

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 413
Kate Stone
Software Behavioralist

Advanced Debugging with LLDB

What to Expect from This Talk

• Emphasis on LLDB as our debugging foundation

Debugging with Xcode Pacific Heights
Wednesday 2:00PM

What to Expect from This Talk

• Emphasis on LLDB as our debugging foundation

• Tips to streamline the debugging experience

Debugging with Xcode Pacific Heights
Wednesday 2:00PM

What to Expect from This Talk

• Emphasis on LLDB as our debugging foundation

• Tips to streamline the debugging experience
• LLDB as an investigative tool

Debugging with Xcode Pacific Heights
Wednesday 2:00PM

What to Expect from This Talk

• Emphasis on LLDB as our debugging foundation

• Tips to streamline the debugging experience
• LLDB as an investigative tool
•Our collective goal: reliable apps!

Debugging with Xcode Pacific Heights
Wednesday 2:00PM

What to Expect from This Talk

State of LLDB

State of LLDB

•Hundreds of improvements
■ Most stable LLDB ever
■ The debugger in Xcode 5

State of LLDB

•Hundreds of improvements
■ Most stable LLDB ever
■ The debugger in Xcode 5

• Improved data inspection
■ Formatters for more Foundation types
■ Unicode text in C++ types

State of LLDB

•Hundreds of improvements
■ Most stable LLDB ever
■ The debugger in Xcode 5

• Improved data inspection
■ Formatters for more Foundation types
■ Unicode text in C++ types

• Improved expression parser
■ Always up to date with language features
■ Fewer explicit casts required

Start well informed
Best Practices in Debugging

Start well informed
Best Practices in Debugging

• Techniques for avoiding long investigations
■ Assertions
■ Logging
■ Static analysis
■ Runtime memory tools

Start well informed
Best Practices in Debugging

• Techniques for avoiding long investigations
■ Assertions
■ Logging
■ Static analysis
■ Runtime memory tools

•Good unit tests

Unit Testing in Xcode iTunes
WWDC 2012

Start well informed
Best Practices in Debugging

• Techniques for avoiding long investigations
■ Assertions
■ Logging
■ Static analysis
■ Runtime memory tools

•Good unit tests

• Xcode debug configuration
■ Enables debug information, disables optimization

Unit Testing in Xcode iTunes
WWDC 2012

Avoid common mistakes
Best Practices in Debugging

Avoid common mistakes
Best Practices in Debugging

• Take advantage of LLDB
■ Stop exactly where you want to
■ Customize with data formatters, commands
■ Write debug code without rebuilding

Avoid common mistakes
Best Practices in Debugging

• Take advantage of LLDB
■ Stop exactly where you want to
■ Customize with data formatters, commands
■ Write debug code without rebuilding

•Watch out for side effects
■ Expressions can and will change execution

The canonical process
Best Practices in Debugging

The canonical process
Best Practices in Debugging

• Choose your focus

The canonical process
Best Practices in Debugging

• Choose your focus
• Stop before suspect path

The canonical process
Best Practices in Debugging

• Choose your focus
• Stop before suspect path
• Step through live code

The canonical process
Best Practices in Debugging

• Choose your focus
• Stop before suspect path
• Step through live code
• Inspect data to validate
assumptions

Avoiding long investigations
Finding Problems

Sean Callanan
LLDB/Clang Integrator

Debug-Only Assertions

Debug-Only Assertions

•Assertions stop your app in situations that should be impossible
NSAssert (_dictionary != nil, @”_dictionary should be initialized”);

Debug-Only Assertions

•Assertions stop your app in situations that should be impossible
NSAssert (_dictionary != nil, @”_dictionary should be initialized”);

• You can also use them to enforce contracts between components
NSAssert ((buffer != nil) || (length == 0),
 @”empty buffer with nonzero length”);

Debug-Only Assertions

•Assertions stop your app in situations that should be impossible
NSAssert (_dictionary != nil, @”_dictionary should be initialized”);

• You can also use them to enforce contracts between components
NSAssert ((buffer != nil) || (length == 0),
 @”empty buffer with nonzero length”);

• NS_BLOCK_ASSERTIONS disables assertions in release builds

Debug-Only Assertions

•Assertions stop your app in situations that should be impossible
NSAssert (_dictionary != nil, @”_dictionary should be initialized”);

• You can also use them to enforce contracts between components
NSAssert ((buffer != nil) || (length == 0),
 @”empty buffer with nonzero length”);

• NS_BLOCK_ASSERTIONS disables assertions in release builds
•Make sure your condition doesn’t do necessary work!

NSAssert(myString = [myDictionary objectForKey:@”key”],
 @”‘key’ not in dict”);

Log Effectively with ASL

Log Effectively with ASL

• Logging lets you review an execution of your code after the fact

Log Effectively with ASL

• Logging lets you review an execution of your code after the fact
•Use ASL log levels to distinguish log severity effectively

■ ASL_LEVEL_EMERG
■ ASL_LEVEL_DEBUG

Log Effectively with ASL

• Logging lets you review an execution of your code after the fact
•Use ASL log levels to distinguish log severity effectively

■ ASL_LEVEL_EMERG
■ ASL_LEVEL_DEBUG

•Use hash tags like #web in log messages

Log Effectively with ASL

• Logging lets you review an execution of your code after the fact
•Use ASL log levels to distinguish log severity effectively

■ ASL_LEVEL_EMERG
■ ASL_LEVEL_DEBUG

•Use hash tags like #web in log messages
•Have switches for the heaviest logging (e.g., NSUserDefaults)

Validate Your Program with Xcode

• -Weverything and the static analyzer find problems as you compile

•Guard Malloc catches buffer overruns on the heap
• Zombie Objects catch method calls to freed objects

What’s New In LLVM iTunes
WWDC 2012

 Advanced Memory Analysis with Instruments iTunes
WWDC 2010

 What's New in the LLVM Compiler Pacific Heights
Tuesday 2:00PM

Breakpoints at work
Stopping Before Problems Occur

A quick recap
Command Syntax

• Commands can have three forms:

•We will use this notation:
po foo
expression --object-description -- foo

■ Discoverable form
■ Abbreviated form
■ Alias

expression --object-description -- foo

e -O -- foo

po foo

Debugging with LLDB iTunes
WWDC 2012

A quick recap
Command Syntax

• Commands can have three forms:

•We will use this notation:
po foo
expression --object-description -- foo

■ Discoverable form
■ Abbreviated form
■ Alias

expression --object-description -- foo

e -O -- foo

po foo

Shortest possible form

Discoverable form

Debugging with LLDB iTunes
WWDC 2012

Common Breakpoint Scenarios

Common Breakpoint Scenarios

• Stop at a source line:
b MyView.m:4
breakpoint set
 --file MyView.m --line 4

Common Breakpoint Scenarios

• Stop at a source line:
b MyView.m:4
breakpoint set
 --file MyView.m --line 4

Common Breakpoint Scenarios

• Stop at a source line:
b MyView.m:4
breakpoint set
 --file MyView.m --line 4

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

Common Breakpoint Scenarios

• Stop at a source line:

• Stop at a method:

• Stop whenever any object
receives a selector:

b MyView.m:4
breakpoint set
 --file MyView.m --line 4

b “-[MyViewA drawRect:]”
breakpoint set
 --name “-[MyViewA drawRect:]”

b drawRect:
breakpoint set
 --selector drawRect:

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

Commands Save Time

• Switching between your app
and Xcode is tedious
• Breakpoint commands run
each time a breakpoint is hit
b “-[MyViewA
 setNeedsDisplayinRect:]”

> DONE

br co a
> p rect
> bt
> c

breakpoint command add
expression rect
thread backtrace
process continue

•Use if breakpoints fire too
frequently
• Find when a method is called on
a specific instance

b “-[MyModel dealloc]”

Conditions Focus on Specific Objects

p id $myModel = self

expression id $myModel = self
Creates a persistent variable of type id

br m -c “self == $myModel”
breakpoint modify
 --condition “self == $myModel”

•Use if breakpoints fire too
frequently
• Find when a method is called on
a specific instance

b “-[MyModel dealloc]”

Conditions Focus on Specific Objects

p id $myModel = self

expression id $myModel = self
Creates a persistent variable of type id

br m -c “self == $myModel”
breakpoint modify
 --condition “self == $myModel”

•Use if breakpoints fire too
frequently
• Find when a method is called on
a specific instance

b “-[MyModel dealloc]”

Conditions Focus on Specific Objects

p id $myModel = self

expression id $myModel = self
Creates a persistent variable of type id

br m -c “self == $myModel”
breakpoint modify
 --condition “self == $myModel”

•Use if breakpoints fire too
frequently
• Find when a method is called on
a specific instance

b “-[MyModel dealloc]”

Conditions Focus on Specific Objects

p id $myModel = self

expression id $myModel = self
Creates a persistent variable of type id

br m -c “self == $myModel”
breakpoint modify
 --condition “self == $myModel”

•Use if breakpoints fire too
frequently
• Find when a method is called on
a specific instance

b “-[MyModel dealloc]”

Conditions Focus on Specific Objects

p id $myModel = self

expression id $myModel = self
Creates a persistent variable of type id

br m -c “self == $myModel”
breakpoint modify
 --condition “self == $myModel”

Focus on Memory with Watchpoints

• Someone is changing a value, but all you know is its location
•Watchpoints pause the program if the value is accessed

•Watchpoint resources are limited by CPU
■ 4 on Intel
■ 2 on ARM

w s v self->_needsSynchronization
watchpoint set variable
 self->_needsSynchronization

Focus on Memory with Watchpoints

Focus on Memory with Watchpoints

Focus on Memory with Watchpoints

Focus on Memory with Watchpoints

Focus on Memory with Watchpoints

Focus on Memory with Watchpoints

Focus on Memory with Watchpoints

Focus on Memory with Watchpoints

Execution control without surprises
Stepping Through Problems

Avoiding Repeated Steps

• Stepping repeatedly over irrelevant code gets old quickly

• LLDB will stop in one of two cases:
■ At the specified line, if your code goes there; or
■ After the function returns

th u 11
thread until 11

Avoiding Repeated Steps

Avoiding Repeated Steps

Avoiding Repeated Steps

Avoiding Repeated Steps

Avoiding Repeated Steps

Hitting Breakpoints While Stepping

Hitting Breakpoints While Stepping

Hitting Breakpoints While Stepping

Hitting Breakpoints While Stepping

Hitting Breakpoints While Stepping

• Stepping can hit breakpoints
• LLDB maintains a stack of
things you are doing
■ When you step, LLDB
puts it on the stack

Hitting Breakpoints While Stepping

• Stepping can hit breakpoints
• LLDB maintains a stack of
things you are doing
■ When you step, LLDB
puts it on the stack

Hitting Breakpoints While Stepping

• Stepping can hit breakpoints
• LLDB maintains a stack of
things you are doing
■ When you step, LLDB
puts it on the stack

■ If you hit a breakpoint, LLDB
remembers the stack…

Hitting Breakpoints While Stepping

• Stepping can hit breakpoints
• LLDB maintains a stack of
things you are doing
■ When you step, LLDB
puts it on the stack

■ If you hit a breakpoint, LLDB
remembers the stack…

Hitting Breakpoints While Stepping

• Stepping can hit breakpoints
• LLDB maintains a stack of
things you are doing
■ When you step, LLDB
puts it on the stack

■ If you hit a breakpoint, LLDB
remembers the stack…

■ …and continuing lets LLDB
continue the step

Calling Code by Hand

•What if it’s hard to make the code you care about run?
• Call the code using Clang!
b “-[ModelDerived removeDuplicates]”

Process 31109 stopped
* thread #1:
 -[ModelDerived removeDuplicates]

• Clang runs what you type after expression in the process

e -i false -- [self removeDuplicates]
expression --ignore-breakpoints false
 -- [self removeDuplicates]

Calling Code by Hand

•What if it’s hard to make the code you care about run?
• Call the code using Clang!
b “-[ModelDerived removeDuplicates]”

Process 31109 stopped
* thread #1:
 -[ModelDerived removeDuplicates]

• Clang runs what you type after expression in the process

e -i false -- [self removeDuplicates]
expression --ignore-breakpoints false
 -- [self removeDuplicates]

Don’t ignore breakpoints!
LLDB does by default

Looking at variables with new eyes
Inspecting Data to Find Causes

Enrico Granata
LLDB Engineer

Inspecting Data

Inspecting Data

• Inspecting data at the command line

Inspecting Data

• Inspecting data at the command line
•Data formatters

Inspecting Data

• Inspecting data at the command line
•Data formatters
•Opaque data inspection

Inspecting Data at the Command Line

• Several commands
■ Some new
■ Some old

•Which do I use?

Command / Output When to Use

frame variable

(int) argc = 4
(char **) argv = 0x1240f0a0

Show all my locals

expression (x + 35)

(int) $5 = 36
Execute arbitrary code

p @”Hello”

(NSString *) $6 = @”Hello”
Compact syntax for expression
Allows GDB-style format (p/x)

po @”Hello”

Hello
Execute arbitrary code, then call the
description selector on the result

Command / Output When to Use

frame variable

(int) argc = 4
(char **) argv = 0x1240f0a0

Show all my locals

expression (x + 35)

(int) $5 = 36
Execute arbitrary code

p @”Hello”

(NSString *) $6 = @”Hello”
Compact syntax for expression
Allows GDB-style format (p/x)

po @”Hello”

Hello
Execute arbitrary code, then call the
description selector on the result

Command / Output When to Use

frame variable

(int) argc = 4
(char **) argv = 0x1240f0a0

Show all my locals

expression (x + 35)

(int) $5 = 36
Execute arbitrary code

p @”Hello”

(NSString *) $6 = @”Hello”
Compact syntax for expression
Allows GDB-style format (p/x)

po @”Hello”

Hello
Execute arbitrary code, then call the
description selector on the result

Command / Output When to Use

frame variable

(int) argc = 4
(char **) argv = 0x1240f0a0

Show all my locals

expression (x + 35)

(int) $5 = 36
Execute arbitrary code

p @”Hello”

(NSString *) $6 = @”Hello”
Compact syntax for expression
Allows GDB-style format (p/x)

po @”Hello”

Hello
Execute arbitrary code, then call the
description selector on the result

Command / Output When to Use

frame variable

(int) argc = 4
(char **) argv = 0x1240f0a0

Show all my locals

expression (x + 35)

(int) $5 = 36
Execute arbitrary code

p @”Hello”

(NSString *) $6 = @”Hello”
Compact syntax for expression
Allows GDB-style format (p/x)

po @”Hello”

Hello
Execute arbitrary code, then call the
description selector on the result

Inspecting Data at the Command Line

• Several commands
■ Each with a specific use case

“Raw Data” vs. “Data”

“Raw Data” vs. “Data”

• Raw data is not always easy to decipher

“Raw Data” vs. “Data”

• Raw data is not always easy to decipher
■ Too complex

“Raw Data” vs. “Data”

• Raw data is not always easy to decipher
■ Too complex
■ Not your types

“Raw Data” vs. “Data”

• Raw data is not always easy to decipher
■ Too complex
■ Not your types
■ Information overload

“Raw Data”
Life without formatters

“Data”
Life with formatters

“Raw Data”
Life without formatters

“Raw Data”
Life without formatters

“Data”
Life with formatters

Data Formatters

Data Formatters

• Built-in formatters for system libraries
■ STL
■ CoreFoundation
■ Foundation

Data Formatters

• Built-in formatters for system libraries
■ STL
■ CoreFoundation
■ Foundation

•What we do… you can do too

Summaries

Summaries

@ "3 objects"

Synthetic Children

Synthetic Children

How Python Summaries Work

How Python Summaries Work

• Summaries match a type to a Python function
■ Base matching is by type name
■ Refer to LLDB web site for other rules

■ http://lldb.llvm.org/varformats.html

http://lldb.llvm.org/varformats.html
http://lldb.llvm.org/varformats.html

How Python Summaries Work

• Summaries match a type to a Python function
■ Base matching is by type name
■ Refer to LLDB web site for other rules

■ http://lldb.llvm.org/varformats.html

• The function is called whenever a value is displayed
■ LLDB passes an SBValue to it

■ Part of the LLDB Object Model
■ The function returns a string to be shown

http://lldb.llvm.org/varformats.html
http://lldb.llvm.org/varformats.html

SBValue

SBValue

name

SBValue

type

SBValue

summary

SBValue

children

SBValue

value

Summarizing an Address
Example

Summarizing an Address
Example

def MyAddress_Summary(value,unused):

Summarizing an Address
Example

def MyAddress_Summary(value,unused):
SBValue

Summarizing an Address
Example

! firstName = value.GetChildMemberWithName("_firstName")
! lastName = value.GetChildMemberWithName("_lastName")

def MyAddress_Summary(value,unused):
SBValue

Summarizing an Address
Example

! firstName = value.GetChildMemberWithName("_firstName")
! lastName = value.GetChildMemberWithName("_lastName")
! firstNameSummary = firstName.GetSummary()
! lastNameSummary = lastName.GetSummary()

def MyAddress_Summary(value,unused):
SBValue

Summarizing an Address
Example

! firstName = value.GetChildMemberWithName("_firstName")
! lastName = value.GetChildMemberWithName("_lastName")
! firstNameSummary = firstName.GetSummary()
! lastNameSummary = lastName.GetSummary()

! # process the data as you wish

def MyAddress_Summary(value,unused):
SBValue

Summarizing an Address
Example

! firstName = value.GetChildMemberWithName("_firstName")
! lastName = value.GetChildMemberWithName("_lastName")
! firstNameSummary = firstName.GetSummary()
! lastNameSummary = lastName.GetSummary()

! return firstNameSummary + “ “ + lastNameSummary
! # process the data as you wish

def MyAddress_Summary(value,unused):
SBValue

Summarizing an Address
Example

Summarizing an Address
Example

ty su a MyAddress -F MyAddress_Summary
type summary add MyAddress
 --python-function MyAddress_Summary

Summarizing an Address
Example

expression for Data Analysis

expression for Data Analysis

•Data types might be opaque
■ You don’t have headers…
■ …but you figured it out anyway

expression for Data Analysis

•Data types might be opaque
■ You don’t have headers…
■ …but you figured it out anyway

•How to see the additional details in the UI?

expression for Data Analysis

typedef void* Opaque;

Opaque makeOpaque();
int useOpaque(Opaque);
void freeOpaque(Opaque);

1

2

3

4

5

Opaque.h

expression for Data Analysis

typedef void* Opaque;

Opaque makeOpaque();
int useOpaque(Opaque);
void freeOpaque(Opaque);

1

2

3

4

5

Opaque.h

struct ImplOpaque {
 int aThing;
 float anotherThing;
 char* oneMoreThing;
};

1

2

3

4

5

Opaque.cpp

expression for Data Analysis

expression for Data Analysis

It’s really
Opaque :(

expression for Data Analysis

It’s really
Opaque :(

expression
struct $NotOpaque {
 int item1;
 float item2;
 char* item3;
};

expression for Data Analysis

It’s really
Opaque :(

expression
struct $NotOpaque {
 int item1;
 float item2;
 char* item3;
};

Persistent name

expression for Data Analysis

It’s really
Opaque :(

expression
struct $NotOpaque {
 int item1;
 float item2;
 char* item3;
};

Persistent name

expression for Data Analysis

It’s really
Opaque :(

expression
struct $NotOpaque {
 int item1;
 float item2;
 char* item3;
};

Persistent name

expression for Data Analysis

expression for Data Analysis

Making the debugger your own
Extending LLDB

Extending LLDB

Extending LLDB

• Custom LLDB commands

Extending LLDB

• Custom LLDB commands
• Breakpoint actions

Extending LLDB

• Custom LLDB commands
• Breakpoint actions
• lldbinit

Custom LLDB Commands

Custom LLDB Commands

• Create new features

Custom LLDB Commands

• Create new features
• Implement your own favorite behavior

Custom LLDB Commands

• Create new features
• Implement your own favorite behavior
• Factor out common logic

Calculate depth of a recursion
Example

• Your program has a recursion

Calculate depth of a recursion
Example

• Your program has a recursion
• You need to know how deep it is

Calculate depth of a recursion
Example

• Your program has a recursion
• You need to know how deep it is
• You could count frames by hand

Calculate depth of a recursion
Example

• Your program has a recursion
• You need to know how deep it is
• You could count frames by hand

■ …or let LLDB do it

Calculate depth of a recursion
Example

The LLDB Object Model

The LLDB Object Model

• Called “SB” (Scripting Bridge)

The LLDB Object Model

• Called “SB” (Scripting Bridge)
■ Python API

The LLDB Object Model

• Called “SB” (Scripting Bridge)
■ Python API

•Used by Xcode to build its Debugger UI

The LLDB Object Model

• Called “SB” (Scripting Bridge)
■ Python API

•Used by Xcode to build its Debugger UI
■ Full power of LLDB available for scripting

The LLDB Object Model

• Called “SB” (Scripting Bridge)
■ Python API

•Used by Xcode to build its Debugger UI
■ Full power of LLDB available for scripting

•Natural representation of a debugger session

The LLDB Object Model

The LLDB Object Model
SBTarget

The LLDB Object Model

SBProcess

The LLDB Object Model

SBThread

The LLDB Object Model

SBFrame

How Python Commands Work

• Commands associate a name with a Python function
■ The function is invoked whenever the command is typed

How Python Commands Work

• Commands associate a name with a Python function
■ The function is invoked whenever the command is typed

def MyCommand_Impl(debugger,user_input,result,unused):

How Python Commands Work

• Commands associate a name with a Python function
■ The function is invoked whenever the command is typed

def MyCommand_Impl(debugger,user_input,result,unused):

SBDebugger

How Python Commands Work

• Commands associate a name with a Python function
■ The function is invoked whenever the command is typed

def MyCommand_Impl(debugger,user_input,result,unused):

SBDebugger Python string

How Python Commands Work

• Commands associate a name with a Python function
■ The function is invoked whenever the command is typed

def MyCommand_Impl(debugger,user_input,result,unused):

SBDebugger Python string SBCommandReturnObject

How Python Commands Work

• Commands associate a name with a Python function
■ The function is invoked whenever the command is typed

def MyCommand_Impl(debugger,user_input,result,unused):

SBDebugger Python string SBCommandReturnObject

co sc a foo -f foo
command script add foo
 --python-function foo

Calculate depth of a recursion
Example

Loop over
all frames

Check for
recursion

Display counter

Calculate depth of a recursion
Example

Loop over
all frames

Check for
recursion

Display counter

for frame in thread.frames:
 # process frame

Calculate depth of a recursion
Example

Loop over
all frames

Check for
recursion

Display counter

for frame in thread.frames:
 # process frame

thread = debugger.GetSelectedTarget() \
 .GetProcess().GetSelectedThread()

Utilize LLDB
Object Model

Calculate depth of a recursion
Example

Loop over
all frames

Check for
recursion

Display counter

for frame in thread.frames:
 # process frame

if frame.function.name == "MyFunction":
 # update counters

thread = debugger.GetSelectedTarget() \
 .GetProcess().GetSelectedThread()

Utilize LLDB
Object Model

Calculate depth of a recursion
Example

Loop over
all frames

Check for
recursion

Display counter

for frame in thread.frames:
 # process frame

if frame.function.name == "MyFunction":
 # update counters

print >>result, "depth: " + str(depth)

thread = debugger.GetSelectedTarget() \
 .GetProcess().GetSelectedThread()

Utilize LLDB
Object Model

def count_depth(thread,signature,max_depth = 0):
! count = 0
! found = False
! for frame in thread:
! ! frame_name = frame.function.name
! ! if frame_name != signature:
! ! ! if found:
! ! ! ! return count # no indirect recursion
! ! ! else:
! ! ! ! pass # dive deeper
! ! else:
! ! ! if found:
! ! ! ! count += 1 # increase counter
! ! ! else:
! ! ! ! found = True # now we found it...
! ! ! ! count = 1 # ...start counting
! return count

def Depth_Command_Impl(debugger,user_input,result,unused):
! thread = debugger.GetSelectedTarget().GetProcess().GetSelectedThread()
! name = thread.GetFrameAtIndex(0).function.name
! print >>result,"depth: " + str(count_depth(thread,name,0))

Calculate depth of a recursion
Example

Example
Calculate depth of a recursion

Example
Calculate depth of a recursion

Example
Calculate depth of a recursion

Breakpoint Actions

Breakpoint Actions

• Breakpoints are powerful

Breakpoint Actions

• Breakpoints are powerful
■ But their default behavior is to always stop

Breakpoint Actions

• Breakpoints are powerful
■ But their default behavior is to always stop

• Conditional breakpoints improve a lot

Breakpoint Actions

• Breakpoints are powerful
■ But their default behavior is to always stop

• Conditional breakpoints improve a lot
■ But they can’t access the LLDB object model

Breakpoint Actions

• Breakpoints are powerful
■ But their default behavior is to always stop

• Conditional breakpoints improve a lot
■ But they can’t access the LLDB object model

• Breakpoint actions allow full program inspection

Breakpoint Actions

• Breakpoints are powerful
■ But their default behavior is to always stop

• Conditional breakpoints improve a lot
■ But they can’t access the LLDB object model

• Breakpoint actions allow full program inspection
■ Code + data + object model

How Breakpoint Actions Work

• Breakpoint actions associate a breakpoint with a Python function
■ The function is invoked whenever the breakpoint is hit
■ The function can return False to tell LLDB to continue your program

How Breakpoint Actions Work

• Breakpoint actions associate a breakpoint with a Python function
■ The function is invoked whenever the breakpoint is hit
■ The function can return False to tell LLDB to continue your program

def break_on_deep_traversal(frame,location,unused):

How Breakpoint Actions Work

• Breakpoint actions associate a breakpoint with a Python function
■ The function is invoked whenever the breakpoint is hit
■ The function can return False to tell LLDB to continue your program

def break_on_deep_traversal(frame,location,unused):

SBFrame

How Breakpoint Actions Work

• Breakpoint actions associate a breakpoint with a Python function
■ The function is invoked whenever the breakpoint is hit
■ The function can return False to tell LLDB to continue your program

def break_on_deep_traversal(frame,location,unused):

SBFrame SBBreakpointLocation

How Breakpoint Actions Work

• Breakpoint actions associate a breakpoint with a Python function
■ The function is invoked whenever the breakpoint is hit
■ The function can return False to tell LLDB to continue your program

def break_on_deep_traversal(frame,location,unused):

SBFrame SBBreakpointLocation

br co a -s p -F foo 1
breakpoint command add --script python
 --python-function foo 1

Stop if a recursion is more than n levels deep
Example

Stop if a recursion is more than n levels deep

• Your program hangs while doing a recursive task

Example

Stop if a recursion is more than n levels deep

• Your program hangs while doing a recursive task
■ You don’t know the exact cause
■ Behavior is hard to reproduce

Example

Stop if a recursion is more than n levels deep

• Your program hangs while doing a recursive task
■ You don’t know the exact cause
■ Behavior is hard to reproduce

• Idea!

Example

Stop if a recursion is more than n levels deep

• Your program hangs while doing a recursive task
■ You don’t know the exact cause
■ Behavior is hard to reproduce

• Idea!
■ Make a breakpoint action that looks at the call stack
■ Have LLDB stop only when the recursion is getting too deep

Example

Stop if a recursion is more than n levels deep
Example

Count recursion
depth

Break if
counter >= threshold

Stop if a recursion is more than n levels deep
Example

Count recursion
depth

Break if
counter >= threshold

Stop if a recursion is more than n levels deep
Example

Count recursion
depth

Break if
counter >= threshold

if count_depth(frame.thread,"MyFunction") < threshold::
 return False

Stop if a recursion is more than n levels deep
Example

def break_on_deep_traversal(frame,location,unused):
! name = "-[MyTreeNode traverseWithCallback:]"
 threshold = 20
! return count_depth(frame.thread,name,threshold) >= threshold

Stop if a recursion is more than n levels deep
Example

Stop if a recursion is more than n levels deep
Example

Stopped at
20th call

Productizing Customizations

Productizing Customizations

• LLDB-specific configuration file

Productizing Customizations

• LLDB-specific configuration file
■ ~/.lldbinit

Productizing Customizations

• LLDB-specific configuration file
■ ~/.lldbinit

• Loaded at debugger startup

Productizing Customizations

• LLDB-specific configuration file
■ ~/.lldbinit

• Loaded at debugger startup
•Useful to tweak debugger settings

Productizing Customizations

• LLDB-specific configuration file
■ ~/.lldbinit

• Loaded at debugger startup
•Useful to tweak debugger settings

■ Or load commonly used scripts

Productizing Customizations

• LLDB-specific configuration file
■ ~/.lldbinit

• Loaded at debugger startup
•Useful to tweak debugger settings

■ Or load commonly used scripts

• Xcode-specific version

Productizing Customizations

• LLDB-specific configuration file
■ ~/.lldbinit

• Loaded at debugger startup
•Useful to tweak debugger settings

■ Or load commonly used scripts

• Xcode-specific version
■ ~/.lldbinit-Xcode

Summary

Summary

• LLDB is the debugger
■ More efficient
■ New features

Summary

• LLDB is the debugger
■ More efficient
■ New features

•Debug effectively
■ Use logging and assertions wisely
■ Set the right breakpoints

Summary

• LLDB is the debugger
■ More efficient
■ New features

•Debug effectively
■ Use logging and assertions wisely
■ Set the right breakpoints

• Exploit customization
■ Data formatters provide more meaningful views of data
■ Automate repeated workflows

More Information

Dave DeLong
App Frameworks Evangelist
delong@apple.com

Documentation
LLDB Quick Start

LLDB Website
http://lldb.llvm.org

LLDB Help
help / apropos

Apple Developer Forums
http://devforums.apple.com

Related Sessions

What’s New in Xcode 5 Presidio
Tuesday 9:00AM

Debugging with Xcode Pacific Heights
Wednesday 2:00PM

Labs

LLDB and Instruments Lab Tools Lab C
Friday 10:15AM

