dirtyRect {

 [NSColor.redColor set];
 NSRectFill(dirtyRect);

}

Optimize -drawRect:
Optimizing AppKit Drawing

•And dirtying just the appropriate areas
 [myView setNeedsDisplayInRect:smallDirtyRect];

•And not
 [myView setNeedsDisplay:YES];

Optimize -drawRect:
Optimizing AppKit Drawing

NSView

Optimize -drawRect:
Optimizing AppKit Drawing

NSView

setNeedsDisplayInRect:

Optimize -drawRect:
Optimizing AppKit Drawing

NSView

setNeedsDisplayInRect:
setNeedsDisplayInRect:

Optimize -drawRect:
Optimizing AppKit Drawing

NSView Dirty Rect

Optimize -drawRect:
Optimizing AppKit Drawing

•Utilize -[NSView getRectsBeingDrawn:count:]
- (void)drawRect:(NSRect)dirtyRect {

 const NSRect *rectsBeingDrawn = NULL;
 NSInteger rectsBeingDrawnCount = 0;
 [self getRectsBeingDrawn:&rectsBeingDrawn count:&rectsBeingDrawnCount];
 [NSColor.redColor set]; // Set invariants outside of a loop
 for (NSInteger i = 0; i < rectsBeingDrawnCount; i++) {
 NSRectFill(rectsBeingDrawn[i]);
 }

}

Optimize -drawRect:
Optimizing AppKit Drawing

•Or use -needsToDrawRect:

- (void)drawRect:(NSRect)dirtyRect {

 NSRect redRect = NSMakeRect(...);
 if ([self needsToDrawRect:redRect]) {

 [NSColor.redColor set];
 NSRectFill(redRect);
 }

}

Performant operations
Optimizing AppKit Drawing

•Only do drawing in -drawRect:
■ No network calls
■ No image allocation or loading
■ No file access
■ No layout (adding/removing subviews)

Performant operations
Optimizing AppKit Drawing

•Only do drawing in -drawRect:
■ No network calls
■ No image allocation or loading
■ No file access
■ No layout (adding/removing subviews)

•Hiding views may be faster than adding/removing them
■ Utilize setHidden: when necessary
■ Exceptions: Layer-backed views

Cache images loaded with -imageNamed:
Optimizing AppKit Drawing

- (void)drawRect:(NSRect)dirtyRect {

 if (_myImage == nil) {
 _myImage = [[NSImage imageNamed:@"MyImage"] retain];
 }

 [_myImage drawInRect:self.imageRect];

}

Avoid image allocation when drawing
Optimizing AppKit Drawing

•Use NSOperationQueue to asynchronously load images

 [MyOperationQueue addOperationWithBlock:^(void) {
 NSImage *image = [[NSImage alloc] initWithContentsOfURL:url];
 // Access the CGImage to pre-warm it and fault it in
 [image CGImageForProposedRect:... context: hints:];

 // Do the update and redisplay on the main thread
 [[NSOperationQueue mainQueue] addOperationWithBlock:^(void) {
 myView.image = image;
 [myView setNeedsDisplayInRect:myView.imageRect];
 }];

 }];

Avoid image allocation when drawing
Optimizing AppKit Drawing

•Use NSOperationQueue to asynchronously load images

 [MyOperationQueue addOperationWithBlock:^(void) {
 NSImage *image = [[NSImage alloc] initWithContentsOfURL:url];
 // Access the CGImage to pre-warm it and fault it in
 [image CGImageForProposedRect:... context: hints:];

 // Do the update and redisplay on the main thread
 [[NSOperationQueue mainQueue] addOperationWithBlock:^(void) {
 myView.image = image;
 [myView setNeedsDisplayInRect:myView.imageRect];
 }];

 }];

Expensive work done on background thread

Avoid image allocation when drawing
Optimizing AppKit Drawing

•Use NSOperationQueue to asynchronously load images

 [MyOperationQueue addOperationWithBlock:^(void) {
 NSImage *image = [[NSImage alloc] initWithContentsOfURL:url];
 // Access the CGImage to pre-warm it and fault it in
 [image CGImageForProposedRect:... context: hints:];

 // Do the update and redisplay on the main thread
 [[NSOperationQueue mainQueue] addOperationWithBlock:^(void) {
 myView.image = image;
 [myView setNeedsDisplayInRect:myView.imageRect];
 }];

 }];

Dispatch UI work done to the main thread

Don’t do layout or invalidation in drawing
Optimizing AppKit Drawing

- (void)viewWillDraw {
 [self addSubview:newSubview];
 [self setNeedsDisplayInRect:coolRect];
}

- (void)drawRect:(NSRect)dirtyRect {
 [self addSubview:newSubview];
 [self setNeedsDisplayInRect:coolRect];
 [NSColor.redColor set];
 NSRectFill(coolRect);
}

Faster compositing
Optimizing AppKit Drawing

• Say YES to isOpaque when possible
■ Assuming the view is really opaque!

- (BOOL)isOpaque {
 return YES;
}

Override -wantsDefaultClipping
Optimizing AppKit Drawing

• -wantsDefaultClipping defaults to returning YES
• Return NO if you don’t need clipping

■ Must constrain drawing to the -getRectsBeingDrawn:count:

 - (BOOL)wantsDefaultClipping {
 return NO;
 }

Methods AppKit frequently calls
Avoid Overriding Certain Methods

•All of the “gState” methods
- (NSInteger)gState;
- (void)allocateGState;
- (oneway void)releaseGState;
- (void)setUpGState;
- (void)renewGState;

• Sometimes used to know when some state changes
■ Such as the view global position in the window

• Prefer to use:
■ NSViewFrameDidChangeNotification
■ NSViewBoundsDidChangeNotification

Best practices with Core Animation
Layer-Backed View Drawing

Utilize Lion and Mountain Lion API
Effectively Using Layer-Backed NSViews

• See “WWDC 2012 Layer-Backed Views”
• layerContentsRedrawPolicy
• updateLayer / wantsUpdateLayer

Redrawing Layer-Backed Views

• This property tells when AppKit should mark the layer
as needing display
■ NSViewLayerContentsRedrawDuringViewResize
■ NSViewLayerContentsRedrawOnSetNeedsDisplay
■ NSViewLayerContentsRedrawBeforeViewResize
■ NSViewLayerContentsRedrawNever

Lion introduced -[NSView layerContentsRedrawPolicy]

NSViewLayerContentsRedrawOnSetNeedsDisplay
Redrawing Layer-Backed Views

•Doing: [view setNeedsDisplay:YES]
■ Means “invalidate the layer and lazily redraw”

•AppKit does not call setNeedsDisplay: when the frame changes!
•NOT the default value

■ Therefore, you MUST set it!

Since adding -wantsUpdateLayer

CGContextRef backing store made

-drawLayer:inContext:

-[NSView drawRect:]

layer.contents

then calls AppKit’s

AppKit then calls

AppKit Layer Drawing/Updating

CALayer needs to draw

CA calls AppKit’s -displayLayer:

-[NSView updateLayer]

layer.contents

Yes

AppKit then calls

No

-[NSView wantsUpdateLayer]?

Since adding -wantsUpdateLayer

CGContextRef backing store made

-drawLayer:inContext:

-[NSView drawRect:]

layer.contents

then calls AppKit’s

AppKit then calls

CALayer needs to draw

CA calls AppKit’s -displayLayer:

-[NSView updateLayer]

layer.contents

Yes

AppKit then calls

No

-[NSView wantsUpdateLayer]?

AppKit Layer Drawing/Updating

Since adding -wantsUpdateLayer

CGContextRef backing store made

-drawLayer:inContext:

-[NSView drawRect:]

layer.contents

then calls AppKit’s

AppKit then calls

CALayer needs to draw

CA calls AppKit’s -displayLayer:

-[NSView updateLayer]

layer.contents

Yes

AppKit then calls

No

-[NSView wantsUpdateLayer]?

AppKit Layer Drawing/Updating

Use -wantsUpdateLayer and -updateLayer
Improving Layer-Backed Memory Use

- (BOOL)wantsUpdateLayer {
 return YES;
}
- (void)updateLayer {
 self.layer.backgroundColor = NSColor.whiteColor.CGColor;
 self.layer.borderColor = NSColor.redColor.CGColor;
}

Avoid Expensive Core Animation Properties

•Avoid these properties if possible
@property CGFloat cornerRadius;
@property(retain) CALayer *mask;
@property(copy) NSArray *filters;
@property(copy) NSArray *backgroundFilters;

Utilize Opaque Views When Possible

• Return YES from [NSView isOpaque]
layer.opaque = YES; // Implicitly set for you

You can still use -drawRect:
Large Layer Drawing in AppKit

You can still use -drawRect:
Large Layer Drawing in AppKit

NSClipView

You can still use -drawRect:
Large Layer Drawing in AppKit

NSScrollViewNSClipView

You can still use -drawRect:
Large Layer Drawing in AppKit

Special AppKit “Tile Layer”

You can still use -drawRect:
Large Layer Drawing in AppKit

You can still use -drawRect:
Large Layer Drawing in AppKit

Only tiles in the visible region are drawn.*

You can still use -drawRect:
Large Layer Drawing in AppKit

You can still use -drawRect:
Large Layer Drawing in AppKit

drawRect: drawRect: drawRect: drawRect:

drawRect: drawRect: drawRect: drawRect:

drawRect: drawRect: drawRect: drawRect:

drawRect: drawRect: drawRect: drawRect:

Tiles are intelligent sizes
Large Layer Drawing in AppKit

NSScrollView

Typical layer-backed views
Reduce Your Layer Count

• Layer-backing a parent view implicitly creates layers for children views

NSView

NSView
setWantsLayer:YES

NSView

NSView

Electric Bug

Hello World!

Typical layer-backed views
Reduce Your Layer Count

• Layer-backing a parent view implicitly creates layers for children views

Electric Bug

Hello World!

CALayer

CALayer

CALayer

CALayer

Issues with having lots of layers
Reduce Your Layer Count

• Potentially a high memory cost
■ Each subview may have its own backing store (image)
■ Overlapping subviews can waste memory

• Potentially high composition cost
•Hidden layers still have a composition cost

■ Removing them may be better than hiding
■ One or two is okay, but hiding hundreds is not good

New API: canDrawSubviewsIntoLayer
Reduce Your Layer Count

@interface NSView ...

- (void)setCanDrawSubviewsIntoLayer:(BOOL)flag NS_AVAILABLE_MAC(10_9);
- (BOOL)canDrawSubviewsIntoLayer NS_AVAILABLE_MAC(10_9);

@end

New API: canDrawSubviewsIntoLayer
Reduce Your Layer Count

•All children NSViews are drawn into a single CALayer

Electric Bug

Hello World!

setWantsLayer:YES
setCanDrawSubviewsIntoLayer:YES

One CALayer

New API: canDrawSubviewsIntoLayer
Reduce Your Layer Count

• -drawRect: is utilized for every view!

Each view drawn with -drawRect:

-updateLayer is not used

Electric Bug

Hello World!

setWantsLayer:YES
setCanDrawSubviewsIntoLayer:YES

New API: canDrawSubviewsIntoLayer
Reduce Your Layer Count

• Individual subviews can opt-in to having their own layer

CALayer

[button setWantsLayer:YES]
Electric Bug

Hello World!

setWantsLayer:YES
setCanDrawSubviewsIntoLayer:YES

Useful in NSTableView
Reduce Your Layer Count

• Reduces all row subviews into a single layer
• Row animations will be done with Core Animation

setWantsLayer:YES on the
NSScrollView

Useful in NSTableView
Reduce Your Layer Count

• Reduces all row subviews into a single layer
• Row animations will be done with Core Animation

setCanDrawSubviewsIntoLayer:YES
on each NSTableRowView

setWantsLayer:YES on the
NSScrollView

Useful in NSTableView
Reduce Your Layer Count

• Reduces all row subviews into a single layer
• Row animations will be done with Core Animation

setCanDrawSubviewsIntoLayer:YES
on each NSTableRowView

setWantsLayer:YES on the
NSScrollView

For text to have font smoothing,
the text must be drawn

into an opaque area

Responsive Scrolling

Raleigh Ledet

Demo

Goals
Responsive Scrolling

• Fluid
• Smooth
•Non-stuttering

Overview
Responsive Scrolling

Overview
Responsive Scrolling

Visible rect

Overview
Responsive Scrolling

Overdraw

Overdraw

Visible rect

Overview
Responsive Scrolling

Overdraw

Overdraw

Visible rect

Overview
Responsive Scrolling

•Overdraw
• Event Model
•API
•Adoption

Responsive scrolling
Overdraw

Overdraw

•Main thread driven
• -drawRect: called with non-visible rects

Idle prefetch
Overdraw

Visible rect

Idle prefetch
Overdraw

drawRect:

Visible rect

Idle prefetch
Overdraw

Visible rect

Overdraw

Idle prefetch
Overdraw

drawRect:

Visible rect

Overdraw

Overdraw

Idle prefetch
Overdraw

Visible rect

Overdraw

Overdraw

Idle prefetch
Overdraw

Visible rect

Overdraw

Overdraw

•Main thread driven
• -drawRect: called with non-visible rects
•AppKit balances overdraw amount with memory and power usage

Overdraw

•Main thread driven
• -drawRect: called with non-visible rects
•AppKit balances overdraw amount with memory and power usage
•API if you need more control
@property NSRect preparedContentRect;
- (void)prepareContentInRect:(NSRect)rect;

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:rect];

}

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:rect];

}

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:rect];

}

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:rect];

}

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:rect];

}

subView

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:rect];

}

subView

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:rect];

}

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:previousRect];

}

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:previousRect];

}

API - Controlling overdraw
Overdraw

- (void)prepareContentInRect:(NSRect)rect {
// prepare as needed
[super prepareContentInRect:previousRect];

}

API - Invalidating non-visible content
Overdraw

[documentView setNeedsDisplayInRect:rect];

API - Invalidating non-visible content
Overdraw

[documentView setNeedsDisplayInRect:rect];

API - Resetting overdraw
Overdraw

docView.preparedContentRect = [docView visibleRect];

API - Resetting overdraw
Overdraw

docView.preparedContentRect = [docView visibleRect];

Overdraw

•Main thread driven
• -drawRect: called with non-visible rects
•AppKit balances overdraw amount with memory and power usage
•API if you need more control
@property NSRect preparedContentRect;
- (void)prepareContentInRect:(NSRect)rect;

Responsive scrolling
Event Model

NSScrollView
scrollWheel:

Traditional
Event Model

Event
Queue hitTest: Responder Chain

scrollWheel:

Each scroll wheel event is independent

Main thread run loop

Responsive
Event Model

Scroll wheel events tracked concurrently

NSScrollView
scrollWheel:

Concurrent Tracking Thread

Event
Queue hitTest: Responder Chain

scrollWheel:

Event
Queue

Main thread run loop

Responsive
Event Model

Scroll wheel events tracked concurrently

Event
Queue

Main thread run loop
NSScrollView
scrollWheel:

Concurrent Tracking Thread

Event
Queue

Responsive
Event Model

NSScrollView
scrollWheel:

Concurrent Tracking Thread

Main thread run loop

Event
Queue

Responsive
Event Model

NSScrollView
scrollWheel:

Concurrent Tracking Thread

Main thread run loop

Event
Queue

Main thread run loop

S

Responsive
Event Model

NSScrollView
scrollWheel:

Concurrent Tracking Thread

Event
Queue

Main thread run loop

S

Responsive
Event Model

NSScrollView
scrollWheel:

Concurrent Tracking Thread

Event
Queue

Main thread run loop

S

Responsive
Event Model

NSScrollView
scrollWheel:

Concurrent Tracking Thread

Event
Queue

Main thread run loop

S

Responsive
Event Model

NSScrollView
scrollWheel:

Concurrent Tracking Thread

Event
Queue

Overview
Responsive Scrolling

• Concurrent event tracking
•What is on screen may not match visibleRect
•Not a silver bullet

Responsive scrolling
API

Getting informed when scrolling occurs
API

•Observe clip view bounds change notifications
NSClipView *clipView = [scrollView contentView];
[clipView setPostsBoundsChangedNotifications:YES];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(boundsChanged:)
 name:NSViewBoundsDidChangeNotification
 object: clipView];

Getting informed when scrolling occurs
API

•Observe clip view bounds change notifications
NSClipView *clipView = [scrollView contentView];
[clipView setPostsBoundsChangedNotifications:YES];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(boundsChanged:)
 name:NSViewBoundsDidChangeNotification
 object: clipView];

Getting informed of user scrolling
API

• Live scroll notifications

NSScrollViewWillStartLiveScroll

NSScrollViewDidLiveScroll

NSScrollViewDidEndLiveScroll

Getting informed of user scrolling
API

• Live scroll notifications

NSScrollViewWillStartLiveScroll

NSScrollViewDidLiveScroll

NSScrollViewDidEndLiveScroll

Getting informed of user scrolling
API

• Live scroll notifications

NSScrollViewWillStartLiveScroll

NSScrollViewDidLiveScroll

NSScrollViewDidEndLiveScroll

Getting informed of user scrolling
API

• Live scroll notifications

NSScrollViewWillStartLiveScroll

NSScrollViewDidLiveScroll

NSScrollViewDidEndLiveScroll

Getting informed of user scrolling
API

• Live scroll notifications

NSScrollViewWillStartLiveScroll

NSScrollViewDidLiveScroll

NSScrollViewDidEndLiveScroll

Floating content
NSScrollView API

• Floating subviews

- (void)addFloatingSubview:(NSView *)view forAxis:(NSEventGestureAxis)axis;

Floating content
NSScrollView API

• Floating subviews

- (void)addFloatingSubview:(NSView *)view forAxis:(NSEventGestureAxis)axis;

Responsive scrolling
Adoption

Responsive scrolling
Adoption

• Linked on 10.8 or later
•Window alpha must be 1.0
•Document must not have an OpenGL context

Responsive scrolling
Adoption

•Automatic

Responsive scrolling
Adoption

•Automatic
NSScrollView NSClipView Document View

Responsive scrolling
Adoption

•Automatic

• Explicit API
+ (BOOL)isCompatibleWithResponsiveScrolling;

NSScrollView NSClipView Document View

Responsive scrolling
Adoption

•Do not override
 -scrollWheel:
 -lockFocus:

Responsive scrolling
Adoption

• Traditional drawing
■ copiesOnScroll must be YES
■ isOpaque must return YES for document view

- Or -
• Layer-back the scroll view

Responsive scrolling
Adoption: Layer-Backing

•NSScrollView or ancestor
- (void)setWantsLayer:(BOOL)flag;
- (BOOL)wantsLayer;

Responsive scrolling
Adoption: Layer-Backing

•NSScrollView or ancestor
- (void)setWantsLayer:(BOOL)flag;
- (BOOL)wantsLayer;

Responsive scrolling
Adoption: Layer-Backing

• Collapsing layers of document view or children
- (void)setCanDrawSubviewsIntoLayer:(BOOL)flag;

Xcode Support

Xcode Support

Traditional scrolling
Xcode Support

Responsive scrolling
Xcode Support

Summary
Adoption

•Automatic when possible

Summary
Adoption

•Automatic when possible
• Explicitly opt in as last resort

Summary
Adoption

•Automatic when possible
• Explicitly opt in as last resort
• Layer-backed vs. traditional drawing

Summary
Adoption

•Automatic when possible
• Explicitly opt in as last resort
• Layer-backed vs. traditional drawing
•Use Xcode to verify

NSScrollView
Magnification

Responsiveness
Magnification

•NSScrollView supports magnification
@property BOOL allowsMagnification NS_AVAILABLE_MAC(10_8);

Responsiveness
Magnification

•NSScrollView supports magnification

Responsiveness
Magnification

•NSScrollView supports magnification

Magnification
Responsiveness

• Still main thread driven

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content
• Visible rect redrawn when gesture ends

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content
• Visible rect redrawn when gesture ends

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content
• Visible rect redrawn when gesture ends
• Pause for new drawing

`

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content
• Visible rect redrawn when gesture ends
• Pause for new drawing

`

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content
• Visible rect redrawn when gesture ends
• Pause for new drawing

`

Magnification
Responsiveness

• Still main thread driven
• Likely have overdraw
•During gesture we scale existing content
• Visible rect redrawn when gesture ends
• Pause for new drawing

`

• -drawRect: speed is crucial

Responsiveness
Magnification

• -drawRect: speed is crucial
• Live magnification notifications
NSScrollViewWillStartLiveMagnifyNotification NS_AVAILABLE_MAC(10_8);
NSScrollViewDidEndLiveMagnifyNotification NS_AVAILABLE_MAC(10_8);

Responsiveness
Magnification

Centering clip views
Magnification

•Deprecated API
- (NSPoint)constrainScrollPoint:(NSPoint)newOrigin;

Centering clip views
Magnification

•Deprecated API
- (NSPoint)constrainScrollPoint:(NSPoint)newOrigin;

Centering clip views
Magnification

•Deprecated API
- (NSPoint)constrainScrollPoint:(NSPoint)newOrigin;

Centering clip views
Magnification

•Deprecated API
- (NSPoint)constrainScrollPoint:(NSPoint)newOrigin;

• Replacement API
- (NSRect)constrainBoundsRect:(NSRect)proposedBounds;

Centering clip views
Magnification

•Deprecated API
- (NSPoint)constrainScrollPoint:(NSPoint)newOrigin;

• Replacement API
- (NSRect)constrainBoundsRect:(NSRect)proposedBounds;

Centering clip views
Magnification

•Deprecated API
- (NSPoint)constrainScrollPoint:(NSPoint)newOrigin;

• Replacement API
- (NSRect)constrainBoundsRect:(NSRect)proposedBounds;

Conclusion

Optimizing AppKit Drawing

Layer-Backed View Drawing
with Core Animation

Responsive Scrolling

Magnification

More Information

Jake Behrens
App Frameworks Evangelist
behrens@apple.com

Documentation
Core Animation Programming Guide
http://developer.apple.com/

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Best Practices for Cocoa Animation Marina
Wednesday 2:00PM

Labs

NSTableView, NSView, and Cocoa Lab Frameworks Lab A
Thursday 10:15AM

Cocoa Animations, Drawing, and Cocoa Lab Frameworks Lab A
Friday 9:00AM

