
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 710

A Practical Guide to the
App Sandbox

Ivan KrstiĆ
Core OS Honey Badger

•Mandatory standardized
crash testing performed by
the government
• Traction control, blind spot
warnings, lane-drift alerts
• But, damage containment
•When all else fails, there are
seat belts and airbags

Modern Car Safety

•Defender must protect everything at
all times, attacker must breach one
protection at any time
• Emphasis on damage prevention
(ASLR, NX, antivirus), not containment
•One thing goes wrong, game over
•No seatbelt and airbag for the
computer

Traditional Desktop Security

The Unfortunate Assumption

•All programs should execute with the full privileges of the executing user
■ Or, security is a barrier between different users, not different programs

• But most modern computer devices are single-user systems
•Not every app should have access to the most sensitive data

■ Apps should only have access to the resources they need

• The unfortunate assumption does
not work
• Compromising any app must not
grant access to all user data

An Unfortunate Example

Security UI Does Not Work

• Security dialogs are mysterious
and opaque; riddles wrapped
inside enigmas
• Clicking “Permit” or “Allow”
maximizes the likelihood of
getting work done
• “If you’re explaining, you’re losing”
• Pavlovian conditioning to
ignore security

Landscape Changes

•Many apps, many developers
• Computers are always on
a network
• Easier than ever to find and
run new software
• Security challenge: Isolate data
between programs

Software Reality

• Complex systems will always have vulnerabilities
■ Complexity is never decreasing

• Single buffer overflow can ruin your user’s day
• Frameworks and libraries you don’t control

■ Every WebView instance: Millions of lines of code and a full-featured
JavaScript engine

•No limit on exploit damage

App Sandbox

App Sandbox

• Introduced in OS X Lion
•More secure applications
•Drive security policy by user intent
• Contain exploit damage
• Reduce ability for a compromised or misbehaving application to steal,
corrupt, or destroy user data

Key Concepts

•Developer expresses what an app is supposed to be able to do
• Each app runs in its own container
•User controls access to documents

■ Special cases (e.g., recent items, drag and drop) work automatically

Key Components

Key Components

Entitlements

Containers

PowerBox

XPC Services

Entitlements

•What apps can do is determined by the developer-specified
entitlements in the code signature
• Just a property list, editable in Xcode
• Simple, easy to understand

Entitlements

•User-selected files, Downloads folder
• Personal information

■ Address book, calendars, location

•Assets: Music, movies, pictures
•Network client, server
•Devices

■ Camera, microphone, printing, USB, FireWire, Bluetooth, serial

•Application groups and scripting/automation targets

Key Components

Entitlements

Containers

Powerbox

XPC Services

Key Components

Entitlements

Containers

Powerbox

XPC Services

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

open(“/Users/krstic/Library/foo”)

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

open(“/Users/krstic/Library/foo”)

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

NSHomeDirectory()

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

NSHomeDirectory()

HOME=~/Library/Containers/App/
CFFIXED_USER_HOME=~/Library/Containers/App/

NSHomeDirectory()

“/Users/krstic/Library/Containers/App”

Key Components

Entitlements

Containers

Powerbox

XPC Services

Key Components

Entitlements

Containers

Powerbox

XPC Services

Powerbox

• Cocoa NSOpenPanel/NSSavePanel
• Trusted mediator process
• Clear declaration of user intent

■ Drives security policy
■ Sandboxed apps cannot synthesize user input events

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

NSOpenPanel

AppKit

~/Documents

AppKit

Powerbox

NSOpenPanel

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

AppKit

~/Documents

AppKit

Powerbox

Key Components

Entitlements

Containers

Powerbox

XPC Services

Key Components

Entitlements

Containers

Powerbox

XPC Services

XPC Services

• Very easy app and framework privilege separation
• Services have their own entitlements
•No fork/exec, process lifecycle managed by XPC
•Only available to the containing app

TextEdit
Putting It All Together

Process
TextEdit

• Prepare entitlements
• Code sign program
• Run and verify App Sandbox status
• Look for violations

Demo

Exploitation
TextEdit

• The attacker only has access to documents that the user opened during
this TextEdit run
•No ability to access or modify other apps or documents
•Need multiple vulnerabilities for a successful exploit

Advanced App Sandbox

Security-Scoped Bookmarks

Security-Scoped Bookmarks

• Preserve access to user-chosen files and folders across system reboot
• Per-user app configuration—Input and output folders, commonly
accessed files
•Document formats that contain references to files

Security-Scoped Bookmarks

•App scope
com.apple.security.files.user-
selected.read-{write,only}

■ Locked to the app and user that
created them

Security-Scoped Bookmarks

•App scope
com.apple.security.files.user-
selected.read-{write,only}

■ Locked to the app and user that
created them

User Picks File

bookmarkDataWithOptions

User Picks File

bookmarkDataWithOptions

User Picks File

NSData

bookmarkDataWithOptions

User Picks File

NSData

bookmarkDataWithOptions

User Picks File

NSData

bookmarkDataWithOptions

User Picks File

User Defaults

NSDataNSData

bookmarkDataWithOptions

User Picks File

User Defaults

NSData

Core Data

NSDataNSData

My App

NSData URLByResolvingBookmarkData

My App

NSData URLByResolvingBookmarkData

My App

Other App

NSData

Other App

URLByResolvingBookmarkData

Security-Scoped Bookmarks

•Document scope
com.apple.security.files.bookmarks.document-scope

■ Allows a document format to contain references to files (but not folders)
that travel with it

■ Bookmark must be stored in the document file/bundle itself
■ Cannot point to system or hidden locations (~/Library)

User
Creates

Doc

My App

User
Creates

Doc

User
Inserts
Movie

My App

bookmarkDataWithOptionsMy App

bookmarkDataWithOptionsNSDataMy App

bookmarkDataWithOptions

NSData

My App

User
Opens

Doc

My App

NSData

URLByResolvingBookmarkDataMy App

NSData

User
Creates

Doc

URLByResolvingBookmarkDataMy App

URLByResolvingBookmarkDataMy App

NSData

User
Opens

Doc

User
Opens

Doc

Other
App

NSData

URLByResolvingBookmarkDataOther
App

NSData

User
Creates

Doc

URLByResolvingBookmarkDataOther
App

URLByResolvingBookmarkDataOther
App

NSData

User
Opens

Doc

Security-Scoped Bookmarks

•No new API, just a flag on existing NSURL methods
+ URLByResolvingBookmarkData:options:relativeToURL:bookmarkDataIsStale:error:
– bookmarkDataWithOptions:includingResourceValuesForKeys:relativeToURL:error:

• Big difference—Resolution returns a security-scoped NSURL
■ Must call {start,stop}AccessingSecurityScopedResource to gain
and discontinue access to resource

Application Groups

Application Groups

com.apple.security.application-groups

■ Each group name must begin with Apple-assigned Team ID
■ Useful for suites of different apps, or a single app and its helper(s)
■ Direct IPC permitted: XPC, POSIX
■ Each group is assigned a shared file system location

com.apple.security.application-groups
8314ABCD.myapp

com.apple.security.application-groups
8314ABCD.myapp

8314ABCD.myapp

8314ABCD.myapp

Mach, POSIX

SMLoginItemSetEnabled()

SMLoginItemSetEnabled()

XPC

Related Items

Related Items

•Access to files/folders with same name, but different file extension
■ Movie player opening a subtitle file for a movie
■ TextEdit upgrading a .rtf document to a .rtfd for attachments

•NSFilePresenter’s primaryPresentedItemURL for the former,
itemAtURL:willMoveToURL: for the latter

• Requires a declaration of allowed patterns in the app’s Info.plist

Automation

Automation

• Rich history of automation on OS X
•App Sandbox does not impose restrictions on how your apps can
be scripted
• But your apps were very limited in how they can script other apps

■ Scripting Terminal, Finder or Safari can be complete sandbox escapes

Apple Event Access Groups

•Access groups define groups of scriptable operations
■ Commands, classes, properties
■ Part of the application’s scripting interface (sdef)
■ man 5 sdef

•Already in OS X applications
■ Mail: com.apple.mail.compose
■ iTunes: com.apple.iTunes.playback, com.apple.iTunes.library.read,
com.apple.iTunes.library.read-write

Using an Access Group

• com.apple.security.scripting-targets
• Value is a dictionary

■ Keys are application code signing identifiers
■ Values are access group identifiers

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.mail</key>
 <array>
 <string>com.apple.mail.compose<string>
 </array>
</dict>

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.mail</key>
 <array>
 <string>com.apple.mail.compose<string>
 </array>
</dict>

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.mail</key>
 <array>
 <string>com.apple.mail.compose<string>
 </array>
</dict>

Compose Mail message
Using an Access Group

<key>com.apple.security.scripting-targets<key>
<dict>
 <key>com.apple.mail</key>
 <array>
 <string>com.apple.mail.compose<string>
 </array>
</dict>

Application-Run User Scripts

•Application Script Menu
• Event Handlers

■ Mail Rule
■ Aperture Import Action
■ Messages Events

• Scripts executed by the application
• Inherit application’s permissions

NSUserScriptTask

Application Scripts
~/Library

com.devID.appNamecom.devID.appNamecom.devID.appNamecom.devID.appName

Running attached user scripts
NSUserScriptTask

• Part of Foundation.framework
•NSUserScriptTask for generic scripts

■ Supports AppleScript, Automator, and UNIX scripts

• Subclasses for specific control
■ NSUserAppleScriptTask, NSUserAutomatorTask, NSUserUnixTask

• Script runs outside the sandbox
•No entitlement required

iTunes Library Access

New in iTunes 11
iTunes Library Framework

•Access to iTunes Library media and artwork regardless of disk location
•Objective-C API instead of the XML database
• Requires com.apple.security.music.read-{write,only} entitlement
• Returns security-scoped NSURLs

■ {start,stop}AccessingSecurityScopedResource

App Sandbox and the Mac App Store

Mac App Store

• Technical Q&A QA1773
•All binaries must be sandboxed, including XPC services and other
helper tools
• Entitlements must match app functionality

■ If you don’t need it, don’t request it
■ Don’t request entitlements that silence sandbox violations which have
no functional impact

Mac App Store

•Understand the entitlements you’re requesting
■ USB access not required for the user to choose files on USB media
■ Incoming connections (Server) not needed for most network
applications

• Temporary exception requests must not effectively disable the sandbox
■ Scripting Finder or Terminal
■ Filesystem access to /

Summary

App Sandbox

• Strong barrier against exploitation and coding errors
•Drives policy by user intent
• Complementary to Gatekeeper
• See the App Sandbox Design Guide
• Sample code available

Summary

• iOS—50 billion sandboxed apps
downloaded with confidence
•Delight users with carefree
apps on OS X

Related Sessions

Efficient Design with XPC Russian Hill
Tuesday 2:00PM

Related Labs

Security Lab Core OS Lab
Thursday 2:00PM

OS X Sandbox Lab Core OS Lab
Wednesday 3:15PM

App Store Lab Third Floor
Daily 9:00AM

