
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

iOS and OS X techniques

Session 410

Fixing Memory Issues

Kate Stone
Software Behavioralist

Daniel Delwood
Software Radiologist

Time

Poor user experience

Time

Lack of
resources

Poor user experience

Time

Bugs

Lack of
resources

Poor user experience

Agenda

•Overview of app memory
•Heap memory issues
•Objective-C, retain/release
• Being a good citizen

Measurement and fundamentals
Overview of App Memory

Xcode Gauges
Memory at a glance

Xcode Gauges
Memory at a glance

Xcode Gauges
Memory at a glance

• Instruments focused on allocation heap

Memory: the Big Picture

Your Process

Heap

• Instruments focused on allocation heap
• Processes contain more than just heap memory

■ Application code
■ Images and other media

Memory: the Big Picture

Your Process

Heap

• Instruments focused on allocation heap
• Processes contain more than just heap memory

■ Application code
■ Images and other media

Memory: the Big Picture

Your Process

?Heap

• Instruments focused on allocation heap
• Processes contain more than just heap memory

■ Application code
■ Images and other media

•Measurements depend on what you are measuring and how

Memory: the Big Picture

Your Process

?Heap

Demo
Xcode to instruments — memory tools

Allocations and Virtual Memory

• Familiar instrument… with a twist
■ Backtraces for VM region activity
■ Call trees for all allocations
■ Efficient alternative: VM only

• Exposes previously hidden details
■ Who mapped a file?
■ What non-heap memory
contributes to my footprint?

• Page-level statistics
■ Snapshot using VM Tracker
instrument

Allocations and Virtual Memory

• Familiar instrument… with a twist
■ Backtraces for VM region activity
■ Call trees for all allocations
■ Efficient alternative: VM only

• Exposes previously hidden details
■ Who mapped a file?
■ What non-heap memory
contributes to my footprint?

• Page-level statistics
■ Snapshot using VM Tracker
instrument

Allocations and Virtual Memory

• Familiar instrument… with a twist
■ Backtraces for VM region activity
■ Call trees for all allocations
■ Efficient alternative: VM only

• Exposes previously hidden details
■ Who mapped a file?
■ What non-heap memory
contributes to my footprint?

• Page-level statistics
■ Snapshot using VM Tracker
instrument

Allocations and Virtual Memory

• Familiar instrument… with a twist
■ Backtraces for VM region activity
■ Call trees for all allocations
■ Efficient alternative: VM only

• Exposes previously hidden details
■ Who mapped a file?
■ What non-heap memory
contributes to my footprint?

Allocations and Virtual Memory

• Familiar instrument… with a twist
■ Backtraces for VM region activity
■ Call trees for all allocations
■ Efficient alternative: VM only

• Exposes previously hidden details
■ Who mapped a file?
■ What non-heap memory
contributes to my footprint?

• Page-level statistics
■ Snapshot using VM Tracker
instrument

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty
• Private vs. Shared

Virtual Memory

Key concepts

• Virtual vs. Resident
■ Virtual memory reserved as regions

■ 4KB page aligned
■ Pages mapped to physical memory on first read/write

■ Zero-filled or read from storage
■ Once mapped, virtual memory is also resident

■ Physical memory typically more constrained

Virtual Memory

Physical Memory

Virtual Address SpaceRegion Region

Key concepts

• Virtual vs. Resident
■ Virtual memory reserved as regions

■ 4KB page aligned
■ Pages mapped to physical memory on first read/write

■ Zero-filled or read from storage
■ Once mapped, virtual memory is also resident

■ Physical memory typically more constrained

Virtual Memory

Physical Memory

Virtual Address Space

Page

Region Region

Key concepts

• Virtual vs. Resident
■ Virtual memory reserved as regions

■ 4KB page aligned
■ Pages mapped to physical memory on first read/write

■ Zero-filled or read from storage
■ Once mapped, virtual memory is also resident

■ Physical memory typically more constrained

Virtual Memory

Physical Memory

Virtual Address Space

Page Page

Region Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty

■ Clean pages can be discarded and recreated
■ Memory mapped files, executable __TEXT segments, purgeable memory

■ Changing a page marks it as dirty
■ Malloc heap, global variables, stacks, etc.
■ Can be swapped to compressed form or storage on OS X

Virtual Memory

Physical Memory

Virtual Address Space

Page

Region

Swap SpacePage

Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty

■ Clean pages can be discarded and recreated
■ Memory mapped files, executable __TEXT segments, purgeable memory

■ Changing a page marks it as dirty
■ Malloc heap, global variables, stacks, etc.
■ Can be swapped to compressed form or storage on OS X

Virtual Memory

Physical Memory

Virtual Address Space

Page

Region

Swap SpacePage

Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty
• Private vs. Shared

■ Virtual memory can be named to enable sharing
■ Mapped files are implicitly shareable

Virtual Memory

Virtual Address Space

Physical Memory

Region Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty
• Private vs. Shared

■ Virtual memory can be named to enable sharing
■ Mapped files are implicitly shareable

Virtual Memory

Virtual Address Space

Physical MemoryPage

Region Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty
• Private vs. Shared

■ Virtual memory can be named to enable sharing
■ Mapped files are implicitly shareable

Virtual Memory

Virtual Address Space

Physical MemoryPage Page

Region Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty
• Private vs. Shared

■ Virtual memory can be named to enable sharing
■ Mapped files are implicitly shareable

Virtual Memory

Virtual Address Space

Physical MemoryPage Page

Region Region

Virtual Address SpaceRegion Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty
• Private vs. Shared

■ Virtual memory can be named to enable sharing
■ Mapped files are implicitly shareable

Virtual Memory

Virtual Address Space

Physical MemoryPage Page

Region Region

Virtual Address SpaceRegion Region

Key concepts

• Virtual vs. Resident
• Clean vs. Dirty
• Private vs. Shared

■ Virtual memory can be named to enable sharing
■ Mapped files are implicitly shareable

Virtual Memory

Virtual Address Space

Physical MemoryPage Page Page

Region Region

Virtual Address SpaceRegion Region

Tools and tactics
Heap Memory Issues

Storage for malloc() calls
What is the Heap?

•Dynamic allocations using malloc or variants
■ malloc in C
■ [NSObject alloc] in Objective-C
■ new operators in C++

•Allocated directly or indirectly through framework API
• Backed by VM: MALLOC regions

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts
• Small object can have a large graph

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts
• Small object can have a large graph

UIView
96 bytes

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts
• Small object can have a large graph

UIView
96 bytes layer

viewDelegate

subviewCache

gestureRecognizers

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts
• Small object can have a large graph

UIView
96 bytes

CALayer
32 byteslayer

viewDelegate

subviewCache

gestureRecognizers

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts
• Small object can have a large graph

UIView
96 bytes

CALayer
32 byteslayer

viewDelegate

subviewCache

gestureRecognizers

layer

Bitmap Data
VM Region

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts
• Small object can have a large graph
•Obvious containers: NSSet, NSDictionary, NSArray, …

UIView
96 bytes

CALayer
32 byteslayer

viewDelegate

subviewCache

gestureRecognizers

layer

Bitmap Data
VM Region

Expensive Types
Investigating the Heap

• VM is about bytes, heap is about counts
• Small object can have a large graph
•Obvious containers: NSSet, NSDictionary, NSArray, …
• Less obvious: UIView, UIViewController, NSImage, …

UIView
96 bytes

CALayer
32 byteslayer

viewDelegate

subviewCache

gestureRecognizers

layer

Bitmap Data
VM Region

• Your classes!
■ Prefixes are helpful (e.g. ABCViewController)

•New type identifications
■ Better at C++ classes
■ dispatch and xpc types
■ Heap-copied ^blocks (__NSMallocBlock__)

Investigating the Heap

• Your classes!
■ Prefixes are helpful (e.g. ABCViewController)

•New type identifications
■ Better at C++ classes
■ dispatch and xpc types
■ Heap-copied ^blocks (__NSMallocBlock__)

Investigating the Heap

• Your classes!
■ Prefixes are helpful (e.g. ABCViewController)

•New type identifications
■ Better at C++ classes
■ dispatch and xpc types
■ Heap-copied ^blocks (__NSMallocBlock__)

Investigating the Heap

• Your classes!
■ Prefixes are helpful (e.g. ABCViewController)

•New type identifications
■ Better at C++ classes
■ dispatch and xpc types
■ Heap-copied ^blocks (__NSMallocBlock__)

Investigating the Heap

• Your classes!
■ Prefixes are helpful (e.g. ABCViewController)

•New type identifications
■ Better at C++ classes
■ dispatch and xpc types
■ Heap-copied ^blocks (__NSMallocBlock__)

Investigating the Heap

• Your classes!
■ Prefixes are helpful (e.g. ABCViewController)

•New type identifications
■ Better at C++ classes
■ dispatch and xpc types
■ Heap-copied ^blocks (__NSMallocBlock__)

Investigating the Heap

• Leaked memory
■ Inaccessible—no more pointers to it
■ Can’t ever be used again

More memory over time
Types of Heap Memory Growth

• Leaked memory
■ Inaccessible—no more pointers to it
■ Can’t ever be used again

•Abandoned memory
■ Still referenced, but wasted
■ Won’t ever be used again

More memory over time
Types of Heap Memory Growth

• Leaked memory
■ Inaccessible—no more pointers to it
■ Can’t ever be used again

•Abandoned memory
■ Still referenced, but wasted
■ Won’t ever be used again

• Cached memory
■ Referenced and waiting
■ Might never be used again

More memory over time
Types of Heap Memory Growth

Generational Analysis
Detecting abandoned memory and excessive caching

Generational Analysis

• Technique for measuring memory growth
1. Reach a steady state
2. Record first “generation” of active allocations
3. Perform a series of operations, returning to steady state
4. Record a new “generation” of incremental allocations
5. Repeat steps 3 and 4

Detecting abandoned memory and excessive caching

Generational Analysis

• Technique for measuring memory growth
1. Reach a steady state
2. Record first “generation” of active allocations
3. Perform a series of operations, returning to steady state
4. Record a new “generation” of incremental allocations
5. Repeat steps 3 and 4

• Incremental allocations represent potential problems
■ One-time growth, typical
■ Repeatable memory growth, a real problem

Detecting abandoned memory and excessive caching

Repetition reveals waste
Avoiding Memory Growth

Time

Steady
State

Repetition reveals waste
Avoiding Memory Growth

Time

Steady
State

Intermediate
State

Repetition reveals waste
Avoiding Memory Growth

Time

Original
StateSteady

State

Intermediate
State

Repetition reveals waste
Avoiding Memory Growth

Time

Warmup

Original
StateSteady

State

Intermediate
State

Repetition reveals waste
Avoiding Memory Growth

Time

Warmup

Original
State

Repeated

Steady
State

Intermediate
State

Repetition reveals waste
Avoiding Memory Growth

Time

Warmup
Wasted

Original
State

Repeated

Steady
State

Intermediate
State

Heap fragmentation
When Free Memory Isn’t

• Fragmentation is poor utilization of malloc VM regions
• Effectively wasted space
• Impossible for system to reclaim

NSSet

CG
Fo
nt

CFURL UIView NSArray

How it happens
Heap Fragmentation

How it happens
Heap Fragmentation

1.New malloc VM region is needed

How it happens
Heap Fragmentation

1.New malloc VM region is needed
2. Region is filled until it can’t fit more blocks

NSObject

UIButton

NSArrayNSSet
CAAnimation

How it happens
Heap Fragmentation

1.New malloc VM region is needed
2. Region is filled until it can’t fit more blocks
3. Repeat steps 1 and 2 several times

NSObject

UIButton

NSArrayNSSet
CAAnimation

UIWindow

UIViewCG
Fo
nt NSString

MK
Ma
pV
ie
w

NSDate
CFURL

CGColor

NSNumber

NS
Da
ta

NS
Se
t UIView

NSArchiver

CGPath
NSInteger

NSArray
NSData
NSString

CG
Fo
nt

NSImage

How it happens
Heap Fragmentation

1.New malloc VM region is needed
2. Region is filled until it can’t fit more blocks
3. Repeat steps 1 and 2 several times
4.Most blocks are then freed, but not all

NSSet

CG
Fo
nt

CFURL UIView NSArray

Heap Fragmentation
Avoidance is the best policy

Heap Fragmentation

•Use Allocations instrument to identify
■ Clear indicator is “All Heap Allocations” graph

Avoidance is the best policy

Heap Fragmentation

•Use Allocations instrument to identify
■ Clear indicator is “All Heap Allocations” graph

Avoidance is the best policy

Heap Fragmentation

•Use Allocations instrument to identify
■ Clear indicator is “All Heap Allocations” graph

Avoidance is the best policy

Heap Fragmentation

•Use Allocations instrument to identify
■ Clear indicator is “All Heap Allocations” graph

•Objective-C @autoreleasepool can help

Avoidance is the best policy

Common problems and patterns
Objective-C, Retain/Release

Daniel Delwood
Software Radiologist

Retain/Release
Objective-C’s Ownership Model

• Reference counting ownership model based on -retain, -release
■ When the count drops to zero, object is freed
■ -autorelease just a delayed release
■ Retain/release/autorelease rules established and easy to learn

Retain/Release
Objective-C’s Ownership Model

• Reference counting ownership model based on -retain, -release
■ When the count drops to zero, object is freed
■ -autorelease just a delayed release
■ Retain/release/autorelease rules established and easy to learn

■ Advanced Memory Management Programming Guide

Retain/Release
Objective-C’s Ownership Model

• Reference counting ownership model based on -retain, -release
■ When the count drops to zero, object is freed
■ -autorelease just a delayed release
■ Retain/release/autorelease rules established and easy to learn

■ Advanced Memory Management Programming Guide

•Deterministic, simple, and fast

•Manual -retain/-release is tedious, error-prone
■ Too many retains → leaks
■ Too many releases → crashes

Understanding ARC
Objective-C’s Ownership Model

•Manual -retain/-release is tedious, error-prone
■ Too many retains → leaks
■ Too many releases → crashes
■ Retain cycles → more leaks

Understanding ARC
Objective-C’s Ownership Model

Understanding ARC
Objective-C’s Ownership Model

•Manual -retain/-release is tedious, error-prone
■ Too many retains → leaks
■ Too many releases → crashes
■ Retain cycles → more leaks

•Automatic Reference Counting (ARC)
■ Compiler-assisted -retain/-release convention enforcement

Understanding ARC
Objective-C’s Ownership Model

•Manual -retain/-release is tedious, error-prone
■ Too many retains → leaks
■ Too many releases → crashes
■ Retain cycles → more leaks

•Automatic Reference Counting (ARC)
■ Compiler-assisted -retain/-release convention enforcement
■ Doesn’t solve retain cycles on its own

Understanding ARC
Objective-C’s Ownership Model

•Manual -retain/-release is tedious, error-prone
■ Too many retains → leaks
■ Too many releases → crashes
■ Retain cycles → more leaks

•Automatic Reference Counting (ARC)
■ Compiler-assisted -retain/-release convention enforcement
■ Doesn’t solve retain cycles on its own
■ Provides additional tools like zeroing-weak references

Common problems under ARC
Objective-C’s Ownership Model

•Memory growth
■ Unreferenced retain cycles → Leaks template
■ Abandoned objects → Generational analysis

•Messaging deallocated objects
■ Undefined/non-deterministic behavior
■ Best case: reproducible crashes — usually in:

■ objc_* (e.g. objc_msgSend, objc_storeStrong)
■ -[NSObject doesNotRespondToSelector:]

■ Worst case: works 99% of the time

Common problems under ARC
Objective-C’s Ownership Model

•Memory growth
■ Unreferenced retain cycles → Leaks template
■ Abandoned objects → Generational analysis

•Messaging deallocated objects
■ Undefined/non-deterministic behavior
■ Best case: reproducible crashes — usually in:

■ objc_* (e.g. objc_msgSend, objc_storeStrong)
■ -[NSObject doesNotRespondToSelector:]

■ Worst case: works 99% of the time

Common problems under ARC
Objective-C’s Ownership Model

•Memory growth
■ Unreferenced retain cycles → Leaks template
■ Abandoned objects → Generational analysis

•Messaging deallocated objects
■ Undefined/non-deterministic behavior
■ Best case: reproducible crashes — usually in:

■ objc_* (e.g. objc_msgSend, objc_storeStrong)
■ -[NSObject doesNotRespondToSelector:]

■ Worst case: works 99% of the time

• Zombies template
■ Debugging environment: NSZombieEnabled=1

Seeking predictability and fixes
Messaging Deallocated Objects

• Zombies template
■ Debugging environment: NSZombieEnabled=1
■ Instead of being deallocated, objects changed into “Zombies”

Seeking predictability and fixes
Messaging Deallocated Objects

• Zombies template
■ Debugging environment: NSZombieEnabled=1
■ Instead of being deallocated, objects changed into “Zombies”
■ Zombies objects always crash when messaged

Seeking predictability and fixes
Messaging Deallocated Objects

-[NSObject description]

• Zombies template
■ Debugging environment: NSZombieEnabled=1
■ Instead of being deallocated, objects changed into “Zombies”
■ Zombies objects always crash when messaged

• Implications
■ More deterministic — memory isn’t unchanged or reused
■ Every zombie object leaks

■ Don’t use Zombies and Leaks together

Seeking predictability and fixes
Messaging Deallocated Objects

• Zombies template
■ Debugging environment: NSZombieEnabled=1
■ Instead of being deallocated, objects changed into “Zombies”
■ Zombies objects always crash when messaged

• Implications
■ More deterministic — memory isn’t unchanged or reused
■ Every zombie object leaks

■ Don’t use Zombies and Leaks together

•Now available for iOS 7 devices

Seeking predictability and fixes
Messaging Deallocated Objects

Demo
Retain/Release, leaks and crashes

Steps to fix leaks/crashes
Applying It to Your App

• Switch to ARC
• Run the Static Analyzer

Steps to fix leaks/crashes
Applying It to Your App

• Switch to ARC
• Run the Static Analyzer
• Zombies template is a great first resort for crashes

Steps to fix leaks/crashes
Applying It to Your App

• Switch to ARC
• Run the Static Analyzer
• Zombies template is a great first resort for crashes
• Backtrace for +alloc does not tell the whole story

Steps to fix leaks/crashes
Applying It to Your App

• Switch to ARC
• Run the Static Analyzer
• Zombies template is a great first resort for crashes
• Backtrace for +alloc does not tell the whole story
• Save time by pairing Retain/Releases

Needle in a smaller haystack
Retain/Release Pairing

•Manual pairing assistant
•Heuristic-based automatic pairing (better in ARC and -o0)

Profiling “Debug” configuration
Retain/Release Pairing

• “Profile” action defaults to Release configuration
■ Release great for Time Profiling
■ Debug useful for memory tools

Profiling “Debug” configuration
Retain/Release Pairing

• “Profile” action defaults to Release configuration
■ Release great for Time Profiling
■ Debug useful for memory tools

With great keywords comes great responsibility
Common Objective-C Issues

•^block captures and retain cycles
• __weak variables
• __unsafe_unretained
•@autoreleasepool and __autoreleasing
•Working with C-APIs and __bridge casts

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’

Common Objective-C Issues
^block captures and retain cycles

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’

_obsToken = [center addObserverForName:@“MyNotification”
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 self.document = [note object];
}];

Common Objective-C Issues
^block captures and retain cycles

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’

_obsToken = [center addObserverForName:@“MyNotification”
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 self.document = [note object];
}];

Common Objective-C Issues
^block captures and retain cycles

‘_obsToken’ retained by ‘self’

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’

_obsToken = [center addObserverForName:@“MyNotification”
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 self.document = [note object];
}];

Common Objective-C Issues
^block captures and retain cycles

‘_obsToken’ retained by ‘self’ ^block retained by ‘_obsToken’

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’

_obsToken = [center addObserverForName:@“MyNotification”
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 self.document = [note object];
}];

Common Objective-C Issues
^block captures and retain cycles

‘_obsToken’ retained by ‘self’ ^block retained by ‘_obsToken’

‘self’ retained by ^block

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’

_obsToken = [center addObserverForName:@“MyNotification”
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 self.document = [note object];
}];

Common Objective-C Issues
^block captures and retain cycles

‘_obsToken’ retained by ‘self’ ^block retained by ‘_obsToken’

‘self’ retained by ^block Retain Cycle

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’
•Use __weak keyword to break cycles

■ When non-ARC, use __block to indicate “don’t retain”

Common Objective-C Issues
^block captures and retain cycles

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’
•Use __weak keyword to break cycles

■ When non-ARC, use __block to indicate “don’t retain”

Common Objective-C Issues
^block captures and retain cycles

__weak __typeof(self) weaklyNotifiedSelf = self;
_obsToken = [center addObserverForName:@“MyNotification”
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 weaklyNotifiedSelf.document = [note object];
}];

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’
•Use __weak keyword to break cycles

■ When non-ARC, use __block to indicate “don’t retain”

Common Objective-C Issues
^block captures and retain cycles

__weak __typeof(self) weaklyNotifiedSelf = self;
_obsToken = [center addObserverForName:@“MyNotification”
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 weaklyNotifiedSelf.document = [note object];
}];

^block captures and retain cycles
Common Objective-C Issues

•^blocks capture referenced objects strongly by default
• Instance variables implicitly reference ‘self’
•Use __weak keyword to break cycles

■ When non-ARC, use __block to indicate “don’t retain”

• Look out for persisting relationships
■ Registrations (e.g. NSNotifications, error callbacks)
■ Recurrences (e.g. timers, handlers)
■ One-time executions (dispatch_async, dispatch_after) are fine

Weak on demand
__weak variables

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

__weak variables

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

__weak variables

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference

__weak variables

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference

__weak variables

if (weakObject) {
 [weakObject->delegate customerNameChanged:name]
}

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference

__weak variables

if (weakObject) {
 [weakObject->delegate customerNameChanged:name]
}

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference

__weak variables

if (weakObject) {
 [weakObject->delegate customerNameChanged:name]
}

[weakObject.delegate customerNameChanged:name]

id strongObject = weakObject;
if (strongObject) {
 [strongObject->delegate customerNameChanged:name]
}

or

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference

__weak variables

if (weakObject) {
 [weakObject->delegate customerNameChanged:name]
}

[weakObject.delegate customerNameChanged:name]

id strongObject = weakObject;
if (strongObject) {
 [strongObject->delegate customerNameChanged:name]
}

or

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference

__weak variables

if (weakObject) {
 [weakObject->delegate customerNameChanged:name]
}

[weakObject.delegate customerNameChanged:name]

id strongObject = weakObject;
if (strongObject) {
 [strongObject->delegate customerNameChanged:name]
}

or

Weak on demand

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference

__weak variables

if (weakObject) {
 [weakObject->delegate customerNameChanged:name]
}

[weakObject.delegate customerNameChanged:name]

id strongObject = weakObject;
if (strongObject) {
 [strongObject->delegate customerNameChanged:name]
}

or

Weak on demand
__weak variables

• Every use of __weak validates reference
■ nil is always a possible result

•Avoid consecutive uses

•Never do -> dereference
•Do not over-use __weak

■ __weak variables are not free

Risk vs. Reward
__unsafe_unretained

Risk vs. Reward
__unsafe_unretained

•No ARC-managed -retain/-release

Risk vs. Reward
__unsafe_unretained

•No ARC-managed -retain/-release
•@property (assign) id => __unsafe_unretained id

Risk vs. Reward
__unsafe_unretained

•No ARC-managed -retain/-release
•@property (assign) id => __unsafe_unretained id
• Easily can lead to crashes — dangling references

Risk vs. Reward
__unsafe_unretained

•No ARC-managed -retain/-release
•@property (assign) id => __unsafe_unretained id
• Easily can lead to crashes — dangling references
•Unretained framework references

Risk vs. Reward
__unsafe_unretained

•No ARC-managed -retain/-release
•@property (assign) id => __unsafe_unretained id
• Easily can lead to crashes — dangling references
•Unretained framework references
• Last resort keyword

•Object sent -retain/-autorelease upon assignment

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:outError];
 if (parsed) {
 // < use dictionary >
 return YES;
 } else {
 return NO;
 }
 }
}

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:outError];
 if (parsed) {
 // < use dictionary >
 return YES;
 } else {
 return NO;
 }
 }
}

ARC and out-parameters
__autoreleasing

Assignment to __autoreleasing ‘outError’

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:outError];
 if (parsed) {
 // < use dictionary >
 return YES;
 } else {
 return NO;
 }
 }
}

ARC and out-parameters
__autoreleasing

Leaving @autoreleasepool {} scope triggers “delayed” -release

Assignment to __autoreleasing ‘outError’

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:outError];
 if (parsed) {
 // < use dictionary >
 return YES;
 } else {
 return NO;
 }
 }
}

ARC and out-parameters
__autoreleasing

Leaving @autoreleasepool {} scope triggers “delayed” -release

Returns deallocated NSError object to caller

Assignment to __autoreleasing ‘outError’

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 NSError *localError = nil;
 BOOL wasSuccessful = YES;
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:&localError];
 if (parsed) {
 // < use dictionary >
 } else {
 wasSuccessful = NO;
 }
 }
 if (!wasSuccessful && outError) *outError = localError;
 return wasSuccessful;
}

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 NSError *localError = nil;
 BOOL wasSuccessful = YES;
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:&localError];
 if (parsed) {
 // < use dictionary >
 } else {
 wasSuccessful = NO;
 }
 }
 if (!wasSuccessful && outError) *outError = localError;
 return wasSuccessful;
}

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 NSError *localError = nil;
 BOOL wasSuccessful = YES;
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:&localError];
 if (parsed) {
 // < use dictionary >
 } else {
 wasSuccessful = NO;
 }
 }
 if (!wasSuccessful && outError) *outError = localError;
 return wasSuccessful;
}

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 NSError *localError = nil;
 BOOL wasSuccessful = YES;
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:&localError];
 if (parsed) {
 // < use dictionary >
 } else {
 wasSuccessful = NO;
 }
 }
 if (!wasSuccessful && outError) *outError = localError;
 return wasSuccessful;
}

ARC and out-parameters
__autoreleasing

•Object sent -retain/-autorelease upon assignment
•Out-parameters are __autoreleasing by default (e.g. NSError **)
• If @autoreleasepool wraps assignment, crashes happen
- (BOOL)startWithConfigurationURL:(NSURL*)url error:(NSError**)outError {
 NSError *localError = nil;
 BOOL wasSuccessful = YES;
 @autoreleasepool {
 // < get response from url >
 NSDictionary *parsed = [NSJSONSerialization JSONObjectWithData:response
 options:0 error:&localError];
 if (parsed) {
 // < use dictionary >
 } else {
 wasSuccessful = NO;
 }
 }
 if (!wasSuccessful && outError) *outError = localError;
 return wasSuccessful;
}

ARC and out-parameters
__autoreleasing

__autoreleasing assignment outside @autoreleasepool {}

Working with C-based APIs
__bridge casts

•ARC manages at Objective-C level

Working with C-based APIs
__bridge casts

•ARC manages at Objective-C level
• C-based APIs: CoreFoundation, CoreGraphics, void* context, …

Working with C-based APIs
__bridge casts

•ARC manages at Objective-C level
• C-based APIs: CoreFoundation, CoreGraphics, void* context, …
• Three conversion primitives:

■ __bridge T : just type casting
■ __bridge_transfer T / CFBridgingRelease() : also issues a -release
■ __bridge_retained T / CFBridgingRetain() : also issues a -retain

Working with C-based APIs
__bridge casts

•ARC manages at Objective-C level
• C-based APIs: CoreFoundation, CoreGraphics, void* context, …
• Three conversion primitives:

■ __bridge T : just type casting
■ __bridge_transfer T / CFBridgingRelease() : also issues a -release
■ __bridge_retained T / CFBridgingRetain() : also issues a -retain

• Incorrect bridging leads to leaks/crashes

Using them correctly

1. CF +1 → ARC-managed ‘id’ : __bridge_transfer T

2. CF +0 → ARC-managed ‘id’ : __bridge T

3. ARC-managed ‘id’ → CF +0 : __bridge T

4. ARC-managed ‘id’ → CF +1: __bridge_retained T

__bridge casts

Using them correctly

1. CF +1 → ARC-managed ‘id’ : __bridge_transfer T

2. CF +0 → ARC-managed ‘id’ : __bridge T

3. ARC-managed ‘id’ → CF +0 : __bridge T

•Effectively creates an __unsafe_unretained CF reference!

4. ARC-managed ‘id’ → CF +1: __bridge_retained T

__bridge casts

Using them correctly

4. ARC-managed ‘id’ → CF +1: __bridge_retained T

__bridge casts

1. CF +1 → ARC-managed ‘id’ : __bridge_transfer T

2. CF +0 → ARC-managed ‘id’ : __bridge T

3. ARC-managed ‘id’ → CF +0 : __bridge T

•Effectively creates an __unsafe_unretained CF reference!
CFStringRef stringRef = NULL;
...
NSString *logInfo = [[NSString alloc] initWithFormat:...];
stringRef = (__bridge CFStringRef)logInfo;
...
CFURLRef url = CFURLCreateWithString(NULL, stringRef, baseURL);

Using them correctly

4. ARC-managed ‘id’ → CF +1: __bridge_retained T

__bridge casts

1. CF +1 → ARC-managed ‘id’ : __bridge_transfer T

2. CF +0 → ARC-managed ‘id’ : __bridge T

3. ARC-managed ‘id’ → CF +0 : __bridge T

•Effectively creates an __unsafe_unretained CF reference!
CFStringRef stringRef = NULL;
...
NSString *logInfo = [[NSString alloc] initWithFormat:...];
stringRef = (__bridge CFStringRef)logInfo;
...
CFURLRef url = CFURLCreateWithString(NULL, stringRef, baseURL);

Using them correctly

4. ARC-managed ‘id’ → CF +1: __bridge_retained T

__bridge casts

1. CF +1 → ARC-managed ‘id’ : __bridge_transfer T

2. CF +0 → ARC-managed ‘id’ : __bridge T

3. ARC-managed ‘id’ → CF +0 : __bridge T

•Effectively creates an __unsafe_unretained CF reference!
CFStringRef stringRef = NULL;
...
NSString *logInfo = [[NSString alloc] initWithFormat:...];
stringRef = (__bridge CFStringRef)logInfo;
...
CFURLRef url = CFURLCreateWithString(NULL, stringRef, baseURL);

‘logInfo’ leaves scope, released

Using them correctly

4. ARC-managed ‘id’ → CF +1: __bridge_retained T

__bridge casts

1. CF +1 → ARC-managed ‘id’ : __bridge_transfer T

2. CF +0 → ARC-managed ‘id’ : __bridge T

3. ARC-managed ‘id’ → CF +0 : __bridge T

•Effectively creates an __unsafe_unretained CF reference!
CFStringRef stringRef = NULL;
...
NSString *logInfo = [[NSString alloc] initWithFormat:...];
stringRef = (__bridge CFStringRef)logInfo;
...
CFURLRef url = CFURLCreateWithString(NULL, stringRef, baseURL);

‘logInfo’ leaves scope, released

‘stringRef’ not valid

Using them correctly
__bridge casts

1. CF +1 → ARC-managed ‘id’ : __bridge_transfer T

2. CF +0 → ARC-managed ‘id’ : __bridge T

3. ARC-managed ‘id’ → CF +0 : __bridge T

•Effectively creates an __unsafe_unretained CF reference!

4. ARC-managed ‘id’ → CF +1: __bridge_retained T
CFStringRef stringRef = NULL;
...
NSString *logInfo = [[NSString alloc] initWithFormat:...];
stringRef = (__bridge_retained CFStringRef)logInfo;
...
CFURLRef url = CFURLCreateWithString(NULL, stringRef, baseURL);
CFRelease(stringRef)

Testing and tips
Being a Good Citizen

Real-world user scenarios
Memory Testing

Real-world user scenarios
Memory Testing

• Test on constrained devices

Real-world user scenarios
Memory Testing

• Test on constrained devices
• First install/first launch

Real-world user scenarios
Memory Testing

• Test on constrained devices
• First install/first launch
• Large dataset

Real-world user scenarios
Memory Testing

• Test on constrained devices
• First install/first launch
• Large dataset
• Background launch

Real-world user scenarios
Memory Testing

• Test on constrained devices
• First install/first launch
• Large dataset
• Background launch

Real-world user scenarios
Memory Testing

• Test on constrained devices
• First install/first launch
• Large dataset
• Background launch

■ Especially for leaked/abandoned
memory

Where there are not enough free pages
System Memory Pressure

• Pages must be evicted
• Clean and purgeable pages can be thrown away
•Dirty pages

Where there are not enough free pages
System Memory Pressure

• Pages must be evicted
• Clean and purgeable pages can be thrown away
•Dirty pages

■ On OSX, compressed or saved to disk (expensive)

Building Efficient OS X Apps Nob Hill
Tuesday 4:30PM

Where there are not enough free pages
System Memory Pressure

• Pages must be evicted
• Clean and purgeable pages can be thrown away
•Dirty pages

■ On OSX, compressed or saved to disk (expensive)

■ On iOS, memory warnings issued and processes terminated

Building Efficient OS X Apps Nob Hill
Tuesday 4:30PM

… and avoiding termination
iOS: Memory Warnings

… and avoiding termination
iOS: Memory Warnings

•Do not be the biggest
■ Dirty memory is what counts — VM Tracker

… and avoiding termination
iOS: Memory Warnings

•Do not be the biggest
■ Dirty memory is what counts — VM Tracker

•Make sure your application gets a chance to respond
■ Avoid large, rapid allocations
■ Notifications arrive on main thread

… and avoiding termination
iOS: Memory Warnings

•Do not be the biggest
■ Dirty memory is what counts — VM Tracker

•Make sure your application gets a chance to respond
■ Avoid large, rapid allocations
■ Notifications arrive on main thread
UIApplicationDidReceiveMemoryWarningNotification
-[id <UIApplicationDelegate> -applicationDidReceiveMemoryWarning:]
-[UIViewController didReceiveMemoryWarning]

… and avoiding termination
iOS: Memory Warnings

•Do not be the biggest
■ Dirty memory is what counts — VM Tracker

•Make sure your application gets a chance to respond
■ Avoid large, rapid allocations
■ Notifications arrive on main thread

• Consider freeing up memory before entering background

UIApplicationDidReceiveMemoryWarningNotification
-[id <UIApplicationDelegate> -applicationDidReceiveMemoryWarning:]
-[UIViewController didReceiveMemoryWarning]

… and avoiding termination
iOS: Memory Warnings

•Do not be the biggest
■ Dirty memory is what counts — VM Tracker

•Make sure your application gets a chance to respond
■ Avoid large, rapid allocations
■ Notifications arrive on main thread

• Consider freeing up memory before entering background

UIApplicationDidReceiveMemoryWarningNotification
-[id <UIApplicationDelegate> -applicationDidReceiveMemoryWarning:]
-[UIViewController didReceiveMemoryWarning]

-[id <UIApplicationDelegate> -applicationDidEnterBackground:]

Summary

• Be proactive: monitor, test, investigate
•Avoid memory spikes
•Don’t allow unbounded heap/VM growth
•Use language tools effectively: __weak, @autoreleasepool, etc.

More Information

Dave DeLong
Developer Tools Evangelist
delong@apple.com

Instruments Documentation
Instruments User Guide
Instruments User Reference
http://developer.apple.com/ “Developer Library”

Apple Developer Forums
http://devforums.apple.com

http://developer.apple.com
http://developer.apple.com
http://devforums.apple.com
http://devforums.apple.com

Related Sessions

Building Efficient OS X Apps Nob Hill
Tuesday 4:30PM

Advances in Objective-C Mission
Tuesday 4:30PM

Energy Best Practices Marina
Thursday 10:15AM

Core Data Performance Optimization and Debugging Nob Hill
Wednesday 2:00PM

Designing Code for Performance Nob Hill
Friday 9:00AM

Labs

Instruments and Performance Lab Tools Lab B
Thursday 3:15PM

Objective-C and LLVM Lab Tools Lab C
Thursday 2:00PM

LLDB and Instruments Lab Tools Lab C
Friday 10:15AM

