Turn-Based Gaming
with Game Center

Session 506

Nathan Taylor
I0S Engineering Manager

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

What You Will Learn

Turn-based multiplayer

* Qverview

* New features

* Basic scenarios

* Advanced scenarios

Game Center Multiplayer Options

Three ways to play with friends

* Peer-to-peer
e Server-hosted
* Turn-based

Turn-Based Multiplayer

1 1

Turn-Based Multiplayer

1 1

Turn-Based Multiplayer

1 1

Turn-Based Multiplayer

Turn-Based Multiplayer

1

Turn-Based Multiplayer

Turn-Based Multiplayer

1 1

Turn-Based Multiplayer

* Game Center provides matchmaking and invitation services
» Asynchronous
* Game Center server stores the game state

- Updates clients via push notifications
* Provides synchronization of the game state
- Manages player status

* |deal for mobile
- Users can play a short turn when available

Turn-Based Games
Capabilities

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Turn-Based Games

Capabilities
Simultaneous Matches Up to 30
Players per Match Up to 16

Gameplay Asynchronous

Turn-Based Games

Capabilities
Simultaneous Matches Up to 30
Players per Match Up to 16
Gameplay Asynchronous

Game Data Up to 64K bytes

Turn-Based Games

Capabilities
Simultaneous Matches Up to 30
Players per Match Up to 16
Gameplay Asynchronous
Game Data Up to 64K bytes

Seats Filled Invitations or Auto—Match

Turn-Based Games

Capabilities
Simultaneous Matches Up to 30
Players per Match Up to 16
Gameplay Asynchronous
Game Data Up to 64K bytes
Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Turn-Based Games

Capabilities
Simultaneous Matches Up to 30
Players per Match Up to 16
Gameplay Asynchronous
Game Data Up to 64K bytes
Seats Filled Invitations or Auto-Match
Turn Order Developer defined

Missed Turns Fallback list

Turn-Based Games

Capabilities
Simultaneous Matches Up to 30
Players per Match Up to 16
Gameplay Asynchronous
Game Data Up to 64K bytes
Seats Filled Invitations or Auto-Match
Turn Order Developer defined
Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn Flow Details

Turn Flow Details

Turn Flow Details

1 21

Turn Flow Details

Turn Flow Details

1 21

Turn Flow Details

Turn Flow Details

Match Data

Current state of the match

* NSData
- Contents are developer-defined
* Stored online
- Only current player can update
- Others can read
* Limited size: 64K bytes
- Apply data packing strategies
- Point to server stored data

Expectations of Turn-Based Games

Expectations of Turn-Based Games

* Multiple simultaneous matches
 Each with its own state, players, outcome

Expectations of Turn-Based Games

* Multiple simultaneous matches
 Each with its own state, players, outcome
* One player at a time
 Other players just observe until it is their turn

Expectations of Turn-Based Games

* Multiple simultaneous matches

 Each with its own state, players, outcome
* One player at a time

 Other players just observe until it is their turn
* Not always running

» Choose match, takes turn, and exits

Expectations of Turn-Based Games

* Multiple simultaneous matches
 Each with its own state, players, outcome
* One player at a time
 Other players just observe until it is their turn
* Not always running
» Choose match, takes turn, and exits
* Anywhere in app

- Receive notifications when player takes turn in
one match while taking our own turn in another

New Features

* Reporting scores and achievements for match

* Localizable turn messages

* Reminders

* Improved event handling

* Turn-based exchanges

* Improved parameter checking and error reporting

GKTurnBasedMatch

Game instances

* List of participants

* The current game state

* The player whose turn it is now
* All exchanges

GKTurnBasedParticipant

Seats for players

* Player ID
- May be a player or an open position
* Status
- Invited, matching, active, done
* Qutcome
- Filled when game over or player quits

GKTurnBasedMatchmakerViewController
Game Center interface

* Manage matches

- Choose a match to play
» Quit from a match

* Create new matches

« Invite friends
« Auto-match

Basic Scenarios

* Create a match

* |Invite friends

* Play a turn

* End the match

* Quit the match

* List open matches
* Remove a match

Creating a Match

e Use GKTurnBasedMatchMakerViewController

- Manage available matches
- Auto-match and invitations
 Create with a match request

* Programmatically
- Auto-match and invitations

Creating a Match

// Get the friends to invite
NSArray xfriendIDs = [self chooseFriendsToInvitel;

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4,
request.maxPlayers = 4,

request.playersTolnvite = friendIDs;
request.inviteMessage = @"Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch *xmatch,
NSError xerror) { ... }I1;

Creating a Match

// Get the friends to invite
NSArray *xfriendIDs = [self chooseFriendsToInvitel;

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4,
request.maxPlayers = 4,

request.playersTolnvite = friendIDs;
request.inviteMessage = @"Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch *xmatch,
NSError xerror) { ... }I1;

Creating a Match

// Get the friends to invite
NSArray xfriendIDs = [self chooseFriendsToInvitel;

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4,
request.maxPlayers = 4,

request.playersTolnvite = friendIDs;
request.inviteMessage = @"Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch xmatch,
NSError xerror) { ... }I1;

Creating a Match

// Get the friends to invite
NSArray xfriendIDs = [self chooseFriendsToInvitel;

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4,
request.maxPlayers = 4,

request.playersTolnvite = friendIDs;
request.inviteMessage = @"Let’'s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch *xmatch,
NSError xerror) { ... }I1;

Creating a Match

// Get the friends to invite
NSArray xfriendIDs = [self chooseFriendsToInvitel;

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4,
request.maxPlayers = 4,

request.playersTolnvite = friendIDs;
request.inviteMessage = @"Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch *xmatch,
NSError xerror) { ... }I1;

Multiple Matches

Multiple Matches

Managing Multiple Matches

* Listing matches

[GKTurnBasedMatch loadMatchesWithCompletionHandler: ~(NSArray
xexistingMatches, NSError xerror) {1 ... }I;

* Removing a match

[match removeWithCompletionHandler: ~(NSError %) { ... }];

e Use GKTurnBasedMatchmakerViewController

Managing Multiple Matches

* Listing matches

[GKTurnBasedMatch loadMatchesWithCompletionHandler: ~(NSArray
xexistingMatches, NSError xerror) 1 ... }I;

* Removing a match

[match removeWithCompletionHandler: ~(NSError %) { ... }];

e Use GKTurnBasedMatchmakerViewController

Managing Multiple Matches

* Listing matches

[GKTurnBasedMatch loadMatchesWithCompletionHandler: ~(NSArray
xexistingMatches, NSError xerror) {1 ... }I;

* Removing a match

[match removeWithCompletionHandler: ~(NSError %) { ... }];

e Use GKTurnBasedMatchmakerViewController

Taking a Turn

Taking a Turn

Taking a Turn

Taking a Turn

Sequence

Taking a Turn

Sequence

* | oad the current state

Taking a Turn

Sequence

* | 0oad the current state
* Apply game logic

Taking a Turn

Sequence

* | oad the current state
* Apply game logic
e Save intermediate state

Taking a Turn

Sequence

* Load the current state

* Apply game logic

* Save intermediate state

* Choose the next player sequence

Taking a Turn

Sequence

* Load the current state

* Apply game logic

 Save intermediate state

* Choose the next player sequence
* Submit turn

Taking a Turn

Load the current state

// Load the latest match data and match state
[activeMatch loadMatchDatawWithCompletionHandler:
~(NSData xmatchData, NSError xerror) {

// Present the latest match state to the user
if (matchData) {
self.currentMatchData = matchData:

}

else if (error) {
// Handle the error

+
H;

Taking a Turn

Load the current state

// Load the latest match data and match state
[activeMatch loadMatchDatawWithCompletionHandler:
~(NSData xmatchData, NSError xerror) {

// Present the latest match state to the user
if (matchData) {
self.currentMatchData = matchData:

}

else if (error) {
// Handle the error

+
H;

Taking a Turn

Load the current state

// Load the latest match data and match state
[activeMatch loadMatchDatawWithCompletionHandler:
~(NSData xmatchData, NSError xerror) {

// Present the latest match state to the user
if (matchData) {
self.currentMatchData = matchData:

}

else if (error) {
// Handle the error

+
H;

Taking a Turn

Save intermediate state

// Build the new match data for the i1ntermediate state
newMatchData = [self updateMatchData:currentMatchDatal;

// Save the current state to the server
[match saveCurrentTurnWithMatchData: newMatchData
withCompletionHandler: ~(NSError *error) { ... }];

// Continued...

Taking a Turn

Save intermediate state

// Build the new match data for the intermediate state
newMatchData = [self updateMatchData:currentMatchDatal;

// Save the current state to th
[match saveCurrentTurnWithMatckh

withComp letionHan

// Continued...

e server
Data: newMatchData

dler: ~(NSError xerror) { ...

rH;

Taking a Turn

Save intermediate state

// Build the new match data for the i1ntermediate state
newMatchData = [self updateMatchData:currentMatchDatal;

// Save the current state to the server
[match saveCurrentTurnWithMatchData: newMatchData
withCompletionHandler: ~(NSError *error) { ... }];

// Continued...

Taking a Turn

Choose the next participants

* Based on your game rules
» Select only active players
* Guard against missed turns

- Provide a list of multiple next participants
- Use time outs

- Last participant on list does not time out
- Include yourself last

Taking a Turn

Submitting turn

// Update the state of the match
newMatchData = [self updateMatchData:currentMatchDatal;

// Determine the next participants
nextParticipants = [self chooseNextParticipants:match];

// Set the turn message...

Taking a Turn

Submitting turn

// Update the state of the match
newMatchData = [self updateMatchData:currentMatchDatal;

// Determine the next participants
nextParticipants = [self chooseNextParticipants:match];

// Set the turn message...

Taking a Turn

Submitting turn

// Update the state of the match
newMatchData = [self updateMatchData:currentMatchDatal;

// Determine the next participants
nextParticipants = [self chooseNextParticipants:match];

// Set the turn message...

Localizable Message

* Provided by the game bundle as a localizable string
» Game Center localizes string from game bundle

* Localized on the sender device as fallback

* Two items needed

* A localizable string key
- Optionally format arguments as array

Taking a Turn

Localizable message

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey
arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
turnTimeout: GKTurnBasedTimeoutDefault
matchData: newMatchData
completionHandler: ~(NSError xerror) { ... } 1;

Taking a Turn

Localizable message

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed 1;

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey

arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants

turnTimeout: GKTurnBasedTimeoutDefault
matchData: newMatchData
completionHandler: ~(NSError xerror) { ... } 1;

Taking a Turn

Localizable message

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey

arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
turnTimeout: GKTurnBasedTimeoutDefault
matchData: newMatchData
completionHandler: ~(NSError xerror) { ... } 1;

Taking a Turn

Localizable message

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey

arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
turnTimeout: GKTurnBasedTimeoutDefault
matchData: newMatchData
completionHandler: ~(NSError xerror) { ... } 1;

Reminders

* Turn-based gaming is asynchronous
» Game proceeds only as fast as slowest player
- Timeouts and fallbacks help
* Sometimes need to remind a player to play
* Reminders are a single one-way push with message

Reminders
Sending a localizable reminder

// Assemble the reminder message key and arguments

messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @[match.currentParticipant]

localizableMessageKey: messageKey
arguments: messageArguments

completionHandler: ~(NSError x) { ... }];

Reminders
Sending a localizable reminder

// Assemble the reminder message key and arguments

messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @[match.currentParticipant]

localizableMessageKey: messageKey
arguments: messageArguments

completionHandler: ~(NSError x) { ... }];

Reminders
Sending a localizable reminder

// Assemble the reminder message key and arguments

messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @Imatch.currentParticipant]

localizableMessageKey: messageKey
arguments: messageArguments

completionHandler: ~(NSError x) { ... }];

Ending the Game

Ending the Game

What to do when it’s all over

* Players finish the game
* Player quits the game

= |n turn
= Qut of turn

* Game is ended by the last player instead of taking a turn

Ending the Game

Outcomes

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchDatal;

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant *participant in match.participants) A

if (participant.status == GKTurnBasedParticipantActive) <
participant.status = GKTurnBasedParticipantDone;

participant.outcome = [self outcomeForParticipant: participant
matchData: lastMatchDatal:

// Continued...

Ending the Game

Outcomes

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchDatal;

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant *participant in match.participants) A

if (participant.status == GKTurnBasedParticipantActive) <
participant.status = GKTurnBasedParticipantDone;

participant.outcome = [self outcomeForParticipant: participant
matchData: lastMatchDatal:

// Continued...

Ending the Game

Outcomes

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchDatal;

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant xparticipant in match.participants) A

if (participant.status == GKTurnBasedParticipantActive) {
participant.status = GKTurnBasedParticipantDone;

participant.outcome = [self outcomeForParticipant: participant
matchData: lastMatchDatal:

// Continued...

Ending the Game

Outcomes

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchDatal;

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant xparticipant in match.participants) A

if (participant.status == GKTurnBasedParticipantActive) {
participant.status = GKTurnBasedParticipantDone;

participant.outcome = [self outcomeForParticipant: participant
matchData: lastMatchData]:

// Continued...

Ending the Game

Reporting final scores and achievements

// Determine the scores and achievements earned for all players
scores = [self scoresForMatch:match data:lastMatchDatal;

[self achievementEarnedForMatch:match data: lastMatchDatal]:

achievements

// End the match and report scores and achievements
[match endMatchInTurnWithMatchData: lastMatchData
scores: scores
achievements: achievements
completionHandler: ~(NSError x) { ... }];

Ending the Game

Reporting final scores and achievements

// Determine the scores and achievements earned for all players
scores = [self scoresForMatch:match data:lastMatchDatal;

[self achievementEarnedForMatch:match data: lastMatchDatal]:

achievements

// End the match and report scores and achievements
[match endMatchInTurnWithMatchData: lastMatchData
scores: scores
achievements: achievements
completionHandler: ~(NSError x) { ... }];

Ending the Game

Reporting final scores and achievements

// Determine the scores and achievements earned for all players
scores = [self scoresForMatch:match data:lastMatchDatal;

[self achievementEarnedForMatch:match data: lastMatchDatal]:

achievements

// End the match and report scores and achievements
[match endMatchInTurnWithMatchData: lastMatchData
scores: scores
achievements: achilevements
completionHandler: ~(NSError x) { ... }];

Handling Events

Handling Events

GKTurnBasedEventListener

* Protocol for events

- Match state changed: Invitation, new turn, turn passed
- Match ended
- Exchange requested, cancelled, and completed

» GKLocalPlayer is the event producer
- Replaces GKTurnBasedEventHandler and delegate
» Can have multiple listeners for each event

Handling Events

Setting the listener

* Adopt the GKTurnBasedEventListener protocol

* Register with GKLocalPlayer
[[GKLocalPlayer localPlayer] registerListener: self]

* Register multiple listeners

- AppDelegate for new turn and activations
- Match view controller for updates to the current match

Handling Events

Setting the listener

* Adopt the GKTurnBasedEventListener protocol

* Register with GKLocalPlayer
[[GKLocalPlayer localPlayer] registerListener: self]

* Register multiple listeners

- AppDelegate for new turn and activations
- Match view controller for updates to the current match

Handling Events

Setting the listener

* Adopt the GKTurnBasedEventListener protocol

* Register with GKLocalPlayer
[[GKLocalPlayer localPlayer] registerListener: self]

* Register multiple listeners

- AppDelegate for new turn and activations
- Match view controller for updates to the current match

GKEventListenerProtocol
Basic turn events

 Turn events

— (void)player: (GKPlayer *x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *)match
didBecomeActive: (BOOL)didBecomeActive

* Match requests from Game Center

- (void)player: (GKPlayer x)player
didRequestMatchwWithPlayers: (NSArray *x)playerIDsTolnvite

* Match ended

- (void)player: (GKPlayer *x)player
matchEnded: (GKTurnBasedMatch *)match

GKEventListenerProtocol
Basic turn events

 Turn events

— (void)player: (GKPlayer *x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *)match
didBecomeActive: (BOOL)didBecomeActive

* Match requests from Game Center

- (void)player: (GKPlayer x)player
didRequestMatchwWithPlayers: (NSArray *x)playerIDsTolnvite

* Match ended

- (void)player: (GKPlayer *x)player
matchEnded: (GKTurnBasedMatch *)match

GKEventListenerProtocol
Basic turn events

 Turn events

— (void)player: (GKPlayer *x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *)match
didBecomeActive: (BOOL)didBecomeActive

* Match requests from Game Center

- (void)player: (GKPlayer *x)player
didRequestMatchwWwithPlayers: (NSArray *x)playerIDsToInvite

* Match ended

- (void)player: (GKPlayer *x)player
matchEnded: (GKTurnBasedMatch *)match

GKEventListenerProtocol
Basic turn events

 Turn events

— (void)player: (GKPlayer *x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *)match
didBecomeActive: (BOOL)didBecomeActive

* Match requests from Game Center

- (void)player: (GKPlayer x)player
didRequestMatchwWithPlayers: (NSArray *x)playerIDsTolnvite

* Match ended

— (void)player: (GKPlayer *x)player
matchEnded: (GKTurnBasedMatch *)match

GKEventListenerProtocol
Basic turn events

 Turn events

— (void)player: (GKPlayer *x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *)match
didBecomeActive: (BOOL)didBecomeActive

* Match requests from Game Center

- (void)player: (GKPlayer x)player
didRequestMatchwWithPlayers: (NSArray *x)playerIDsTolnvite

* Match ended

- (void)player: (GKPlayer *x)player
matchEnded: (GKTurnBasedMatch *)match

New Turn Event
Activation

- (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *x)match
didBecomeActive: (BOOL)didBecomeActive
{
// This event activated the application. This means that the user

// tapped on the notification banner and wants to see or play this
// match now.

if (didBecomeActive) {
[self switchToMatch:match];
return;

}

// Handle the event more selectively

New Turn Event
Activation

— (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch x)match
didBecomeActive: (BOOL)didBecomeActive
1
// This event activated the application. This means that the user

// tapped on the notification banner and wants to see or play this
// match now.

if (didBecomeActive) {
[self switchToMatch:match];
return;

}

// Handle the event more selectively

New Turn Event
Activation

- (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *x)match
didBecomeActive: (BOOL)didBecomeActive
{
// This event activated the application. This means that the user

// tapped on the notification banner and wants to see or play this
// match now.

if (didBecomeActive) {
[self switchToMatch:match]:
return;

}

// Handle the event more selectively

New lTurn Event
Match updated

- (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch x)match
didBecomeActive: (BOOL)didBecomeActive

{

// continued...

// Handle the event more selectively

if ([self.currentMatch isEqual:match]) {
// This 1s the match the user 1i1s currently playing,
// update to show the latest state
[self refreshMatch:match];

+
else { ... }

New lTurn Event
Match updated

— (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch sx)match
didBecomeActive: (BOOL)didBecomeActive

1

// continued...

// Handle the event more selectively

if ([self.currentMatch isEqual:match]) {
// This 1s the match the user 1i1s currently playing,
// update to show the latest state
[self refreshMatch:match];

+
else { ... }

New lTurn Event
Match updated

- (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch x)match
didBecomeActive: (BOOL)didBecomeActive

{

// continued...

// Handle the event more selectively

if ([self.currentMatch isEqual:match]) {
// This 1s the match the user 1i1s currently playing,
// update to show the latest state
[self refreshMatch:match];

s
else { ... }

New Turn Event
Turn received for different match

- (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *)match
didBecomeActive: (BOOL)didBecomeActive

{

// continued...
if ([self.currentMatch isEqual:matchl) { ... }
else 1
// It became the player’s turn in a different match
if ([match.currentParticpant.playerID isEqual:player.playerID]) {
// Prompt the player to switch to the new match
[self notifyUserOfNewTurn:matchl];

+
else { ... }

New Turn Event
Turn received for different match

— (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch x)match
didBecomeActive: (BOOL)didBecomeActive

1

// continued...
if ([self.currentMatch isEqual:matchl) { ... }
else 1
// It became the player’s turn in a different match
if ([match.currentParticpant.playerID isEqual:player.playerID]) {
// Prompt the player to switch to the new match
[self notifyUserOfNewTurn:matchl];

+
else { ... }

New Turn Event
Turn received for different match

- (void)player: (GKPlayer x)player
receivedTurnEventForMatch: (GKTurnBasedMatch *)match
didBecomeActive: (BOOL)didBecomeActive

{

// continued...
if ([self.currentMatch isEqual:matchl) { ... }
else 1
// It became the player’s turn in a different match
if ([match.currentParticpant.playerID isEqual:player.playerID]) {
// Prompt the player to switch to the new match
[self notifyUserOfNewTurn:matchl];

I3
else { ... }

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer x)player
didRequestMatchWithPlayers: (NSArray *)playerIDsTolInvite

{
// Set up match request
GKMatchRequest *request
request.minPlayers = 2;
request.maxPlayers = 2;

[[GKMatchRequest alloc] initl];

request.playersTolnvite = playerIDsToInvite;
request.inviteMessage = @"Let’'s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch xmatch,
NSError xerror) { ... }1;

Match Request

// Triggered by the user choosing to play with a friend from Game Center
— (void)player: (GKPlayer *x)player
didRequestMatchWithPlayers: (NSArray *)playerIDsTolInvite

1
// Set up match request
GKMatchRequest *request
request.minPlayers = 2;
request.maxPlayers = 2;

[[GKMatchRequest alloc] initl];

request.playersTolnvite = playerIDsToInvite;
request.inviteMessage = @"Let’'s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch xmatch,
NSError xerror) { ... }1;

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer x)player
didRequestMatchWithPlayers: (NSArray *)playerIDsTolInvite

{
// Set up match request
GKMatchRequest *request
request.minPlayers = 2;
request.maxPlayers = 2;

[[GKMatchRequest alloc] init];

request.playersTolnvite = playerIDsToInvite;
request.inviteMessage = @"Let’'s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch xmatch,
NSError xerror) { ... }1;

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer x)player
didRequestMatchWithPlayers: (NSArray *)playerIDsTolInvite

{
// Set up match request
GKMatchRequest *request
request.minPlayers = 2;
request.maxPlayers = 2;

[[GKMatchRequest alloc] initl];

request.playersTolnvite = playerIDsTolInvite;
request.inviteMessage = @"Let’'s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch xmatch,
NSError xerror) { ... }1;

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer x)player
didRequestMatchWithPlayers: (NSArray *)playerIDsTolInvite

{
// Set up match request
GKMatchRequest *request
request.minPlayers = 2;
request.maxPlayers = 2;

[[GKMatchRequest alloc] initl];

request.playersTolnvite = playerIDsToInvite;
request.inviteMessage = @"Let’'s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
withCompletionHandler: ~(GKTurnBasedMatch xmatch,
NSError xerror) { ... }1;

Turn-Based Exchanges

Turn-Based Exchanges

» Out-of-band exchange of data between players
- A single request and a reply from each player
* Current player in control of turn duration
- Specify timeout
- Can be cancelled when no longer needed
* Fully asynchronous

Why Exchanges?

Solve difficult scenarios

* Trading resources

- Initiated by current player
- Initiated by other player with current player
- Between non-current players

* Auctions of properties
* Simultaneous turns
* Simple messages: Taunts, kibitz

Difficult Scenarios
Before exchanges

* Start turn
* Set special turn mode
» Pass turn between players
- Short time out
* Return turn to original player
* Resolve special mode

- Duration of turn not under player’s control
- Long time to resolve

* End turn

Difficult Scenarios
With exchanges

* Start turn
* Request exchange
* Receive replies

* Resolve exchange into match data
* End turn

GKTurnBasedExchange

Out-of-band request

* Sender
* Recipients
- Can have multiple recipients
- Can send to open seats
* Status
- Active, cancelled, completed, resolved
* Message
* Data: 1K bytes
* Replies

GKTurnBasedExchangeReply

Reply to an exchange

* Recipient
* Message
» Data: 1K bytes

Exchange Flow

Exchange Flow

Exchange Flow

1 21

Nel Sam

1

X

Meg You

i 1

Bob Sue

Exchange Flow

Nel Sam

You

Exchange Flow

Exchange Flow

Exchange Flow

Exchange Flow

The Three Rs of Exchanges

* Request an exchange

- Started by any player

- Sent at any time

- Can target multiple players
- Includes a small payload

* Reply to exchange
* Resolve exchange into match state

Request an Exchange

* Requests can be sent to one or more participants
* Can be sent to empty participants
* For each participant a request is sent to a single reply is required

[match sendExchangeToParticipants: participantsForTrade
data: tradeData
localizableMessageKey: messageKey
arguments: messageArguments
timeout: GKTurnBasedExchangeTimeoutDefault
completionHandler: ~(GKTurnBasedExchange *xexchange,
NSError xerror) { ... }

Request an Exchange

* Requests can be sent to one or more participants
* Can be sent to empty participants
* For each participant a request is sent to a single reply is required

[match sendExchangeToParticipants: participantsForTrade
data: tradeData
localizableMessageKey: messageKey
arguments: messageArguments
timeout: GKTurnBasedExchangeTimeoutDefault
completionHandler: ~(GKTurnBasedExchange *xexchange,
NSError xerror) { ... }

Reply to an Exchange

* Exchanges have a single reply per participant
» Completed once a reply is received from each participant

[exchange replyWithLocalizableMessage: replyMessage
arguments: replyArguments

data: replyData
completionHandler: ~(NSError xerror) { ... }];

Reply to an Exchange

* Exchanges have a single reply per participant
» Completed once a reply is received from each participant

[exchange replyWithLocalizableMessage: replyMessage
arguments: replyArguments

data: replyData
completionHandler: ~(NSError xerror) { ... }1;

Cancel an Exchange

* When user no longer wants to wait for further replies
» Can cancel active or completed exchanges
 Canceling an exchange removes it from the match

[exchange cancelWithLocalizableMessage: cancelMessage
arguments: cancelArguments
completionHandler: ~(NSError xerror) { ... }I;

Cancel an Exchange

* When user no longer wants to wait for further replies
» Can cancel active or completed exchanges
 Canceling an exchange removes it from the match

[exchange cancelWithLocalizableMessage: cancelMessage
arguments: cancelArguments
completionHandler: ~(NSError xerror) { ... }1;

Resolving Exchanges

* Exchange completed once all replies received
* All completed exchanges must be resolved

- Including exchanges not involving the current player
- Gather data from exchange and replies
- Merge request and reply data into match data

* Once resolved, the exchange will be removed from the match

Resolving Exchanges

currentMatchData = match.matchData:

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state

mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
matchData: currentMatchDatal;

// Save the new match state to the server and indicate the exchanges resolved

[match saveMergedMatchData: mergedMatchData
withResolvedExchanges: exchangesToResolve
completionHandler: ~(NSError xerror) { ... }I;

// Continue with the turn

Resolving Exchanges

currentMatchData = match.matchData:

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state

mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
matchData: currentMatchDatal;

// Save the new match state to the server and indicate the exchanges resolved

[match saveMergedMatchData: mergedMatchData
withResolvedExchanges: exchangesToResolve
completionHandler: ~(NSError xerror) { ... }I;

// Continue with the turn

Resolving Exchanges

currentMatchData = match.matchData;
exchangesToResolve = match.completedExchanges,
// Merge the data from the completed exchanges into the current match state

mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
matchData: currentMatchDatal;

// Save the new match state to the server and indicate the exchanges resolved

[match saveMergedMatchData: mergedMatchData
withResolvedExchanges: exchangesToResolve
completionHandler: ~(NSError xerror) { ... }I;

// Continue with the turn

Resolving Exchanges

currentMatchData = match.matchData:

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state

mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
matchData: currentMatchDatal;

// Save the new match state to the server and indicate the exchanges resolved

[match saveMergedMatchData: mergedMatchData
withResolvedExchanges: exchangesToResolve
completionHandler: ~(NSError xerror) { ... }I;

// Continue with the turn

Exchange Event Handling

GKTurnBasedEventListener protocol

* Request

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

* Cancelled

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

* Completed

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *)exchange
forMatch: (GKTurnBasedMatch x)match

Exchange Event Handling

GKTurnBasedEventListener protocol

* Request

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

* Cancelled

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

* Completed

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *)exchange
forMatch: (GKTurnBasedMatch x)match

Exchange Event Handling

GKTurnBasedEventListener protocol

* Request

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

* Cancelled

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
forMatch: (GKTurnBasedMatch x)match

* Completed

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *)exchange
forMatch: (GKTurnBasedMatch x)match

Exchange Event Handling

GKTurnBasedEventListener protocol

* Request

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

* Cancelled

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

* Completed

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

Exchange Event Handling

GKTurnBasedEventListener protocol

* Request

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

* Cancelled

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

* Completed

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *)exchange
forMatch: (GKTurnBasedMatch x)match

Exchange Requested
Event handling

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
// Allow the user to act on this exchange
[self showExchange:exchange match:match];

}
else {

// Prompt user to change to this match

[self showNotificationForExchange:exchange match:match];
}

Exchange Requested
Event handling

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
// Allow the user to act on this exchange
[self showExchange:exchange match:match];

}
else {

// Prompt user to change to this match

[self showNotificationForExchange:exchange match:match];
}

Exchange Requested
Event handling

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
// Allow the user to act on this exchange
[self showExchange:exchange match:match];

}
else {

// Prompt user to change to this match

[self showNotificationForExchange:exchange match:match];
}

Exchange Requested
Event handling

- (void) player: (GKPlayer x)player
receivedExchangeRequest: (GKTurnBasedExchange x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
// Allow the user to act on this exchange
[self showExchange:exchange match:match];

}
else {

// Prompt user to change to this match

[self showNotificationForExchange:exchange match:match];
}

Exchange Cancelled
Event handling

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchange]) A
// Indicate that the other player has cancelled this request.
[self returnToMatch:matchl];

}
else {

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:match];
}

Exchange Cancelled
Event handling

— (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchange]) A
// Indicate that the other player has cancelled this request.
[self returnToMatch:matchl];

}
else {

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:match];
}

Exchange Cancelled
Event handling

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchange]) A
// Indicate that the other player has cancelled this request.
[self returnToMatch:match];

}
else {

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:match];
}

Exchange Cancelled
Event handling

- (void) player: (GKPlayer x)player
receivedExchangeCancellation: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch *x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchange]) A
// Indicate that the other player has cancelled this request.
[self returnToMatch:matchl];

}
else {

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:match];
}

Exchange Completed
Event handling

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchangel]) {
// Indicate that the exchange completed and show the user the
// pertinent reply

[self showReplies:replies forExchange:exchangel];

}
else 1

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:matchl];
}

Exchange Completed
Event handling

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchangel]) {
// Indicate that the exchange completed and show the user the
// pertinent reply

[self showReplies:replies forExchange:exchangel];

}
else 1

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:matchl];
}

Exchange Completed
Event handling

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray *x)replies
forCompletedExchange: (GKTurnBasedExchange x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchangel]) {
// Indicate that the exchange completed and show the user the
// pertinent reply

[self showReplies:replies forExchange:exchangel];

}
else 1

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:matchl];
}

Exchange Completed
Event handling

— (void) player: (GKPlayer x)player
receivedExchangeReplies: (NSArray x)replies
forCompletedExchange: (GKTurnBasedExchange *x)exchange
forMatch: (GKTurnBasedMatch x)match

// Is this the match we are currently viewing?

if ([self.currentMatch isEqual: match] &&
[self.currentExchange isEqual: exchangel]) {
// Indicate that the exchange completed and show the user the
// pertinent reply

[self showReplies:replies forExchange:exchangel];

}
else 1

// Clear any notification for the exchange

[self clearNotificationForExchange:exchange match:matchl];
}

Difficult Scenarios
Solved with exchanges

* Trading resources
 Simultaneous turns
* Auctions of properties

Trading

Using exchanges

Trading

Using exchanges

» User decides what they are going to offer to trade

Trading

Using exchanges

» User decides what they are going to offer to trade
* Send one request per potential trade partner

Trading

Using exchanges

» User decides what they are going to offer to trade
* Send one request per potential trade partner
» Cancel outstanding exchanges when user gets a reply that they like

Trading

Using exchanges

» User decides what they are going to offer to trade

* Send one request per potential trade partner

» Cancel outstanding exchanges when user gets a reply that they like
* Resolve the completed exchanges into the match

Trading

Using exchanges

» User decides what they are going to offer to trade

* Send one request per potential trade partner

» Cancel outstanding exchanges when user gets a reply that they like
* Resolve the completed exchanges into the match

* Finish the turn

Trading

Using exchanges

P &

Nel

P 3

Sam

P 3

Meg

P &

You

1 21

Bob Sue

Trading

Using exchanges

P &

Nel

P 3

Sam

P 3

Meg

Game
- Data

You

1 21

Bob Sue

Trading

Using exchanges

1 21

Nel Sam

1

X

Meg You

i 1

Bob Sue

Trading

Using exchanges

Nel Sam

You

Trading

Using exchanges

Trading

Using exchanges

P &

Nel

P 3

Sam

P 3

Meg

Game
- Data

You

1 21

Bob Sue

Trading

Using exchanges

Trading

Using exchanges

Simultaneous Turns
Using exchanges

Simultaneous Turns
Using exchanges

* Send one exchange to all participants of the game

Simultaneous Turns
Using exchanges

* Send one exchange to all participants of the game
» Wait until all replies are received or time out

Simultaneous Turns
Using exchanges

* Send one exchange to all participants of the game
» Wait until all replies are received or time out
* Resolve the completed exchange into the match

Simultaneous Turns
Using exchanges

* Send one exchange to all participants of the game
» Wait until all replies are received or time out

* Resolve the completed exchange into the match

* Finish the turn

Auctions
Using exchanges

Auctions
Using exchanges

* Send one exchange to all participants of the game
- Short time out

Auctions
Using exchanges

* Send one exchange to all participants of the game
- Short time out
» Wait until all replies are received or time out

Auctions
Using exchanges

* Send one exchange to all participants of the game
- Short time out

» Wait until all replies are received or time out
 Repeat until a high bidder is determined

Auctions
Using exchanges

* Send one exchange to all participants of the game
- Short time out

» Wait until all replies are received or time out
* Repeat until a high bidder is determined
* Resolve the completed exchanges into the match

Auctions
Using exchanges

* Send one exchange to all participants of the game
- Short time out

» Wait until all replies are received or time out

 Repeat until a high bidder is determined

* Resolve the completed exchanges into the match

* Finish the turn

Trading

Using exchanges

P &

Nel

P 3

Sam

P 3

Meg

P &

You

1 21

Bob Sue

Trading

Using exchanges

P &

Nel

P 3

Sam

P 3

Meg

Game
- Data

You

1 21

Bob Sue

Trading

Using exchanges

Trading

Using exchanges

Trading

Using exchanges

User Expectations

* Allow multiple sessions

- Create match
- List existing matches
- Manage matches (quit in turn, quit out of turn, remove)

* Everything is asynchronous
* Switching current match

- New Invite
- New turn/exchange

Wrap Up

* Turn-based games

- Optimized for mobile
- Multiple sessions
- Simple structure

* Exchanges

- Very difficult made easy
- Opens up new game modes
- Three Rs of exchanges: Request, Reply, Resolve

More Information

Allan Schaffer

Graphics and Game Technologies Evangelist
aschaffer@apple.com

Documentation

Game Center for Developers
http://developer.apple.com/game-center

Apple Developer Forums
http://devforums.apple.com

mailto:aschaffer@apple.com
mailto:aschaffer@apple.com
http://developer.apple.com/devcenter/ios/gamecenter
http://developer.apple.com/devcenter/ios/gamecenter

Related Sessions

Mlssion

, :
What's New in Game Center Wednesday 3:15PM

Pacific Heights I

, .
What's New in iTunes Connect Thursday 10:15AM

Labs

Graphics and Games Lab B
Game Center Lab Thursday 12:45PM

& WWDC2013

