
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 305

Using Store Kit for In-App Purchases

Thomas Alsina
Manager, iOS Media Apps and Stores

96%
of 25 top grossing iPhone apps

use in-app purchases

Agenda

Agenda

What’s new in Store Kit

Implementing in-app purchases

Using the test environment

Tips for passing app review

What’s New in Store Kit

Store Kit Is a Payment System

•Manages transactions for in-app purchases
• Provides a transaction receipt
• Security comes from the receipt

Security Is in the Receipt

Related Sessions

Using Receipts to Protect Your Digital Sales Presidio
Thursday 2:00PM

Evolution of the Receipt

Evolution of the Receipt

In-App Purchase 1 In-App Purchase 2

In-App Purchase 3

Evolution of the Receipt

App Purchase

In-App Purchase 1 In-App Purchase 2

In-App Purchase 3

Evolution of the Receipt

Receipt

App Purchase

In-App Purchase 1

In-App Purchase 2

Signature

In-App Purchase 3

Grand Unified Receipt

• Same receipt format for iOS 7 and OS X
•Managed for you
• You can validate on device
• Includes app purchase receipt

■ Extra level of security on iOS
■ Helps apps switch to
“freemium” model

Receipt

In-App Purchase 1

In-App Purchase 2

Signature

App Purchase

In-App Purchase 3

Switching to Freemium

Paid Free

Switching to Freemium

Paid Free

Purchase Date

Pre-iOS 7 Receipts

Deprecated

Pre-iOS 7 Receipts

• Existing apps continue to work
• Transition to new receipt
•Use weak linking to support both iOS 6 and iOS 7 receipts
[[NSBundle mainBundle] respondsToSelector:@selector(appStoreReceiptURL)];

New licensing model
Volume Purchase Program

•Opt in using iTunes Connect
•Organizations can buy licenses in bulk
• Licenses can be assigned to members
• Licenses can be taken back
•Grace period before expiration

Handling the expiration
Volume Purchase Program

• iOS prevents your app from launching if expired
•OS X does not enforce expiration
• In both cases, app enforces expiration
•New fields in the receipt

Using Receipts to Protect Your Digital Sales Presidio
Thursday 2:00PM

Extending Your Apps for Enterprise and Education Use Nob Hill
Tuesday 3:15PM

Related Sessions

Free Hosted In-App Purchases

•Use them to provide optional content packages
•We will host them, serve them, and deliver them in the background
• You don’t need servers anymore
• They are still regular hosted in-app purchases

■ User needs to authenticate to “buy” them
■ Go through review process

Consumable Products

• Provided to the app once
• Can be purchased multiple times
•Not restored
•Up to the app to manage

■ VoIP credit
■ Gold coins

Non-Consumable Products

• Persistent
• Restored across multiple devices
•Managed by Store Kit

■ Game levels
■ Books, magazines

Auto-Renewable Subscriptions

• Commonly used for periodic content
• Renew automatically
•One transaction per renewal
• Incentive for users to provide email address

Non-Renewing Subscriptions

• For all other subscriptions
• Provided once to the app
•Not restored
•No duration information
•Up to the app to manage the subscription

■ Flight charts
■ Access to financial services
■ Professional apps

Types of In-App Purchases

iOS OS X

Consumable

Non-consumable

Auto-renewable subscription

Non-renewing subscription

√ √

√ √

√

√

Types of In-App Purchases

iOS OS X

Consumable

Non-consumable

Auto-renewable subscription

Non-renewing subscription

√ √

√ √

√

√

√

√

Cross-Platform Subscriptions

• Separate product identifiers on OS X and iOS
• You can still use your own account tracking

Agenda

What’s new in Store Kit

Implementing in-app purchases

Using the test environment

Tips for passing app review

Transitioning to the new receipt format
Implementing In-App Purchases

Sessions from Last Year

Documentation
In-App Purchase Programming Guide
Receipt Validation Programming Guide
http://developer.apple.com

WWDC session
Selling Products with Store Kit
https://developer.apple.com/videos/wwdc/2012/

Three Phases

Three Phases

Set Up
Products

Verify
Purchases

Purchase
Process

Three Phases

Set Up
Products

Verify
Purchases

Purchase
Process

iTunes Connect
Xcode

Three Phases

Set Up
Products

Verify
Purchases

Purchase
Process

Device/MaciTunes Connect
Xcode

Three Phases

Set Up
Products

Verify
Purchases

Purchase
Process

Device/MaciTunes Connect
Xcode

Device/Mac
 or Server

Verify
Purchases

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Product Identifiers

• Stored inside your app
NSArray* productIdentifiers = @[@"com.myCompany.myApp.product1",

 @"com.myCompany.myApp.product2",

 @"com.myCompany.myApp.product3"];

• Fetched from your server
■ Good for dynamic catalog

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Making a Product Request

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];

Making a Product Request

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];

Making a Product Request

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];

Making a Product Request

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];

SKRequestDelegate protocol
Product Response

- (void)request:(SKRequest *)request didFailWithError:(NSError *)error

- (void)productsRequest:(SKProductsRequest *)request

 didReceiveResponse:(SKProductsResponse *)response

response.invalidProductIdentifiers

response.products

SKRequestDelegate protocol
Product Response

- (void)request:(SKRequest *)request didFailWithError:(NSError *)error

- (void)productsRequest:(SKProductsRequest *)request

 didReceiveResponse:(SKProductsResponse *)response

response.invalidProductIdentifiers

response.products

SKRequestDelegate protocol
Product Response

- (void)request:(SKRequest *)request didFailWithError:(NSError *)error

- (void)productsRequest:(SKProductsRequest *)request

 didReceiveResponse:(SKProductsResponse *)response

response.invalidProductIdentifiers

response.products

SKRequestDelegate protocol
Product Response

- (void)request:(SKRequest *)request didFailWithError:(NSError *)error

- (void)productsRequest:(SKProductsRequest *)request

 didReceiveResponse:(SKProductsResponse *)response

response.invalidProductIdentifiers

response.products

SKRequestDelegate protocol
Product Response

- (void)request:(SKRequest *)request didFailWithError:(NSError *)error

- (void)productsRequest:(SKProductsRequest *)request

 didReceiveResponse:(SKProductsResponse *)response

response.invalidProductIdentifiers

response.products

SKProduct Properties

response.products

• Localized title
• Localized description
• Price
• Price locale
•Hosted

■ Content size
■ Content version

SKProduct Properties

response.products

• Localized title
• Localized description
• Price
• Price locale
•Hosted

■ Content size
■ Content version

Formatting the Product Price

Formatting the Product Price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];

Formatting the Product Price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[numberFormatter setLocale:product.priceLocale];

Formatting the Product Price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[numberFormatter setLocale:product.priceLocale];
NSString *formattedString = [numberFormatter
 stringFromNumber:product.price];

Formatting the Product Price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[numberFormatter setLocale:product.priceLocale];
NSString *formattedString = [numberFormatter
 stringFromNumber:product.price];

•Do not perform currency conversion

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Fetch
Product Info

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

In-App Purchase UI

•Up to the application
•Major effect on sales

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

Requesting a Payment

Requesting a Payment

SKPayment* payment = [SKPayment paymentWithProduct:product];

Requesting a Payment

SKPayment* payment = [SKPayment paymentWithProduct:product];
[[SKPaymentQueue defaultQueue] addPayment:payment];

Requesting a Payment

Requesting a Payment

Requesting a Payment

iTunes Store

Requesting a Payment

iTunes Store

Detecting Irregular Activity

iTunes Store

Detecting Irregular Activity

johnnyappleseed@icloud.com d-higgins@icloud.com hank-zakroff@icloud.com

mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com

iTunes Store

Detecting Irregular Activity

Your Server

neverfoldsJim34

johnnyappleseed@icloud.com d-higgins@icloud.com hank-zakroff@icloud.com

mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com
mailto:john.appleseed@icloud.com

Provide account identifier
Detecting Irregular Activity

• For applications with their own account management
• Provide an opaque identifier for your user’s account

■ Don’t send us the Apple ID!
■ Don’t provide the account name!
■ Don’t provide the password either!
■ We suggest a hash of the account name

Provide account identifier
Detecting Irregular Activity

• For applications with their own account management
• Provide an opaque identifier for your user’s account

■ Don’t send us the Apple ID!
■ Don’t provide the account name!
■ Don’t provide the password either!
■ We suggest a hash of the account name

 SKPayment *payment = [SKPayment paymentWithProduct:product];

Provide account identifier
Detecting Irregular Activity

• For applications with their own account management
• Provide an opaque identifier for your user’s account

■ Don’t send us the Apple ID!
■ Don’t provide the account name!
■ Don’t provide the password either!
■ We suggest a hash of the account name

 SKPayment *payment = [SKPayment paymentWithProduct:product];
payment.applicationUsername = hash(customerAccountName);

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

Processing a Transaction

iTunes Store

Processing a Transaction

iTunes Store

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

SKPaymentTransactionObserver protocol
Observing the Payment Queue

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

SKPaymentTransactionObserver protocol

for (SKPaymentTransaction* transaction in transactions)
{

}

Observing the Payment Queue

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

SKPaymentTransactionObserver protocol

for (SKPaymentTransaction* transaction in transactions)
{

}

Observing the Payment Queue

switch(transaction.transactionState) {

}

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

SKPaymentTransactionObserver protocol

for (SKPaymentTransaction* transaction in transactions)
{

}

Observing the Payment Queue

switch(transaction.transactionState) {

}

case SKPaymentTransactionStatePurchased:

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

SKPaymentTransactionObserver protocol

for (SKPaymentTransaction* transaction in transactions)
{

}

Observing the Payment Queue

switch(transaction.transactionState) {

}

case SKPaymentTransactionStatePurchased:

NSData* receipt = transaction.receipt;

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

SKPaymentTransactionObserver protocol

for (SKPaymentTransaction* transaction in transactions)
{

}

Observing the Payment Queue

switch(transaction.transactionState) {

}

case SKPaymentTransactionStatePurchased:

NSURL* receiptURL = [[NSBundle mainBundle] appStoreReceiptURL];

NSData* receipt = [NSData dataWithContentsOfURL:receiptURL];

Verifying the Receipt

•Make it as strong as you deem
necessary
• Verify on device
• Verify on server
•Or both

Receipt

App Purchase

In-App Purchase 1

In-App Purchase 2

Signature

Local Receipt Validation

• Preferred method
•As secure as OS X
•Works anytime
•Works offline

Your ServerApple Validation
Server

Receipt

Receipt
Shared Secret

Receipt Content
Receipt Valid

Renewal receipt

Your Application

Server-Based Receipt Validation

Server-Based Receipt Validation

• Your server validates the receipt against Apple servers
• You own the secure connection to your server

■ SSL, EV cert validation, cert pinning

•Useful for auto-renewable subscriptions
• Requires an internet connection

Validating against Apple servers from your app

Apple Validation
Server

The Wrong Way

Receipt
Shared Secret

Receipt Content
Receipt Valid
Renewal receipt

Your Application

Related Sessions

Using Receipts to Protect Your Digital Sales Presidio
Thursday 2:00PM

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

Four Download APIs

•Unlock functionality in your app
•Download additional content

■ Hosted in-app purchases
■ Newsstand Kit downloads
■ iOS Background download API
■ Classic download

Hosted In-App Purchases

• From Apple servers
• Scalable and reliable
•Download in the background
•Go through review
• 2GB limit per product identifier

Hosted In-App Purchases
Initiating the download

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedTransactions:(NSArray *)transactions

Hosted In-App Purchases
Initiating the download

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedTransactions:(NSArray *)transactions

if(transaction.downloads)

Hosted In-App Purchases
Initiating the download

for(SKPaymentTransaction* transaction in transactions)
{

}

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedTransactions:(NSArray *)transactions

 [[SKPaymentQueue defaultQueue] startDownloads:

 transaction.downloads];

if(transaction.downloads)

Hosted In-App Purchases
Initiating the download

Hosted In-App Purchases
Showing progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

Hosted In-App Purchases
Showing progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

download.progress

download.timeRemaining

Hosted In-App Purchases
Showing progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

download.progress

download.timeRemaining

download.state

download.error

Hosted In-App Purchases
Showing progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

download.progress

download.timeRemaining

download.state

download.error

Hosted In-App Purchases
Showing progress

download.contentURL

When download.state is SKDownloadStateFinished

Newsstand Kit Downloads

• iOS only
•Only for periodicals
• From your own server
•Download in the background
•App can update icon upon completion

Initiating the download
Newsstand Kit Downloads

Initiating the download
Newsstand Kit Downloads

NKLibrary library = [NKLibrary sharedLibrary];

Initiating the download
Newsstand Kit Downloads

NKLibrary library = [NKLibrary sharedLibrary];
NKIssue* issue = [library addIssueWithName:product.localizedTitle
 date:date];

Initiating the download
Newsstand Kit Downloads

NKLibrary library = [NKLibrary sharedLibrary];
NKIssue* issue = [library addIssueWithName:product.localizedTitle
 date:date];
NSURLRequest* request = [NSURLRequest requestWithURL:url];
NKAssetDownload* download = [issue addAssetWithRequest:request];

Initiating the download
Newsstand Kit Downloads

NKLibrary library = [NKLibrary sharedLibrary];
NKIssue* issue = [library addIssueWithName:product.localizedTitle
 date:date];
NSURLRequest* request = [NSURLRequest requestWithURL:url];
NKAssetDownload* download = [issue addAssetWithRequest:request];
[download downloadWithDelegate:self];

Reconnecting to the downloads
Newsstand Kit Downloads

Reconnecting to the downloads
Newsstand Kit Downloads

NKLibrary library = [NKLibrary sharedLibrary];

Reconnecting to the downloads
Newsstand Kit Downloads

NKLibrary library = [NKLibrary sharedLibrary];
for (NKAssetDownload* download in [library downloadingAssets]) {

Reconnecting to the downloads
Newsstand Kit Downloads

NKLibrary library = [NKLibrary sharedLibrary];
for (NKAssetDownload* download in [library downloadingAssets]) {

[download downloadWithDelegate:self];
}

Background Downloads

• iOS only
• From your own servers
•Download in the background
• Fine-grained cookie and credentials controls
• Power efficient

Initiating the download
Background Downloads

Initiating the download
Background Downloads

NSURLSessionConfiguration *config = [NSURLSessionConfiguration
 backgroundSessionConfiguration:@"MyBackgroundSession"];

Initiating the download
Background Downloads

NSURLSessionConfiguration *config = [NSURLSessionConfiguration
 backgroundSessionConfiguration:@"MyBackgroundSession"];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config
 delegate:self delegateQueue:queue];

Initiating the download
Background Downloads

NSURLSessionConfiguration *config = [NSURLSessionConfiguration
 backgroundSessionConfiguration:@"MyBackgroundSession"];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config
 delegate:self delegateQueue:queue];

NSURLRequest *request = [NSURLRequest requestWithURL:myURL];
NSURLSessionDownloadTask *downloadTask = [session

 downloadTaskWithRequest:request];

NSURLSessionDownloadDelegate
Background Downloads

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
 totalBytesWritten:(int64_t)totalBytesWritten
 totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite

{
! // do something with progress
}

NSURLSessionDownloadDelegate
Background Downloads

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didFinishDownloadingToURL:(NSURL *)location
{
 // copy the file to a safe location
 NSURL *newLocation = ...
 NSError *error = nil;
 [[NSFileManager defaultManager] copyItemAtURL:location

 toURL:newLocation error:&error];
}

Reconnecting to the downloads
Background Downloads

Reconnecting to the downloads
Background Downloads

- (void)application:(UIApplication *)application
 handleEventsForBackgroundURLSession:(NSString *)identifier
 completionHandler:(void (^)())completionHandler

Reconnecting to the downloads
Background Downloads

- (void)application:(UIApplication *)application
 handleEventsForBackgroundURLSession:(NSString *)identifier
 completionHandler:(void (^)())completionHandler
{

NSURLSessionConfiguration *config = [NSURLSessionConfiguration
 backgroundSessionConfiguration:identifier];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config
 delegate:self delegateQueue:queue];

self.completionHandler = completionHandler; // call when done
}

Reconnecting to the downloads
Background Downloads

- (void)application:(UIApplication *)application
 handleEventsForBackgroundURLSession:(NSString *)identifier
 completionHandler:(void (^)())completionHandler
{

NSURLSessionConfiguration *config = [NSURLSessionConfiguration
 backgroundSessionConfiguration:identifier];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config
 delegate:self delegateQueue:queue];

self.completionHandler = completionHandler; // call when done
}

Related Sessions

What’s New in Foundation Networking Mission
Wednesday 9:00AM

Classic Downloads

• Stops when apps get backgrounded
•User has to wait in the app
• Background task completions have changed

■ No longer prevent sleep
■ Not guaranteed to be immediately executed

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

In-App Process Overview

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Finish
Transaction

Fetch
Product Info

Finish the Transaction

Finish the Transaction

 [[SKPaymentQueue defaultQueue] finishTransaction:transaction];

Finish the Transaction

• Improves launch times
• Reduces cellular data consumption

 [[SKPaymentQueue defaultQueue] finishTransaction:transaction];

In-App Process Overview

Finish
Transaction

Process
Transaction

Show
In-App UI

Make Asset
Available

Make
Purchase

Load In-App
Identifiers

Fetch
Product Info

Install Payment Queue Observer

[[SKPaymentQueue defaultQueue] addTransactionObserver:self];

• Transactions can happen any time
■ Network losses
■ User redeems a gift code
■ Subscription renewals

• In appDidFinishLaunching

At application launch time

Restoring In-App Purchases

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

•Nothing changes except the receipt

Agenda

What’s new in Store Kit

Implementing in-app purchases

Using the test environment

Tips for passing app review

Using the Test Environment

The Test Environment
a.k.a. Sandbox

The Test Environment

Production

a.k.a. Sandbox

The Test Environment

SandboxProduction

a.k.a. Sandbox

The Test Environment

SandboxProduction

a.k.a. Sandbox

The Test Environment

SandboxProduction

a.k.a. Sandbox

The Test Environment

SandboxProduction

a.k.a. Sandbox

Based on Application Code Signing

Based on Application Code Signing

Sandbox

Based on Application Code Signing

Sandbox

Based on Application Code Signing

Sandbox

Production

How to Be Sure

How to Be Sure

How to Be Sure

Differences
The Test Environment

•No charge
• Receipts won’t validate against Apple Production servers
• Can request expired and/or revoked receipts
• Expired receipts won’t prevent your iOS app from launching
• Time contraction

Subscription Timing

Face Value Actual Duration

7 Days

1 Month

2 Months

3 Months

6 Months

1 Year

3 minutes

5 minutes

10 minutes

15 minutes

30 minutes

60 minutes

Maximum 6 renewals per 8-hour window

Setting up the Test Environment

• Setup in iTunes Connect
■ Create a test user
■ Enter products for sale

• Build and sign your app
•Mac: Launch from Finder once to fetch a receipt
• Buy many products!

Verifying Receipt During App Review

Development

Verifying Receipt During App Review

Dev
Signed

App

Development

Verifying Receipt During App Review

iTunes
Store

Sandbox

Dev
Signed

App

Development

Verifying Receipt During App Review

Your Test
Server

iTunes
Store

Sandbox

Dev
Signed

App

Development

Verify Receipt

Verifying Receipt During App Review

Your Test
Server

iTunes
Store

Sandbox

Dev
Signed

App

Development

Verify Receipt

Verifying Receipt During App Review

Your Test
Server

iTunes
Store

Sandbox

Dev
Signed

App

Development Production

Verify Receipt

Your
Prod

Server

iTunes
Store

Prod
Signed

App

Verifying Receipt During App Review

Verify Receipt

Your Test
Server

iTunes
Store

Sandbox

Dev
Signed

App

Development Production

Verify Receipt

Your
Prod

Server

iTunes
Store

Prod
Signed

App

Verifying Receipt During App Review

Verify Receipt

Your Test
Server

iTunes
Store

Sandbox

Dev
Signed

App

Development Production

Verify Receipt

Your
Prod

Server

iTunes
Store

Prod
Signed

App

App Review

Verify Receipt

Your
Prod

Server

iTunes
Store

Sandbox

Prod
Signed

App

App Review Considerations

• Try the Production environment
• If receipt is from Sandbox,
you will receive error 21007
• Then try against Sandbox

App Review

Verify Receipt

Your
Prod

Server

iTunes
Store

Sandbox

Prod
Signed

App

Agenda

What’s new in Store Kit

Implementing in-app purchases

Using the test environment

Tips for passing app review

And make your users happy
Tips for Passing App Review

Restore Button

• You must have a Restore button
• Should be used only for

■ Non-consumables
■ Auto-renewable subscriptions

• Restore and Purchase should be separate buttons

Newsstand Apps

• You must indicate a privacy policy URL
•Auto-renewable subscription must be in marketing text

■ Schedule 2, 3.8b

• Free subscriptions are only for free publications
■ Not for temporary promotions

• Even free subscriptions must use a Subscribe button
•Always offer the option to subscribe to your publication

Auto-Renewable Subscriptions

• You must indicate a privacy policy URL
•Auto-renewable subscription must be in marketing text

■ Schedule 2, 3.8b

•After subscribing, the latest issue must become downloadable
• Paid subscription must provide non-free content
•Apps that offer services should use non-renewing subscriptions

Non-Renewing Subscriptions

•Asking users to register should be optional
■ Unless you offer account-based features

Purchases

Purchases

Purchases must work!

Agenda

What’s new in Store Kit

Implementing in-app purchases

Using the test environment

Tips for passing app review

More Information

Paul Marcos
Application Services Evangelist
pmarcos@apple.com

Documentation
In-App Purchase Programming Guide
Receipt Validation Programming Guide
Search http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com
http://devforums.apple.com

Labs

iTunes Connect Lab Services Lab B
Friday 10:15AM

App Store Lab
Level 3
Thursday until 6:00PM
Friday 9:00AM to 12:00PM

Store Kit and Receipts Lab Services Lab B
Thursday 3:15PM

iTunes Connect Lab Services Lab B
Thursday 11:30AM

