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Turn-based multiplayer
What You Will Learn

•Overview
•New features
• Basic scenarios
•Advanced scenarios



Three ways to play with friends
Game Center Multiplayer Options

• Peer-to-peer
• Server-hosted
• Turn-based
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Turn-Based Multiplayer

•Game Center provides matchmaking and invitation services
■ Asynchronous

•Game Center server stores the game state
■ Updates clients via push notifications
■ Provides synchronization of the game state
■ Manages player status

• Ideal for mobile
■ Users can play a short turn when available



Turn-Based Games
Capabilities



Turn-Based Games
Capabilities

Simultaneous Matches  Up to 30

Players per Match  Up to 16

Gameplay  Asynchronous

Game Data  Up to 64K bytes

Seats Filled  Invitations or Auto-Match

Turn Order  Developer defined

Missed Turns  Fallback list

Turn Time Out  Default is 2 Weeks
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Current state of the match
Match Data

•NSData
■ Contents are developer-defined

• Stored online
■ Only current player can update
■ Others can read

• Limited size: 64K bytes
■ Apply data packing strategies
■ Point to server stored data
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Expectations of Turn-Based Games

•Multiple simultaneous matches
■ Each with its own state, players, outcome

•One player at a time
■ Other players just observe until it is their turn

•Not always running
■ Choose match, takes turn, and exits

•Anywhere in app
■ Receive notifications when player takes turn in 
one match while taking our own turn in another 



New Features

• Reporting scores and achievements for match
• Localizable turn messages
• Reminders
• Improved event handling
• Turn-based exchanges
• Improved parameter checking and error reporting



Game instances
GKTurnBasedMatch

• List of participants
• The current game state
• The player whose turn it is now
•All exchanges



Seats for players
GKTurnBasedParticipant

• Player ID
■ May be a player or an open position

• Status
■ Invited, matching, active, done

•Outcome
■ Filled when game over or player quits



Game Center interface
GKTurnBasedMatchmakerViewController

•Manage matches
■ Choose a match to play
■ Quit from a match

• Create new matches
■ Invite friends
■ Auto-match



Basic Scenarios

• Create a match
• Invite friends
• Play a turn
• End the match
•Quit the match
• List open matches
• Remove a match



Creating a Match

•Use GKTurnBasedMatchMakerViewController
■ Manage available matches
■ Auto-match and invitations
■ Create with a match request

• Programmatically
■ Auto-match and invitations



Creating a Match

// Get the friends to invite
NSArray *friendIDs = [self chooseFriendsToInvite];

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4;
request.maxPlayers = 4;

request.playersToInvite = friendIDs;
request.inviteMessage = @”Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request 
                withCompletionHandler: ^(GKTurnBasedMatch *match, 
                                         NSError *error) { ... }];
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Managing Multiple Matches

• Listing matches

[GKTurnBasedMatch loadMatchesWithCompletionHandler: ^(NSArray 
*existingMatches, NSError *error) { ... }];

• Removing a match

[match removeWithCompletionHandler: ^(NSError *) { ... }]; 

•Use GKTurnBasedMatchmakerViewController
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Sequence
Taking a Turn

• Load the current state
•Apply game logic
• Save intermediate state
• Choose the next player sequence
• Submit turn



Load the current state
Taking a Turn

// Load the latest match data and match state
[activeMatch loadMatchDataWithCompletionHandler:
    ^(NSData *matchData, NSError *error) {
    
    // Present the latest match state to the user
    if (matchData) {
        self.currentMatchData = matchData;
    }
    else if (error) {
        // Handle the error
    }
}];
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Save intermediate state
Taking a Turn

// Build the new match data for the intermediate state
newMatchData = [self updateMatchData:currentMatchData];

// Save the current state to the server
[match saveCurrentTurnWithMatchData: newMatchData 
              withCompletionHandler: ^(NSError *error) { ... }];

// Continued...
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Save intermediate state
Taking a Turn

// Build the new match data for the intermediate state
newMatchData = [self updateMatchData:currentMatchData];

// Save the current state to the server
[match saveCurrentTurnWithMatchData: newMatchData 
              withCompletionHandler: ^(NSError *error) { ... }];

// Continued...



Choose the next participants
Taking a Turn

• Based on your game rules
• Select only active players
•Guard against missed turns

■ Provide a list of multiple next participants
■ Use time outs 
■ Last participant on list does not time out
■ Include yourself last



Submitting turn
Taking a Turn

// Update the state of the match
newMatchData = [self updateMatchData:currentMatchData];

// Determine the next participants
nextParticipants = [self chooseNextParticipants:match];

// Set the turn message...
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// Update the state of the match
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Localizable Message

• Provided by the game bundle as a localizable string
•Game Center localizes string from game bundle
• Localized on the sender device as fallback
• Two items needed 

■ A localizable string key 
■ Optionally format arguments as array



Localizable message
Taking a Turn

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[ playerName, wordPlayed ];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey
                          arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
                       turnTimeout: GKTurnBasedTimeoutDefault
                         matchData: newMatchData
                 completionHandler: ^(NSError *error) { ... } ];
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Taking a Turn
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Reminders

• Turn-based gaming is asynchronous
•Game proceeds only as fast as slowest player

■ Timeouts and fallbacks help

• Sometimes need to remind a player to play
• Reminders are a single one-way push with message



Sending a localizable reminder
Reminders

// Assemble the reminder message key and arguments
messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @[match.currentParticipant]
            localizableMessageKey: messageKey
                        arguments: messageArguments
                completionHandler: ^(NSError *) { ... }];
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Sending a localizable reminder
Reminders

// Assemble the reminder message key and arguments
messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @[match.currentParticipant]
            localizableMessageKey: messageKey
                        arguments: messageArguments
                completionHandler: ^(NSError *) { ... }];
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What to do when it’s all over
Ending the Game

• Players finish the game
• Player quits the game

■ In turn
■ Out of turn

•Game is ended by the last player instead of taking a turn



Outcomes
Ending the Game

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchData];

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant *participant in match.participants) {
    if (participant.status == GKTurnBasedParticipantActive) {
        participant.status = GKTurnBasedParticipantDone;
        participant.outcome = [self outcomeForParticipant: participant 
                                                matchData: lastMatchData];
    }
}

// Continued...
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Reporting final scores and achievements
Ending the Game

// Determine the scores and achievements earned for all players
scores = [self scoresForMatch:match data:lastMatchData];

achievements = [self achievementEarnedForMatch:match data:lastMatchData];

// End the match and report scores and achievements
[match endMatchInTurnWithMatchData: lastMatchData
                            scores: scores
                      achievements: achievements
                 completionHandler: ^(NSError *) { ... }];
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GKTurnBasedEventListener
Handling Events

• Protocol for events
■ Match state changed: Invitation, new turn, turn passed
■ Match ended
■ Exchange requested, cancelled, and completed

•GKLocalPlayer is the event producer
■ Replaces GKTurnBasedEventHandler and delegate

• Can have multiple listeners for each event



Setting the listener
Handling Events

•Adopt the GKTurnBasedEventListener protocol
• Register with GKLocalPlayer
[[GKLocalPlayer localPlayer] registerListener: self]

• Register multiple listeners
■ AppDelegate for new turn and activations
■ Match view controller for updates to the current match
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Basic turn events
GKEventListenerProtocol

• Turn events
- (void)player: (GKPlayer *)player 

         receivedTurnEventForMatch: (GKTurnBasedMatch *)match
         didBecomeActive: (BOOL)didBecomeActive

•Match requests from Game Center
- (void)player: (GKPlayer *)player
        didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite

•Match ended
- (void)player: (GKPlayer *)player 
        matchEnded: (GKTurnBasedMatch *)match
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Activation
New Turn Event

- (void)player: (GKPlayer *)player 
  receivedTurnEventForMatch: (GKTurnBasedMatch *)match
  didBecomeActive: (BOOL)didBecomeActive
{
    // This event activated the application. This means that the user 
    // tapped on the notification banner and wants to see or play this       
    // match now.
    if (didBecomeActive) {
        [self switchToMatch:match];
        return;
    }

    // Handle the event more selectively
    ...
}
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Match updated
New Turn Event

- (void)player: (GKPlayer *)player 
  receivedTurnEventForMatch: (GKTurnBasedMatch *)match
  didBecomeActive: (BOOL)didBecomeActive
{
    // continued...

    // Handle the event more selectively
    if ([self.currentMatch isEqual:match]) {
        // This is the match the user is currently playing, 
        // update to show the latest state
        [self refreshMatch:match];
    }
    else { ... }
}
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Turn received for different match
New Turn Event

- (void)player: (GKPlayer *)player 
  receivedTurnEventForMatch: (GKTurnBasedMatch *)match
  didBecomeActive: (BOOL)didBecomeActive
{
    // continued...
    if ([self.currentMatch isEqual:match]) { ... }
    else { 
        // It became the player’s turn in a different match
        if ([match.currentParticpant.playerID isEqual:player.playerID]) {
            // Prompt the player to switch to the new match
            [self notifyUserOfNewTurn:match];
        }
        else { ... }
    }
}
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Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer *)player 
  didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite
{
    // Set up match request
    GKMatchRequest *request = [[GKMatchRequest alloc] init];
    request.minPlayers = 2;
    request.maxPlayers = 2;

    request.playersToInvite = playerIDsToInvite;
    request.inviteMessage = @”Let’s play”;

    // Use the request to find or create a new match
    [GKTurnBasedMatch findMatchForRequest: request 
                    withCompletionHandler: ^(GKTurnBasedMatch *match, 
                                             NSError *error) { ... }];
}
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Turn-Based Exchanges



Turn-Based Exchanges

•Out-of-band exchange of data between players
■ A single request and a reply from each player

• Current player in control of turn duration
■ Specify timeout
■ Can be cancelled when no longer needed

• Fully asynchronous



Solve difficult scenarios
Why Exchanges?

• Trading resources
■ Initiated by current player
■ Initiated by other player with current player
■ Between non-current players

•Auctions of properties
• Simultaneous turns
• Simple messages: Taunts, kibitz



Before exchanges
Difficult Scenarios

• Start turn
• Set special turn mode
• Pass turn between players

■ Short time out

• Return turn to original player
• Resolve special mode 

■ Duration of turn not under player’s control
■ Long time to resolve

• End turn



With exchanges
Difficult Scenarios

• Start turn
• Request exchange
• Receive replies
• Resolve exchange into match data
• End turn



Out-of-band request
GKTurnBasedExchange

• Sender
• Recipients

■ Can have multiple recipients
■ Can send to open seats

• Status
■ Active, cancelled, completed, resolved

•Message
•Data: 1K bytes
• Replies



Reply to an exchange
GKTurnBasedExchangeReply

• Recipient
•Message
•Data: 1K bytes
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The Three Rs of Exchanges

• Request an exchange
■ Started by any player 
■ Sent at any time
■ Can target multiple players
■ Includes a small payload

• Reply to exchange
• Resolve exchange into match state



• Requests can be sent to one or more participants
• Can be sent to empty participants 
• For each participant a request is sent to a single reply is required

[match sendExchangeToParticipants: participantsForTrade                                    
                             data: tradeData
            localizableMessageKey: messageKey
                        arguments: messageArguments
                          timeout: GKTurnBasedExchangeTimeoutDefault
                completionHandler: ^(GKTurnBasedExchange *exchange, 
                                     NSError *error) { ... }

Request an Exchange



• Requests can be sent to one or more participants
• Can be sent to empty participants 
• For each participant a request is sent to a single reply is required

[match sendExchangeToParticipants: participantsForTrade                                    
                             data: tradeData
            localizableMessageKey: messageKey
                        arguments: messageArguments
                          timeout: GKTurnBasedExchangeTimeoutDefault
                completionHandler: ^(GKTurnBasedExchange *exchange, 
                                     NSError *error) { ... }

Request an Exchange



• Exchanges have a single reply per participant
• Completed once a reply is received from each participant

[exchange replyWithLocalizableMessage: replyMessage
                            arguments: replyArguments
                                 data: replyData
                    completionHandler: ^(NSError *error) { ... }];

Reply to an Exchange



• Exchanges have a single reply per participant
• Completed once a reply is received from each participant

[exchange replyWithLocalizableMessage: replyMessage
                            arguments: replyArguments
                                 data: replyData
                    completionHandler: ^(NSError *error) { ... }];

Reply to an Exchange



Cancel an Exchange

•When user no longer wants to wait for further replies
• Can cancel active or completed exchanges
• Canceling an exchange removes it from the match

[exchange cancelWithLocalizableMessage: cancelMessage
                             arguments: cancelArguments
                     completionHandler: ^(NSError *error) { ... }];



Cancel an Exchange

•When user no longer wants to wait for further replies
• Can cancel active or completed exchanges
• Canceling an exchange removes it from the match

[exchange cancelWithLocalizableMessage: cancelMessage
                             arguments: cancelArguments
                     completionHandler: ^(NSError *error) { ... }];



Resolving Exchanges

• Exchange completed once all replies received
•All completed exchanges must be resolved

■ Including exchanges not involving the current player
■ Gather data from exchange and replies
■ Merge request and reply data into match data

•Once resolved, the exchange will be removed from the match



Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
                                     matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
[match saveMergedMatchData: mergedMatchData
     withResolvedExchanges: exchangesToResolve
         completionHandler: ^(NSError *error) { ... }];

// Continue with the turn



Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
                                     matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
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         completionHandler: ^(NSError *error) { ... }];

// Continue with the turn



Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
                                     matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
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Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
                                     matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
[match saveMergedMatchData: mergedMatchData
     withResolvedExchanges: exchangesToResolve
         completionHandler: ^(NSError *error) { ... }];

// Continue with the turn



GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
         receivedExchangeRequest: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
         receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player 
         receivedExchangeReplies: (NSArray *)replies
         forCompletedExchange: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match



GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
         receivedExchangeRequest: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
         receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player 
         receivedExchangeReplies: (NSArray *)replies
         forCompletedExchange: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match



GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
         receivedExchangeRequest: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
         receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player 
         receivedExchangeReplies: (NSArray *)replies
         forCompletedExchange: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match



GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
         receivedExchangeRequest: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
         receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player 
         receivedExchangeReplies: (NSArray *)replies
         forCompletedExchange: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match



GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
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Event handling
Exchange Requested

- (void) player: (GKPlayer *)player 
         receivedExchangeRequest: (GKTurnBasedExchange *)exchange 
         forMatch: (GKTurnBasedMatch *)match
{

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
    // Allow the user to act on this exchange
    [self showExchange:exchange match:match];
}
else {
    // Prompt user to change to this match
    [self showNotificationForExchange:exchange match:match];
}

}
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Event handling
Exchange Cancelled

- (void) player: (GKPlayer *)player
         receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
         forMatch: (GKTurnBasedMatch *)match

{
    // Is this the match we are currently viewing?
    if ([self.currentMatch isEqual: match] && 
        [self.currentExchange isEqual: exchange]) {
        // Indicate that the other player has cancelled this request.
        [self returnToMatch:match];
    }
    else {
        // Clear any notification for the exchange
        [self clearNotificationForExchange:exchange match:match];
    }
}
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Event handling
Exchange Cancelled
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Event handling
Exchange Completed

- (void) player: (GKPlayer *)player 
        receivedExchangeReplies: (NSArray *)replies
        forCompletedExchange: (GKTurnBasedExchange *)exchange
        forMatch: (GKTurnBasedMatch *)match

{
    // Is this the match we are currently viewing?
    if ([self.currentMatch isEqual: match] && 
        [self.currentExchange isEqual: exchange]) {
        // Indicate that the exchange completed and show the user the 
        // pertinent reply
        [self showReplies:replies forExchange:exchange];
    }
    else {
        // Clear any notification for the exchange
        [self clearNotificationForExchange:exchange match:match];
    }
}



Event handling
Exchange Completed

- (void) player: (GKPlayer *)player 
        receivedExchangeReplies: (NSArray *)replies
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{
    // Is this the match we are currently viewing?
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        // Indicate that the exchange completed and show the user the 
        // pertinent reply
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    }
    else {
        // Clear any notification for the exchange
        [self clearNotificationForExchange:exchange match:match];
    }
}



Event handling
Exchange Completed

- (void) player: (GKPlayer *)player 
        receivedExchangeReplies: (NSArray *)replies
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{
    // Is this the match we are currently viewing?
    if ([self.currentMatch isEqual: match] && 
        [self.currentExchange isEqual: exchange]) {
        // Indicate that the exchange completed and show the user the 
        // pertinent reply
        [self showReplies:replies forExchange:exchange];
    }
    else {
        // Clear any notification for the exchange
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    }
}



Event handling
Exchange Completed

- (void) player: (GKPlayer *)player 
        receivedExchangeReplies: (NSArray *)replies
        forCompletedExchange: (GKTurnBasedExchange *)exchange
        forMatch: (GKTurnBasedMatch *)match

{
    // Is this the match we are currently viewing?
    if ([self.currentMatch isEqual: match] && 
        [self.currentExchange isEqual: exchange]) {
        // Indicate that the exchange completed and show the user the 
        // pertinent reply
        [self showReplies:replies forExchange:exchange];
    }
    else {
        // Clear any notification for the exchange
        [self clearNotificationForExchange:exchange match:match];
    }
}



Solved with exchanges
Difficult Scenarios

• Trading resources
• Simultaneous turns
•Auctions of properties
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•User decides what they are going to offer to trade
• Send one request per potential trade partner
• Cancel outstanding exchanges when user gets a reply that they like
• Resolve the completed exchanges into the match
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Summary



User Expectations

•Allow multiple sessions
■ Create match
■ List existing matches
■ Manage matches (quit in turn, quit out of turn, remove)

• Everything is asynchronous
• Switching current match 

■ New invite
■ New turn/exchange



Wrap Up

• Turn-based games
■ Optimized for mobile
■ Multiple sessions
■ Simple structure

• Exchanges
■ Very difficult made easy
■ Opens up new game modes
■ Three Rs of exchanges: Request, Reply, Resolve



More Information

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Documentation
Game Center for Developers
http://developer.apple.com/game-center

Apple Developer Forums
http://devforums.apple.com

mailto:aschaffer@apple.com
mailto:aschaffer@apple.com
http://developer.apple.com/devcenter/ios/gamecenter
http://developer.apple.com/devcenter/ios/gamecenter


Related Sessions

What’s New in iTunes Connect Pacific Heights
Thursday 10:15AM

What’s New in Game Center MIssion
Wednesday 3:15PM



Labs

Game Center Lab Graphics and Games Lab B
Thursday 12:45PM




