
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 227

Solutions to Common Date
and Time Challenges

Chris Kane
Cocoa Frameworks

Introduction

• Brief introduction to calendar APIs
• Cover several common tasks

■ Examples are going to use new methods in OS X

• Testing

Calendrical APIs

• NSDate
• NSDateComponents
• NSCalendar
• NSTimeZone

NSDate

NSDate

• Simple value object

NSDate

• Simple value object
• Stores floating-point number of
seconds since our reference date

NSDate

• Simple value object
• Stores floating-point number of
seconds since our reference date

NSDate

• Simple value object
• Stores floating-point number of
seconds since our reference date

NSDate

• Simple value object
• Stores floating-point number of
seconds since our reference date

You are here

NSDate

• Simple value object
• Stores floating-point number of
seconds since our reference date

• Represents both time and date
You are here

NSDate

• Simple value object
• Stores floating-point number of
seconds since our reference date

• Represents both time and date
You are here

now = [NSDate date]

NSDateComponents

NSDateComponents

• A simple model object which
stores calendar components

NSDateComponents

• A simple model object which
stores calendar components
dateComponents.month = 6
dateComponents.day = 14

NSDateComponents

• A simple model object which
stores calendar components
dateComponents.month = 6
dateComponents.day = 14

• Default value for each component
is “unspecified”

NSDateComponents

• A simple model object which
stores calendar components
dateComponents.month = 6
dateComponents.day = 14

• Default value for each component
is “unspecified”

 NSDateComponentsUnspecified

NSCalendar

• Represents many world calendars

NSCalendar

• Represents many world calendars
• Knows how to convert between
NSDates and calendar components

NSCalendar

• Represents many world calendars
• Knows how to convert between
NSDates and calendar components

• Contains calendar calculation APIs

NSCalendar

• Represents many world calendars
• Knows how to convert between
NSDates and calendar components

• Contains calendar calculation APIs
• Several properties control
calculation parameters

NSCalendar

• Represents many world calendars
• Knows how to convert between
NSDates and calendar components

• Contains calendar calculation APIs
• Several properties control
calculation parameters

NSCalendar

cal = [NSCalendar autoupdatingCalendar]

NSCalendar

June 14 August 26

NSCalendar

June 14 August 26

How many weeks?

NSCalendar

June 14 August 26

June 2013 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

M T W T F S S

How many weeks?

You are here

NSCalendar

When did the week with that date start,
and how long is it?

June 2013 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

M T W T F S S

You are here

June 14 August 26

How many weeks?

NSTimeZone

NSTimeZone

• Represents time zone regions

NSTimeZone

• Represents time zone regions
• Knows about the local offset
from Universal Time and
when that changes

NSTimeZone

• Represents time zone regions
• Knows about the local offset
from Universal Time and
when that changes
tz = [NSTimeZone localTimeZone]

Common Operations

Midnight

Calculate “Midnight”

Calculate “Midnight”

• Why do people want midnight?

Calculate “Midnight”

• Why do people want midnight?
■ Using it as a default “don’t care” time

Calculate “Midnight”

• Why do people want midnight?
■ Using it as a default “don’t care” time

■ Use noon instead

Calculate “Midnight”

• Why do people want midnight?
■ Using it as a default “don’t care” time

■ Use noon instead
■ Want to know when the day changes

Calculate “Midnight”

• Why do people want midnight?
■ Using it as a default “don’t care” time

■ Use noon instead
■ Want to know when the day changes

• Midnight can be troublesome

Calculate “Midnight”

• Why do people want midnight?
■ Using it as a default “don’t care” time

■ Use noon instead
■ Want to know when the day changes

• Midnight can be troublesome
■ May not exist or there may be two

Calculate “Midnight”

• Why do people want midnight?
■ Using it as a default “don’t care” time

■ Use noon instead
■ Want to know when the day changes

• Midnight can be troublesome
■ May not exist or there may be two

• Think in terms of “start of a day”

Calculate Start of a Day

Calculate Start of a Day

• To calculate today’s start

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

• For tomorrow’s start, need more

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

• For tomorrow’s start, need more
start = [cal startOfDayForDate:[NSDate date]];

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

• For tomorrow’s start, need more
start = [cal startOfDayForDate:[NSDate date]];
sometimeTomorrow = [cal dateByAddingUnit:NSCalendarUnitDay

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

• For tomorrow’s start, need more
start = [cal startOfDayForDate:[NSDate date]];
sometimeTomorrow = [cal dateByAddingUnit:NSCalendarUnitDay
 value:+1

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

• For tomorrow’s start, need more
start = [cal startOfDayForDate:[NSDate date]];
sometimeTomorrow = [cal dateByAddingUnit:NSCalendarUnitDay
 value:+1
 toDate:start

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

• For tomorrow’s start, need more
start = [cal startOfDayForDate:[NSDate date]];
sometimeTomorrow = [cal dateByAddingUnit:NSCalendarUnitDay
 value:+1
 toDate:start
 options:0];

Calculate Start of a Day

• To calculate today’s start
start = [cal startOfDayForDate:[NSDate date]];

• For tomorrow’s start, need more
start = [cal startOfDayForDate:[NSDate date]];
sometimeTomorrow = [cal dateByAddingUnit:NSCalendarUnitDay
 value:+1
 toDate:start
 options:0];
start = [cal startOfDayForDate:sometimeTomorrow];

Reacting to the Change of Day

Reacting to the Change of Day

• You may want to run some code when the day changes

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example
 noteCenter = [NSNotificationCenter defaultCenter];

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example
 noteCenter = [NSNotificationCenter defaultCenter];
 observer = [noteCenter addObserverForName:NSCalendarDayChangedNotification

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example
 noteCenter = [NSNotificationCenter defaultCenter];
 observer = [noteCenter addObserverForName:NSCalendarDayChangedNotification
 object:nil

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example
 noteCenter = [NSNotificationCenter defaultCenter];
 observer = [noteCenter addObserverForName:NSCalendarDayChangedNotification
 object:nil
 queue:nil

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example
 noteCenter = [NSNotificationCenter defaultCenter];
 observer = [noteCenter addObserverForName:NSCalendarDayChangedNotification
 object:nil
 queue:nil
 usingBlock:^(NSNotification *note) {

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example
 noteCenter = [NSNotificationCenter defaultCenter];
 observer = [noteCenter addObserverForName:NSCalendarDayChangedNotification
 object:nil
 queue:nil
 usingBlock:^(NSNotification *note) {
 // your code here

Reacting to the Change of Day

• You may want to run some code when the day changes
NSCalendarDayChangedNotification

• Example
 noteCenter = [NSNotificationCenter defaultCenter];
 observer = [noteCenter addObserverForName:NSCalendarDayChangedNotification
 object:nil
 queue:nil
 usingBlock:^(NSNotification *note) {
 // your code here
 }];

Specific Times

Setting a Date to a Specific Time

• May want a specific time in a day

Setting a Date to a Specific Time

• Calculate 11:30 today
• May want a specific time in a day

Setting a Date to a Specific Time

A B11:30

• Calculate 11:30 today
 date = [NSDate date];

• May want a specific time in a day

Setting a Date to a Specific Time

A B11:30

• Calculate 11:30 today
 date = [NSDate date];
 date = [cal dateBySettingHour:11

• May want a specific time in a day

Setting a Date to a Specific Time

A B11:30

• Calculate 11:30 today
 date = [NSDate date];
 date = [cal dateBySettingHour:11
 minute:30

• May want a specific time in a day

Setting a Date to a Specific Time

A B11:30

• Calculate 11:30 today
 date = [NSDate date];
 date = [cal dateBySettingHour:11
 minute:30
 second:0

• May want a specific time in a day

Setting a Date to a Specific Time

A B11:30

• Calculate 11:30 today
 date = [NSDate date];
 date = [cal dateBySettingHour:11
 minute:30
 second:0
 toDate:date

• May want a specific time in a day

Setting a Date to a Specific Time

A B11:30

• Calculate 11:30 today
 date = [NSDate date];
 date = [cal dateBySettingHour:11
 minute:30
 second:0
 toDate:date
 options:0];

• May want a specific time in a day

Setting a Date to a Specific Time

A B11:30

Is This Today?

Is This Date Today?

Is This Date Today?

• Is this date object I have in today?

Is This Date Today?

• Is this date object I have in today?
BOOL isToday = [cal isDateInToday:date];

Is This Date Today?

• Is this date object I have in today?
BOOL isToday = [cal isDateInToday:date];
BOOL isYesterday = [cal isDateInYesterday:date];

Is This Date Today?

• Is this date object I have in today?
BOOL isToday = [cal isDateInToday:date];
BOOL isYesterday = [cal isDateInYesterday:date];
BOOL isTomorrow = [cal isDateInTomorrow:date];

Comparing Dates

Granular Comparison

Granular Comparison

• NSDate -compare: method is very literal

Granular Comparison

• NSDate -compare: method is very literal
• “Is this date today?” is a special case of asking
if two dates are on the same day

Granular Comparison

• NSDate -compare: method is very literal
• “Is this date today?” is a special case of asking
if two dates are on the same day
NSComparisonResult result = [cal compareDate:date

Granular Comparison

• NSDate -compare: method is very literal
• “Is this date today?” is a special case of asking
if two dates are on the same day
NSComparisonResult result = [cal compareDate:date
 toDate:otherDate

Granular Comparison

• NSDate -compare: method is very literal
• “Is this date today?” is a special case of asking
if two dates are on the same day
NSComparisonResult result = [cal compareDate:date
 toDate:otherDate
 toUnitGranularity:NSCalendarUnitDay];

Granular Comparison

• NSDate -compare: method is very literal
• “Is this date today?” is a special case of asking
if two dates are on the same day
NSComparisonResult result = [cal compareDate:date
 toDate:otherDate
 toUnitGranularity:NSCalendarUnitDay];
BOOL sameDay = (result == NSOrderedSame);

Granular Comparison

• NSDate -compare: method is very literal
• “Is this date today?” is a special case of asking
if two dates are on the same day
NSComparisonResult result = [cal compareDate:date
 toDate:otherDate
 toUnitGranularity:NSCalendarUnitDay];
BOOL sameDay = (result == NSOrderedSame);

• Not the same as asking if two dates are within
some amount of one another

Timeless Dates

Timeless Dates

Timeless Dates

• NSDate is more than just an {Era, Year, Month, Day}

Timeless Dates

• NSDate is more than just an {Era, Year, Month, Day}
• Use an NSDateComponents

Timeless Dates

• NSDate is more than just an {Era, Year, Month, Day}
• Use an NSDateComponents
• Or create your own simple model object

Timeless Dates

• NSDate is more than just an {Era, Year, Month, Day}
• Use an NSDateComponents
• Or create your own simple model object

■ Remember to include a property for calendar

Timeless Dates

• NSDate is more than just an {Era, Year, Month, Day}
• Use an NSDateComponents
• Or create your own simple model object

■ Remember to include a property for calendar
■ Or define the calendar to a fixed value

Timeless Dates

• NSDate is more than just an {Era, Year, Month, Day}
• Use an NSDateComponents
• Or create your own simple model object

■ Remember to include a property for calendar
■ Or define the calendar to a fixed value

■ NOT the user’s calendar

Timeless Dates

• NSDate is more than just an {Era, Year, Month, Day}
• Use an NSDateComponents
• Or create your own simple model object

■ Remember to include a property for calendar
■ Or define the calendar to a fixed value

■ NOT the user’s calendar

• Same discussion applies to dateless times

Finding the Next Matching Date

Finding the Next…

Finding the Next…

• Calculate the next date matching a set of components

Finding the Next…

• Calculate the next date matching a set of components
■ Next 10:00

Finding the Next…

• Calculate the next date matching a set of components
■ Next 10:00
■ Next Wednesday

Finding the Next…

• Calculate the next date matching a set of components
■ Next 10:00
■ Next Wednesday
■ Next Wednesday at 10:00

Finding the Next…

• Calculate the next date matching a set of components
■ Next 10:00
■ Next Wednesday
■ Next Wednesday at 10:00

- (NSDate *)nextDateAfterDate:(NSDate *)date

 matchingComponents:(NSDateComponents *)comps

 options:(NSCalendarOptions)options;

Finding the Next…

- (NSDate *)nextDateAfterDate:(NSDate *)date

 matchingComponents:(NSDateComponents *)comps

 options:(NSCalendarOptions)options;

Finding the Next…

- (NSDate *)nextDateAfterDate:(NSDate *)date
 matchingComponents:(NSDateComponents *)comps
 options:(NSCalendarOptions)options;

Finding the Next…

- (NSDate *)nextDateAfterDate:(NSDate *)date
 matchingComponents:(NSDateComponents *)comps
 options:(NSCalendarOptions)options;

Finding the Next…

- (NSDate *)nextDateAfterDate:(NSDate *)date
 matchingComponents:(NSDateComponents *)comps
 options:(NSCalendarOptions)options;

Finding the Next Wednesday at 10:00

Finding the Next Wednesday at 10:00

NSDateComponents *dateComponents = [NSDateComponents new];

Finding the Next Wednesday at 10:00

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.weekday = 4;

Finding the Next Wednesday at 10:00

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.weekday = 4;
dateComponents.hour = 10;

Finding the Next Wednesday at 10:00

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.weekday = 4;
dateComponents.hour = 10;
date = [cal nextDateAfterDate:[NSDate date]

Finding the Next Wednesday at 10:00

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.weekday = 4;
dateComponents.hour = 10;
date = [cal nextDateAfterDate:[NSDate date]
 matchingComponents:dateComponents

Finding the Next Wednesday at 10:00

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.weekday = 4;
dateComponents.hour = 10;
date = [cal nextDateAfterDate:[NSDate date]
 matchingComponents:dateComponents
 options:<options>];

Matching Components

dateComponents.weekday = 4;
dateComponents.hour = 10;

Matching Components

dateComponents.year = ?
dateComponents.month = ?
dateComponents.weekOfYear = ?
dateComponents.weekday = 4;
dateComponents.hour = 10;
dateComponents.minute = ?
dateComponents.second = ?

Matching Components

dateComponents.year = NSDateComponentsUnspecified;
dateComponents.month = NSDateComponentsUnspecified;
dateComponents.weekOfYear = NSDateComponentsUnspecified;
dateComponents.weekday = 4;
dateComponents.hour = 10;
dateComponents.minute = NSDateComponentsUnspecified;
dateComponents.second = NSDateComponentsUnspecified;

Matching Components

dateComponents.weekday = 4;
dateComponents.hour = 10;

Matching Components

dateComponents.weekday = 4;
dateComponents.hour = 10;
dateComponents.minute = 0;
dateComponents.second = 0;

Matching Components

dateComponents.weekOfYear = ... match AfterDate’s value or next ...
dateComponents.weekday = 4;
dateComponents.hour = 10;
dateComponents.minute = 0;
dateComponents.second = 0;

Matching Components

dateComponents.weekOfYear = ... match AfterDate’s value or next ...
dateComponents.weekday = 4;
dateComponents.hour = 10;
dateComponents.minute = 0;
dateComponents.second = 0;

June 2013 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

M T W T F S S

Matching Components

dateComponents.weekOfYear = ... match AfterDate’s value or next ...
dateComponents.weekday = 4;
dateComponents.hour = 10;
dateComponents.minute = 0;
dateComponents.second = 0;

June 2013 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

M T W T F S S

Matching Components

dateComponents.year = ... match AfterDate’s value or next ...
dateComponents.month = ... match AfterDate’s value or next ...
dateComponents.weekOfYear = ... match AfterDate’s value or next ...
dateComponents.weekday = 4;
dateComponents.hour = 10;
dateComponents.minute = 0;
dateComponents.second = 0;

June 2013 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

M T W T F S S

Finding Tomorrow’s “Midnight”

Finding Tomorrow’s “Midnight”

NSDateComponents *dateComponents = [NSDateComponents new];

Finding Tomorrow’s “Midnight”

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.hour = 0;

Finding Tomorrow’s “Midnight”

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.hour = 0;
date = [cal nextDateAfterDate:[NSDate date]

Finding Tomorrow’s “Midnight”

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.hour = 0;
date = [cal nextDateAfterDate:[NSDate date]
 matchingComponents:dateComponents

Finding Tomorrow’s “Midnight”

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.hour = 0;
date = [cal nextDateAfterDate:[NSDate date]
 matchingComponents:dateComponents
 options:<options>];

No Possible Result

No Possible Result

NSDateComponents *dateComponents = [NSDateComponents new];

No Possible Result

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.day = 50;

No Possible Result

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.day = 50;
date = [cal nextDateAfterDate:[NSDate date]

No Possible Result

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.day = 50;
date = [cal nextDateAfterDate:[NSDate date]
 matchingComponents:dateComponents

No Possible Result

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.day = 50;
date = [cal nextDateAfterDate:[NSDate date]
 matchingComponents:dateComponents
 options:<options>];

No Possible Result

NSDateComponents *dateComponents = [NSDateComponents new];
dateComponents.day = 50;
date = [cal nextDateAfterDate:[NSDate date]
 matchingComponents:dateComponents
 options:<options>];
// date is nil

Find Next…Options

Find Next…Options

• NSCalendarMatchStrictly

Find Next…Options

• NSCalendarMatchStrictly
• NSCalendarSearchBackwards

Find Next…Options

• NSCalendarMatchStrictly
• NSCalendarSearchBackwards
• Options for missing matches
NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits
NSCalendarMatchPreviousTimePreservingSmallerUnits

Find Next…Options

• NSCalendarMatchStrictly
• NSCalendarSearchBackwards
• Options for missing matches
NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits
NSCalendarMatchPreviousTimePreservingSmallerUnits

• Options for multiple matches
NSCalendarMatchFirst (default)
NSCalendarMatchLast

One of These Is Required

• NSCalendarMatchStrictly
• NSCalendarSearchBackwards
• Options for missing matches
NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits
NSCalendarMatchPreviousTimePreservingSmallerUnits

• Options for multiple matches
NSCalendarMatchFirst
NSCalendarMatchLast

Next 02:30

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

00:00

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

00:00 01:00

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

00:00 01:00 (02:00)

Missing 02:00:00 - 2:59:59

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

00:00 01:00 (02:00)

Missing 02:00:00 - 2:59:59

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

00:00 01:00 (02:00) 03:00

Missing 02:00:00 - 2:59:59

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

00:00 01:00 (02:00) 03:00 04:00

Missing 02:00:00 - 2:59:59

• In U.S., transition into Daylight Saving Time skips 02:00

Next 02:30

00:00 01:00 (02:00) 03:00 04:00 05:00

Options for Missing Results

00:00 01:00 (02:00) 03:00 04:00 05:00

Best Result (02:30)

Options for Missing Results

NSCalendarMatchNextTime

00:00 01:00 (02:00) 03:00 04:00 05:00

Best Result (02:30)

Options for Missing Results

NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits

00:00 01:00 (02:00) 03:00 04:00 05:00

Best Result (02:30)

Options for Missing Results

NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits
NSCalendarMatchPreviousTimePreservingSmallerUnits

00:00 01:00 (02:00) 03:00 04:00 05:00

Best Result (02:30)

Options for Missing Results

NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits
NSCalendarMatchPreviousTimePreservingSmallerUnits
NSCalendarMatchStrictly – result in next day

Best Result (02:30)

00:00 01:00 (02:00) 03:00 04:00 05:00

What Is the Best Option?

00:00 01:00 02:00 03:00 04:00 05:00

Need to be at Work

What Is the Best Option?

00:00 01:00 02:00 03:00 04:00 05:00

Need to be at Work

Alarm Time

What Is the Best Option?

00:00 01:00 02:00 03:00 04:00 05:00

Need to be at Work

Alarm Time

(02:00)

What Is the Best Option?

Alarm Time

00:00 01:00 03:00 04:00 05:00

Need to be at Work

30 minutes

NSCalendarMatchNextTime

(02:00)

Alarm Time

00:00 01:00 (02:00) 03:00 04:00 05:00

What Is the Best Option?

NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits

No Warning!

Need to be at Work

What Is the Best Option?

NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits
NSCalendarMatchPreviousTimePreservingSmallerUnits

Alarm Time

00:00 01:00 (02:00) 03:00 04:00 05:00

Need to be at Work

30 minutes 30 minutes

Alarm Time

00:00 01:00 (02:00) 03:00 04:00 05:00

What Is the Best Option?

NSCalendarMatchNextTime
NSCalendarMatchNextTimePreservingSmallerUnits
NSCalendarMatchPreviousTimePreservingSmallerUnits
NSCalendarMatchStrictly – alarm next day!

Need to be at Work

What Is the Best Option?

Alarm Time

00:00 01:00 (02:00) 03:00 04:00 05:00

Need to be at Work

What my friend really wants to specify isn’t 2:30

What Is the Best Option?

What my friend really wants to specify isn’t 2:30
but 1 hour before 3:30.

Alarm Time

00:00 01:00 (02:00) 03:00 04:00 05:00

Need to be at Work

What Is the Best Option? Again

Fri
06:00

Sun
06:00

Mon
06:00

Sat
06:00

24 hours 23 hours 24 hours

Fri
02:30

Sun
(02:30)

Mon
02:30

Sat
02:30

Alarm at 02:30

What Is the Best Option? Again

NSCalendarMatchNextTime (03:00)

What Is the Best Option? Again

Fri
02:30

Sun
(02:30)

Mon
02:30

Sat
02:30

Alarm at 02:30

23.5 hours 23.5 hours24 hours

NSCalendarMatchNextTimePreservingSmallerUnits (03:30)

What Is the Best Option? Again

Fri
02:30

Sun
(02:30)

Mon
02:30

Sat
02:30

Alarm at 02:30

24 hours 23 hours24 hours

NSCalendarMatchPreviousTimePreservingSmallerUnits (01:30)

What Is the Best Option? Again

Fri
02:30

Sun
(02:30)

Mon
02:30

Sat
02:30

Alarm at 02:30

23 hours 24 hours24 hours

What Is the Best Option? Again

Fri
06:00

Sun
06:00

Mon
06:00

Sat
06:00

24 hours 23 hours 24 hours

What Is the Best Option? Again

NSCalendarMatchPreviousTimePreservingSmallerUnits (01:30)

Fri
02:30

Sun
(02:30)

Mon
02:30

Sat
02:30

Alarm at 02:30

23 hours24 hours 24 hours

Enumerating Matches

Enumerating Matches

• If you are going to enumerate matches, use this method

Enumerating Matches

• If you are going to enumerate matches, use this method
[cal enumerateDatesStartingAfterDate:[NSDate date]

Enumerating Matches

• If you are going to enumerate matches, use this method
[cal enumerateDatesStartingAfterDate:[NSDate date]

matchingComponents:dateComponents
 options:<options>

Enumerating Matches

• If you are going to enumerate matches, use this method
[cal enumerateDatesStartingAfterDate:[NSDate date]

matchingComponents:dateComponents
 options:<options>

 usingBlock:^(NSDate *date, BOOL exactMatch, BOOL *stop) {
// your code here

}];

Enumerating Matches

• If you are going to enumerate matches, use this method
[cal enumerateDatesStartingAfterDate:[NSDate date]

matchingComponents:dateComponents
 options:<options>

 usingBlock:^(NSDate *date, BOOL exactMatch, BOOL *stop) {
// your code here

 if (condition) *stop = YES;
}];

Testing

Testing

Testing

• Interesting cases

Testing

• Interesting cases
■ Different locales and calendars

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones
■ Cycle boundaries

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones
■ Cycle boundaries

■ Start/end of day, month, year (and era in some calendars)

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones
■ Cycle boundaries

■ Start/end of day, month, year (and era in some calendars)

• What do you look for?

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones
■ Cycle boundaries

■ Start/end of day, month, year (and era in some calendars)

• What do you look for?
■ How do you know what you see is correct?

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones
■ Cycle boundaries

■ Start/end of day, month, year (and era in some calendars)

• What do you look for?
■ How do you know what you see is correct?
■ Find authoritative information

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones
■ Cycle boundaries

■ Start/end of day, month, year (and era in some calendars)

• What do you look for?
■ How do you know what you see is correct?
■ Find authoritative information

■ Almanacs, books, the internet

Testing

• Interesting cases
■ Different locales and calendars
■ Different time zones
■ Cycle boundaries

■ Start/end of day, month, year (and era in some calendars)

• What do you look for?
■ How do you know what you see is correct?
■ Find authoritative information

■ Almanacs, books, the internet
■ People

Testing

Testing

• How do you test?

Testing

• How do you test?
■ Turn off time syncing

Testing

• How do you test?
■ Turn off time syncing
■ Set clock, time zone, calendar, and locale manually

Testing

• How do you test?
■ Turn off time syncing
■ Set clock, time zone, calendar, and locale manually

• Develop variety in your beta tester pool

Testing

• How do you test?
■ Turn off time syncing
■ Set clock, time zone, calendar, and locale manually

• Develop variety in your beta tester pool
■ People from around the world

Testing

• How do you test?
■ Turn off time syncing
■ Set clock, time zone, calendar, and locale manually

• Develop variety in your beta tester pool
■ People from around the world
■ Direct their testing

More Information

Paul Marcos
Application Services Evangelist
pmarcos@apple.com

Documentation
Date & Time Programming Guide
http://developer.apple.com/documentation/Cocoa/Conceptual/DatesAndTimes/
Reference documentation for the NSCalendar class
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/Classes/NSCalendar_Class/

Apple Developer Forums
http://devforums.apple.com

