
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 506

Turn-Based Gaming
with Game Center

Nathan Taylor
iOS Engineering Manager

Turn-based multiplayer
What You Will Learn

•Overview
•New features
• Basic scenarios
•Advanced scenarios

Three ways to play with friends
Game Center Multiplayer Options

• Peer-to-peer
• Server-hosted
• Turn-based

Turn

Turn-Based Multiplayer

SueBob

Nel Sam

You
?

Turn

Turn-Based Multiplayer

SueBob

Nel Sam

You
?

Turn

Turn-Based Multiplayer

SueBob

Nel Sam

You
?

Turn

Turn-Based Multiplayer

SueBob

Meg

Nel Sam

You

Turn

Turn-Based Multiplayer

SueBob

Meg

Nel Sam

You

Turn

Turn-Based Multiplayer

SueBob

Meg

Nel Sam

You

Turn

Turn-Based Multiplayer

SueBob

Meg

Nel Sam

You

Turn-Based Multiplayer

•Game Center provides matchmaking and invitation services
■ Asynchronous

•Game Center server stores the game state
■ Updates clients via push notifications
■ Provides synchronization of the game state
■ Manages player status

• Ideal for mobile
■ Users can play a short turn when available

Turn-Based Games
Capabilities

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn-Based Games
Capabilities

Simultaneous Matches Up to 30

Players per Match Up to 16

Gameplay Asynchronous

Game Data Up to 64K bytes

Seats Filled Invitations or Auto-Match

Turn Order Developer defined

Missed Turns Fallback list

Turn Time Out Default is 2 Weeks

Turn Flow Details

SueBob

Meg You

Turn

Turn Flow Details

SueBob

Meg You

Turn Game
Data

Turn Flow Details

SueBob

Meg You

TurnGame
Data

1

Turn Flow Details

SueBob

Meg You

Turn

Game
Data

Turn Flow Details

SueBob

Meg You

TurnGame
Data

1

Turn Flow Details

SueBob

Meg You

TurnGame
Data

Turn Flow Details

SueBob

Meg You

TurnGame
Data

1

Current state of the match
Match Data

•NSData
■ Contents are developer-defined

• Stored online
■ Only current player can update
■ Others can read

• Limited size: 64K bytes
■ Apply data packing strategies
■ Point to server stored data

Expectations of Turn-Based Games

Expectations of Turn-Based Games

•Multiple simultaneous matches
■ Each with its own state, players, outcome

Expectations of Turn-Based Games

•Multiple simultaneous matches
■ Each with its own state, players, outcome

•One player at a time
■ Other players just observe until it is their turn

Expectations of Turn-Based Games

•Multiple simultaneous matches
■ Each with its own state, players, outcome

•One player at a time
■ Other players just observe until it is their turn

•Not always running
■ Choose match, takes turn, and exits

Expectations of Turn-Based Games

•Multiple simultaneous matches
■ Each with its own state, players, outcome

•One player at a time
■ Other players just observe until it is their turn

•Not always running
■ Choose match, takes turn, and exits

•Anywhere in app
■ Receive notifications when player takes turn in
one match while taking our own turn in another

New Features

• Reporting scores and achievements for match
• Localizable turn messages
• Reminders
• Improved event handling
• Turn-based exchanges
• Improved parameter checking and error reporting

Game instances
GKTurnBasedMatch

• List of participants
• The current game state
• The player whose turn it is now
•All exchanges

Seats for players
GKTurnBasedParticipant

• Player ID
■ May be a player or an open position

• Status
■ Invited, matching, active, done

•Outcome
■ Filled when game over or player quits

Game Center interface
GKTurnBasedMatchmakerViewController

•Manage matches
■ Choose a match to play
■ Quit from a match

• Create new matches
■ Invite friends
■ Auto-match

Basic Scenarios

• Create a match
• Invite friends
• Play a turn
• End the match
•Quit the match
• List open matches
• Remove a match

Creating a Match

•Use GKTurnBasedMatchMakerViewController
■ Manage available matches
■ Auto-match and invitations
■ Create with a match request

• Programmatically
■ Auto-match and invitations

Creating a Match

// Get the friends to invite
NSArray *friendIDs = [self chooseFriendsToInvite];

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4;
request.maxPlayers = 4;

request.playersToInvite = friendIDs;
request.inviteMessage = @”Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];

Creating a Match

// Get the friends to invite
NSArray *friendIDs = [self chooseFriendsToInvite];

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4;
request.maxPlayers = 4;

request.playersToInvite = friendIDs;
request.inviteMessage = @”Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];

Creating a Match

// Get the friends to invite
NSArray *friendIDs = [self chooseFriendsToInvite];

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4;
request.maxPlayers = 4;

request.playersToInvite = friendIDs;
request.inviteMessage = @”Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];

Creating a Match

// Get the friends to invite
NSArray *friendIDs = [self chooseFriendsToInvite];

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4;
request.maxPlayers = 4;

request.playersToInvite = friendIDs;
request.inviteMessage = @”Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];

Creating a Match

// Get the friends to invite
NSArray *friendIDs = [self chooseFriendsToInvite];

// Set up match request
GKMatchRequest *request = [[GKMatchRequest alloc] init];
request.minPlayers = 4;
request.maxPlayers = 4;

request.playersToInvite = friendIDs;
request.inviteMessage = @”Let’s play”;

// Use the request to find or create a new match
[GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];

Multiple Matches

Turn

Turn Turn

Turn

Turn

Multiple Matches

Turn

Turn Turn

Turn

Turn

Managing Multiple Matches

• Listing matches

[GKTurnBasedMatch loadMatchesWithCompletionHandler: ^(NSArray
*existingMatches, NSError *error) { ... }];

• Removing a match

[match removeWithCompletionHandler: ^(NSError *) { ... }];

•Use GKTurnBasedMatchmakerViewController

Managing Multiple Matches

• Listing matches

[GKTurnBasedMatch loadMatchesWithCompletionHandler: ^(NSArray
*existingMatches, NSError *error) { ... }];

• Removing a match

[match removeWithCompletionHandler: ^(NSError *) { ... }];

•Use GKTurnBasedMatchmakerViewController

Managing Multiple Matches

• Listing matches

[GKTurnBasedMatch loadMatchesWithCompletionHandler: ^(NSArray
*existingMatches, NSError *error) { ... }];

• Removing a match

[match removeWithCompletionHandler: ^(NSError *) { ... }];

•Use GKTurnBasedMatchmakerViewController

Taking a Turn

Taking a Turn

Turn

SueBob

Meg

Nel Sam

You

Taking a Turn

Turn

SueBob

Meg

Nel Sam

You

Sequence
Taking a Turn

Sequence
Taking a Turn

• Load the current state

Sequence
Taking a Turn

• Load the current state
•Apply game logic

Sequence
Taking a Turn

• Load the current state
•Apply game logic
• Save intermediate state

Sequence
Taking a Turn

• Load the current state
•Apply game logic
• Save intermediate state
• Choose the next player sequence

Sequence
Taking a Turn

• Load the current state
•Apply game logic
• Save intermediate state
• Choose the next player sequence
• Submit turn

Load the current state
Taking a Turn

// Load the latest match data and match state
[activeMatch loadMatchDataWithCompletionHandler:
 ^(NSData *matchData, NSError *error) {

 // Present the latest match state to the user
 if (matchData) {
 self.currentMatchData = matchData;
 }
 else if (error) {
 // Handle the error
 }
}];

Load the current state
Taking a Turn

// Load the latest match data and match state
[activeMatch loadMatchDataWithCompletionHandler:
 ^(NSData *matchData, NSError *error) {

 // Present the latest match state to the user
 if (matchData) {
 self.currentMatchData = matchData;
 }
 else if (error) {
 // Handle the error
 }
}];

Load the current state
Taking a Turn

// Load the latest match data and match state
[activeMatch loadMatchDataWithCompletionHandler:
 ^(NSData *matchData, NSError *error) {

 // Present the latest match state to the user
 if (matchData) {
 self.currentMatchData = matchData;
 }
 else if (error) {
 // Handle the error
 }
}];

Save intermediate state
Taking a Turn

// Build the new match data for the intermediate state
newMatchData = [self updateMatchData:currentMatchData];

// Save the current state to the server
[match saveCurrentTurnWithMatchData: newMatchData
 withCompletionHandler: ^(NSError *error) { ... }];

// Continued...

Save intermediate state
Taking a Turn

// Build the new match data for the intermediate state
newMatchData = [self updateMatchData:currentMatchData];

// Save the current state to the server
[match saveCurrentTurnWithMatchData: newMatchData
 withCompletionHandler: ^(NSError *error) { ... }];

// Continued...

Save intermediate state
Taking a Turn

// Build the new match data for the intermediate state
newMatchData = [self updateMatchData:currentMatchData];

// Save the current state to the server
[match saveCurrentTurnWithMatchData: newMatchData
 withCompletionHandler: ^(NSError *error) { ... }];

// Continued...

Choose the next participants
Taking a Turn

• Based on your game rules
• Select only active players
•Guard against missed turns

■ Provide a list of multiple next participants
■ Use time outs
■ Last participant on list does not time out
■ Include yourself last

Submitting turn
Taking a Turn

// Update the state of the match
newMatchData = [self updateMatchData:currentMatchData];

// Determine the next participants
nextParticipants = [self chooseNextParticipants:match];

// Set the turn message...

Submitting turn
Taking a Turn

// Update the state of the match
newMatchData = [self updateMatchData:currentMatchData];

// Determine the next participants
nextParticipants = [self chooseNextParticipants:match];

// Set the turn message...

Submitting turn
Taking a Turn

// Update the state of the match
newMatchData = [self updateMatchData:currentMatchData];

// Determine the next participants
nextParticipants = [self chooseNextParticipants:match];

// Set the turn message...

Localizable Message

• Provided by the game bundle as a localizable string
•Game Center localizes string from game bundle
• Localized on the sender device as fallback
• Two items needed

■ A localizable string key
■ Optionally format arguments as array

Localizable message
Taking a Turn

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey
 arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
 turnTimeout: GKTurnBasedTimeoutDefault
 matchData: newMatchData
 completionHandler: ^(NSError *error) { ... }];

Localizable message
Taking a Turn

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey
 arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
 turnTimeout: GKTurnBasedTimeoutDefault
 matchData: newMatchData
 completionHandler: ^(NSError *error) { ... }];

Localizable message
Taking a Turn

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey
 arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
 turnTimeout: GKTurnBasedTimeoutDefault
 matchData: newMatchData
 completionHandler: ^(NSError *error) { ... }];

Localizable message
Taking a Turn

// Assemble the message key and arguments
messageKey = [self turnMessageKey];
messageArguments = @[playerName, wordPlayed];

// Set the localizable message on the match
[match setLocalizableMessageWithKey: messageKey
 arguments: messageArguments];

// Send new game state to Game Center & pass turn to next participant
[match endTurnWithNextParticipants: nextParticipants
 turnTimeout: GKTurnBasedTimeoutDefault
 matchData: newMatchData
 completionHandler: ^(NSError *error) { ... }];

Reminders

• Turn-based gaming is asynchronous
•Game proceeds only as fast as slowest player

■ Timeouts and fallbacks help

• Sometimes need to remind a player to play
• Reminders are a single one-way push with message

Sending a localizable reminder
Reminders

// Assemble the reminder message key and arguments
messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @[match.currentParticipant]
 localizableMessageKey: messageKey
 arguments: messageArguments
 completionHandler: ^(NSError *) { ... }];

Sending a localizable reminder
Reminders

// Assemble the reminder message key and arguments
messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @[match.currentParticipant]
 localizableMessageKey: messageKey
 arguments: messageArguments
 completionHandler: ^(NSError *) { ... }];

Sending a localizable reminder
Reminders

// Assemble the reminder message key and arguments
messageKey = [self reminderMessageKey];
messageArguments = [self reminderMessageArguments];

// Send the reminder message
[match sendReminderToParticipants: @[match.currentParticipant]
 localizableMessageKey: messageKey
 arguments: messageArguments
 completionHandler: ^(NSError *) { ... }];

Ending the Game

What to do when it’s all over
Ending the Game

• Players finish the game
• Player quits the game

■ In turn
■ Out of turn

•Game is ended by the last player instead of taking a turn

Outcomes
Ending the Game

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchData];

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant *participant in match.participants) {
 if (participant.status == GKTurnBasedParticipantActive) {
 participant.status = GKTurnBasedParticipantDone;
 participant.outcome = [self outcomeForParticipant: participant
 matchData: lastMatchData];
 }
}

// Continued...

Outcomes
Ending the Game

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchData];

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant *participant in match.participants) {
 if (participant.status == GKTurnBasedParticipantActive) {
 participant.status = GKTurnBasedParticipantDone;
 participant.outcome = [self outcomeForParticipant: participant
 matchData: lastMatchData];
 }
}

// Continued...

Outcomes
Ending the Game

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchData];

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant *participant in match.participants) {
 if (participant.status == GKTurnBasedParticipantActive) {
 participant.status = GKTurnBasedParticipantDone;
 participant.outcome = [self outcomeForParticipant: participant
 matchData: lastMatchData];
 }
}

// Continued...

Outcomes
Ending the Game

// Assemble the final match data after the last player takes the final turn
lastMatchData = [self updateMatchData: currentMatchData];

// Set the status and outcome for each active participant.
for (GKTurnBasedParticipant *participant in match.participants) {
 if (participant.status == GKTurnBasedParticipantActive) {
 participant.status = GKTurnBasedParticipantDone;
 participant.outcome = [self outcomeForParticipant: participant
 matchData: lastMatchData];
 }
}

// Continued...

Reporting final scores and achievements
Ending the Game

// Determine the scores and achievements earned for all players
scores = [self scoresForMatch:match data:lastMatchData];

achievements = [self achievementEarnedForMatch:match data:lastMatchData];

// End the match and report scores and achievements
[match endMatchInTurnWithMatchData: lastMatchData
 scores: scores
 achievements: achievements
 completionHandler: ^(NSError *) { ... }];

Reporting final scores and achievements
Ending the Game

// Determine the scores and achievements earned for all players
scores = [self scoresForMatch:match data:lastMatchData];

achievements = [self achievementEarnedForMatch:match data:lastMatchData];

// End the match and report scores and achievements
[match endMatchInTurnWithMatchData: lastMatchData
 scores: scores
 achievements: achievements
 completionHandler: ^(NSError *) { ... }];

Reporting final scores and achievements
Ending the Game

// Determine the scores and achievements earned for all players
scores = [self scoresForMatch:match data:lastMatchData];

achievements = [self achievementEarnedForMatch:match data:lastMatchData];

// End the match and report scores and achievements
[match endMatchInTurnWithMatchData: lastMatchData
 scores: scores
 achievements: achievements
 completionHandler: ^(NSError *) { ... }];

Handling Events

GKTurnBasedEventListener
Handling Events

• Protocol for events
■ Match state changed: Invitation, new turn, turn passed
■ Match ended
■ Exchange requested, cancelled, and completed

•GKLocalPlayer is the event producer
■ Replaces GKTurnBasedEventHandler and delegate

• Can have multiple listeners for each event

Setting the listener
Handling Events

•Adopt the GKTurnBasedEventListener protocol
• Register with GKLocalPlayer
[[GKLocalPlayer localPlayer] registerListener: self]

• Register multiple listeners
■ AppDelegate for new turn and activations
■ Match view controller for updates to the current match

Setting the listener
Handling Events

•Adopt the GKTurnBasedEventListener protocol
• Register with GKLocalPlayer
[[GKLocalPlayer localPlayer] registerListener: self]

• Register multiple listeners
■ AppDelegate for new turn and activations
■ Match view controller for updates to the current match

Setting the listener
Handling Events

•Adopt the GKTurnBasedEventListener protocol
• Register with GKLocalPlayer
[[GKLocalPlayer localPlayer] registerListener: self]

• Register multiple listeners
■ AppDelegate for new turn and activations
■ Match view controller for updates to the current match

Basic turn events
GKEventListenerProtocol

• Turn events
- (void)player: (GKPlayer *)player

 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive

•Match requests from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite

•Match ended
- (void)player: (GKPlayer *)player
 matchEnded: (GKTurnBasedMatch *)match

Basic turn events
GKEventListenerProtocol

• Turn events
- (void)player: (GKPlayer *)player

 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive

•Match requests from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite

•Match ended
- (void)player: (GKPlayer *)player
 matchEnded: (GKTurnBasedMatch *)match

Basic turn events
GKEventListenerProtocol

• Turn events
- (void)player: (GKPlayer *)player

 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive

•Match requests from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite

•Match ended
- (void)player: (GKPlayer *)player
 matchEnded: (GKTurnBasedMatch *)match

Basic turn events
GKEventListenerProtocol

• Turn events
- (void)player: (GKPlayer *)player

 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive

•Match requests from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite

•Match ended
- (void)player: (GKPlayer *)player
 matchEnded: (GKTurnBasedMatch *)match

Basic turn events
GKEventListenerProtocol

• Turn events
- (void)player: (GKPlayer *)player

 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive

•Match requests from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite

•Match ended
- (void)player: (GKPlayer *)player
 matchEnded: (GKTurnBasedMatch *)match

Activation
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // This event activated the application. This means that the user
 // tapped on the notification banner and wants to see or play this
 // match now.
 if (didBecomeActive) {
 [self switchToMatch:match];
 return;
 }

 // Handle the event more selectively
 ...
}

Activation
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // This event activated the application. This means that the user
 // tapped on the notification banner and wants to see or play this
 // match now.
 if (didBecomeActive) {
 [self switchToMatch:match];
 return;
 }

 // Handle the event more selectively
 ...
}

Activation
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // This event activated the application. This means that the user
 // tapped on the notification banner and wants to see or play this
 // match now.
 if (didBecomeActive) {
 [self switchToMatch:match];
 return;
 }

 // Handle the event more selectively
 ...
}

Match updated
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // continued...

 // Handle the event more selectively
 if ([self.currentMatch isEqual:match]) {
 // This is the match the user is currently playing,
 // update to show the latest state
 [self refreshMatch:match];
 }
 else { ... }
}

Match updated
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // continued...

 // Handle the event more selectively
 if ([self.currentMatch isEqual:match]) {
 // This is the match the user is currently playing,
 // update to show the latest state
 [self refreshMatch:match];
 }
 else { ... }
}

Match updated
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // continued...

 // Handle the event more selectively
 if ([self.currentMatch isEqual:match]) {
 // This is the match the user is currently playing,
 // update to show the latest state
 [self refreshMatch:match];
 }
 else { ... }
}

Turn received for different match
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // continued...
 if ([self.currentMatch isEqual:match]) { ... }
 else {
 // It became the player’s turn in a different match
 if ([match.currentParticpant.playerID isEqual:player.playerID]) {
 // Prompt the player to switch to the new match
 [self notifyUserOfNewTurn:match];
 }
 else { ... }
 }
}

Turn received for different match
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // continued...
 if ([self.currentMatch isEqual:match]) { ... }
 else {
 // It became the player’s turn in a different match
 if ([match.currentParticpant.playerID isEqual:player.playerID]) {
 // Prompt the player to switch to the new match
 [self notifyUserOfNewTurn:match];
 }
 else { ... }
 }
}

Turn received for different match
New Turn Event

- (void)player: (GKPlayer *)player
 receivedTurnEventForMatch: (GKTurnBasedMatch *)match
 didBecomeActive: (BOOL)didBecomeActive
{
 // continued...
 if ([self.currentMatch isEqual:match]) { ... }
 else {
 // It became the player’s turn in a different match
 if ([match.currentParticpant.playerID isEqual:player.playerID]) {
 // Prompt the player to switch to the new match
 [self notifyUserOfNewTurn:match];
 }
 else { ... }
 }
}

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite
{
 // Set up match request
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;

 request.playersToInvite = playerIDsToInvite;
 request.inviteMessage = @”Let’s play”;

 // Use the request to find or create a new match
 [GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];
}

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite
{
 // Set up match request
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;

 request.playersToInvite = playerIDsToInvite;
 request.inviteMessage = @”Let’s play”;

 // Use the request to find or create a new match
 [GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];
}

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite
{
 // Set up match request
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;

 request.playersToInvite = playerIDsToInvite;
 request.inviteMessage = @”Let’s play”;

 // Use the request to find or create a new match
 [GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];
}

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite
{
 // Set up match request
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;

 request.playersToInvite = playerIDsToInvite;
 request.inviteMessage = @”Let’s play”;

 // Use the request to find or create a new match
 [GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];
}

Match Request

// Triggered by the user choosing to play with a friend from Game Center
- (void)player: (GKPlayer *)player
 didRequestMatchWithPlayers: (NSArray *)playerIDsToInvite
{
 // Set up match request
 GKMatchRequest *request = [[GKMatchRequest alloc] init];
 request.minPlayers = 2;
 request.maxPlayers = 2;

 request.playersToInvite = playerIDsToInvite;
 request.inviteMessage = @”Let’s play”;

 // Use the request to find or create a new match
 [GKTurnBasedMatch findMatchForRequest: request
 withCompletionHandler: ^(GKTurnBasedMatch *match,
 NSError *error) { ... }];
}

Turn-Based Exchanges

Turn-Based Exchanges

•Out-of-band exchange of data between players
■ A single request and a reply from each player

• Current player in control of turn duration
■ Specify timeout
■ Can be cancelled when no longer needed

• Fully asynchronous

Solve difficult scenarios
Why Exchanges?

• Trading resources
■ Initiated by current player
■ Initiated by other player with current player
■ Between non-current players

•Auctions of properties
• Simultaneous turns
• Simple messages: Taunts, kibitz

Before exchanges
Difficult Scenarios

• Start turn
• Set special turn mode
• Pass turn between players

■ Short time out

• Return turn to original player
• Resolve special mode

■ Duration of turn not under player’s control
■ Long time to resolve

• End turn

With exchanges
Difficult Scenarios

• Start turn
• Request exchange
• Receive replies
• Resolve exchange into match data
• End turn

Out-of-band request
GKTurnBasedExchange

• Sender
• Recipients

■ Can have multiple recipients
■ Can send to open seats

• Status
■ Active, cancelled, completed, resolved

•Message
•Data: 1K bytes
• Replies

Reply to an exchange
GKTurnBasedExchangeReply

• Recipient
•Message
•Data: 1K bytes

Exchange Flow

Turn

SueBob

Meg

Nel Sam

You

Exchange Flow

Turn

SueBob

Meg

Nel Sam

You

Game
Data

Exchange Flow

SueBob

Meg

Nel Sam

You

1

1
Game
Data

Exchange Flow

SueBob

Meg

Nel Sam

You

1

Game
Data

Exchange Flow

SueBob

Meg

Nel Sam

You

Game
Data

Exchange Flow

Turn

SueBob

Meg

Nel Sam

You

Game
Data

Exchange Flow

Turn

SueBob

Meg

Nel Sam

You

1

Game
Data

Exchange Flow

Turn

SueBob

Meg

Nel Sam

You

Game
Data

The Three Rs of Exchanges

• Request an exchange
■ Started by any player
■ Sent at any time
■ Can target multiple players
■ Includes a small payload

• Reply to exchange
• Resolve exchange into match state

• Requests can be sent to one or more participants
• Can be sent to empty participants
• For each participant a request is sent to a single reply is required

[match sendExchangeToParticipants: participantsForTrade
 data: tradeData
 localizableMessageKey: messageKey
 arguments: messageArguments
 timeout: GKTurnBasedExchangeTimeoutDefault
 completionHandler: ^(GKTurnBasedExchange *exchange,
 NSError *error) { ... }

Request an Exchange

• Requests can be sent to one or more participants
• Can be sent to empty participants
• For each participant a request is sent to a single reply is required

[match sendExchangeToParticipants: participantsForTrade
 data: tradeData
 localizableMessageKey: messageKey
 arguments: messageArguments
 timeout: GKTurnBasedExchangeTimeoutDefault
 completionHandler: ^(GKTurnBasedExchange *exchange,
 NSError *error) { ... }

Request an Exchange

• Exchanges have a single reply per participant
• Completed once a reply is received from each participant

[exchange replyWithLocalizableMessage: replyMessage
 arguments: replyArguments
 data: replyData
 completionHandler: ^(NSError *error) { ... }];

Reply to an Exchange

• Exchanges have a single reply per participant
• Completed once a reply is received from each participant

[exchange replyWithLocalizableMessage: replyMessage
 arguments: replyArguments
 data: replyData
 completionHandler: ^(NSError *error) { ... }];

Reply to an Exchange

Cancel an Exchange

•When user no longer wants to wait for further replies
• Can cancel active or completed exchanges
• Canceling an exchange removes it from the match

[exchange cancelWithLocalizableMessage: cancelMessage
 arguments: cancelArguments
 completionHandler: ^(NSError *error) { ... }];

Cancel an Exchange

•When user no longer wants to wait for further replies
• Can cancel active or completed exchanges
• Canceling an exchange removes it from the match

[exchange cancelWithLocalizableMessage: cancelMessage
 arguments: cancelArguments
 completionHandler: ^(NSError *error) { ... }];

Resolving Exchanges

• Exchange completed once all replies received
•All completed exchanges must be resolved

■ Including exchanges not involving the current player
■ Gather data from exchange and replies
■ Merge request and reply data into match data

•Once resolved, the exchange will be removed from the match

Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
 matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
[match saveMergedMatchData: mergedMatchData
 withResolvedExchanges: exchangesToResolve
 completionHandler: ^(NSError *error) { ... }];

// Continue with the turn

Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
 matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
[match saveMergedMatchData: mergedMatchData
 withResolvedExchanges: exchangesToResolve
 completionHandler: ^(NSError *error) { ... }];

// Continue with the turn

Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
 matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
[match saveMergedMatchData: mergedMatchData
 withResolvedExchanges: exchangesToResolve
 completionHandler: ^(NSError *error) { ... }];

// Continue with the turn

Resolving Exchanges

currentMatchData = match.matchData;

exchangesToResolve = match.completedExchanges;

// Merge the data from the completed exchanges into the current match state
mergedMatchData = [self mergeResolvedExchanges: exchangesToResolve
 matchData: currentMatchData];

// Save the new match state to the server and indicate the exchanges resolved
[match saveMergedMatchData: mergedMatchData
 withResolvedExchanges: exchangesToResolve
 completionHandler: ^(NSError *error) { ... }];

// Continue with the turn

GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

GKTurnBasedEventListener protocol
Exchange Event Handling

• Request
- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Cancelled
- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

• Completed
- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

Event handling
Exchange Requested

- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match
{

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
 // Allow the user to act on this exchange
 [self showExchange:exchange match:match];
}
else {
 // Prompt user to change to this match
 [self showNotificationForExchange:exchange match:match];
}

}

Event handling
Exchange Requested

- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match
{

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
 // Allow the user to act on this exchange
 [self showExchange:exchange match:match];
}
else {
 // Prompt user to change to this match
 [self showNotificationForExchange:exchange match:match];
}

}

Event handling
Exchange Requested

- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match
{

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
 // Allow the user to act on this exchange
 [self showExchange:exchange match:match];
}
else {
 // Prompt user to change to this match
 [self showNotificationForExchange:exchange match:match];
}

}

Event handling
Exchange Requested

- (void) player: (GKPlayer *)player
 receivedExchangeRequest: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match
{

// Is this the match we are currently viewing?
if ([self.currentMatch isEqual: match]) {
 // Allow the user to act on this exchange
 [self showExchange:exchange match:match];
}
else {
 // Prompt user to change to this match
 [self showNotificationForExchange:exchange match:match];
}

}

Event handling
Exchange Cancelled

- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the other player has cancelled this request.
 [self returnToMatch:match];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Event handling
Exchange Cancelled

- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the other player has cancelled this request.
 [self returnToMatch:match];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Event handling
Exchange Cancelled

- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the other player has cancelled this request.
 [self returnToMatch:match];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Event handling
Exchange Cancelled

- (void) player: (GKPlayer *)player
 receivedExchangeCancellation: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the other player has cancelled this request.
 [self returnToMatch:match];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Event handling
Exchange Completed

- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the exchange completed and show the user the
 // pertinent reply
 [self showReplies:replies forExchange:exchange];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Event handling
Exchange Completed

- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the exchange completed and show the user the
 // pertinent reply
 [self showReplies:replies forExchange:exchange];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Event handling
Exchange Completed

- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the exchange completed and show the user the
 // pertinent reply
 [self showReplies:replies forExchange:exchange];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Event handling
Exchange Completed

- (void) player: (GKPlayer *)player
 receivedExchangeReplies: (NSArray *)replies
 forCompletedExchange: (GKTurnBasedExchange *)exchange
 forMatch: (GKTurnBasedMatch *)match

{
 // Is this the match we are currently viewing?
 if ([self.currentMatch isEqual: match] &&
 [self.currentExchange isEqual: exchange]) {
 // Indicate that the exchange completed and show the user the
 // pertinent reply
 [self showReplies:replies forExchange:exchange];
 }
 else {
 // Clear any notification for the exchange
 [self clearNotificationForExchange:exchange match:match];
 }
}

Solved with exchanges
Difficult Scenarios

• Trading resources
• Simultaneous turns
•Auctions of properties

Using exchanges
Trading

Using exchanges
Trading

•User decides what they are going to offer to trade

Using exchanges
Trading

•User decides what they are going to offer to trade
• Send one request per potential trade partner

Using exchanges
Trading

•User decides what they are going to offer to trade
• Send one request per potential trade partner
• Cancel outstanding exchanges when user gets a reply that they like

Using exchanges
Trading

•User decides what they are going to offer to trade
• Send one request per potential trade partner
• Cancel outstanding exchanges when user gets a reply that they like
• Resolve the completed exchanges into the match

Using exchanges
Trading

•User decides what they are going to offer to trade
• Send one request per potential trade partner
• Cancel outstanding exchanges when user gets a reply that they like
• Resolve the completed exchanges into the match
• Finish the turn

Using exchanges
Trading

Turn

SueBob

Meg

Nel Sam

You

Using exchanges
Trading

Turn

SueBob

Meg

Nel Sam

You

Game
Data

Using exchanges
Trading

SueBob

Meg

Nel Sam

You

1

1
Game
Data

Using exchanges
Trading

SueBob

Meg

Nel Sam

You

1

Game
Data

Using exchanges
Trading

SueBob

Meg

Nel Sam

You

Game
Data

Using exchanges
Trading

Turn

SueBob

Meg

Nel Sam

You

Game
Data

Using exchanges
Trading

Turn

SueBob

Meg

Nel Sam

You

1

Game
Data

Using exchanges
Trading

Turn

SueBob

Meg

Nel Sam

You

Game
Data

Using exchanges
Simultaneous Turns

Using exchanges
Simultaneous Turns

• Send one exchange to all participants of the game

Using exchanges
Simultaneous Turns

• Send one exchange to all participants of the game
•Wait until all replies are received or time out

Using exchanges
Simultaneous Turns

• Send one exchange to all participants of the game
•Wait until all replies are received or time out
• Resolve the completed exchange into the match

Using exchanges
Simultaneous Turns

• Send one exchange to all participants of the game
•Wait until all replies are received or time out
• Resolve the completed exchange into the match
• Finish the turn

Using exchanges
Auctions

Using exchanges
Auctions

• Send one exchange to all participants of the game
■ Short time out

Using exchanges
Auctions

• Send one exchange to all participants of the game
■ Short time out

•Wait until all replies are received or time out

Using exchanges
Auctions

• Send one exchange to all participants of the game
■ Short time out

•Wait until all replies are received or time out
• Repeat until a high bidder is determined

Using exchanges
Auctions

• Send one exchange to all participants of the game
■ Short time out

•Wait until all replies are received or time out
• Repeat until a high bidder is determined
• Resolve the completed exchanges into the match

Using exchanges
Auctions

• Send one exchange to all participants of the game
■ Short time out

•Wait until all replies are received or time out
• Repeat until a high bidder is determined
• Resolve the completed exchanges into the match
• Finish the turn

Using exchanges
Trading

Turn

SueBob

Nel Sam

YouMeg

Using exchanges
Trading

Turn

SueBob

Nel Sam

YouMeg

Game
Data

Using exchanges
Trading

SueBob

Nel Sam

YouMeg

Game
Data

Using exchanges
Trading

Turn

SueBob

Nel Sam

YouMeg

Game
Data

Using exchanges
Trading

Turn

SueBob

Nel Sam

YouMeg

Game
Data

1

Summary

User Expectations

•Allow multiple sessions
■ Create match
■ List existing matches
■ Manage matches (quit in turn, quit out of turn, remove)

• Everything is asynchronous
• Switching current match

■ New invite
■ New turn/exchange

Wrap Up

• Turn-based games
■ Optimized for mobile
■ Multiple sessions
■ Simple structure

• Exchanges
■ Very difficult made easy
■ Opens up new game modes
■ Three Rs of exchanges: Request, Reply, Resolve

More Information

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Documentation
Game Center for Developers
http://developer.apple.com/game-center

Apple Developer Forums
http://devforums.apple.com

mailto:aschaffer@apple.com
mailto:aschaffer@apple.com
http://developer.apple.com/devcenter/ios/gamecenter
http://developer.apple.com/devcenter/ios/gamecenter

Related Sessions

What’s New in iTunes Connect Pacific Heights
Thursday 10:15AM

What’s New in Game Center MIssion
Wednesday 3:15PM

Labs

Game Center Lab Graphics and Games Lab B
Thursday 12:45PM

